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Abstract— In the manifold learning problem one seeks to
discover a smooth low dimensional surface, i.e., a manifold
embedded in a higher dimensional linear vector space, based on
a set of measured sample points on the surface. In this paper we
consider the closely related problem of estimating the manifold’s
intrinsic dimension and the intrinsic entropy of the sample points.
Specifically, we view the sample points as realizations of an
unknown multivariate density supported on an unknown smooth
manifold. We introduce a novel geometric approach based on
entropic graph methods. Although the theory presented applies
to this general class of graphs, we focus on the geodesic-minimal-
spanning-tree (GMST) to obtaining asymptotically consistent
estimates of the manifold dimension and the Rényi a-entropy
of the sample density on the manifold. The GMST approach is
striking in its simplicity and does not require reconstructing the
manifold or estimating the multivariate density of the samples.
The GMST method simply constructs a minimal spanning tree
(MST) sequence using a geodesic edge matrix and uses the overall
lengths of the MSTs to simultaneously estimate manifold dimen-
sion and entropy. We illustrate the GMST approach on standard
synthetic manifolds as well as on real data sets consisting of
images of faces.

Index Terms— Nonlinear dimensionality reduction, minimal
spanning tree, intrinsic dimension, intrinsic entropy, manifold
learning, conformal embedding.

I. INTRODUCTION

ONSIDER a class of natural occurring signals, e.g.,

recorded speech, audio, images, or videos. Such signals
typically have high extrinsic dimension, e.g., as characterized
by the number of pixels in an image or the number of time
samples in an audio waveform. However, most natural signals
have smooth and regular structure, e.g. piecewise smoothness,
that permits substantial dimension reduction with little or
no loss of content information. For support of this fact one
needs only consider the success of image, video and audio
compression algorithms, e.g. MP3, JPEG and MPEG, or the
widespread use of efficient computational geometry methods
for rendering smooth three dimensional shapes.

A useful representation of a regular signal class is to model
it as a set of vectors which are constrained to a smooth low
dimensional manifold embedded in a high dimensional vector
space. This manifold may in some cases be a linear, i.e.,
Euclidean, subspace but in general it is a non-linear curved
surface. A problem of substantial recent interest in machine
learning, computer vision, signal processing and statistics is
the determination of the so-called intrinsic dimension of the
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manifold and the reconstruction of the manifold from a set of
samples from the signal class [1]-[7]. This problem falls in the
area of manifold learning which is concerned with discovering
low dimensional structure in high dimensional data.

When the samples are drawn from a large population
of signals one can interpret them as realizations from a
multivariate distribution supported on the manifold. As this
distribution is singular in the higher dimensional embedding
space it has zero entropy as defined by the standard Lebesgue
integral over the embedding space. However, when defined as a
Lebesgue integral restricted to the lower dimensional manifold
the entropy can be finite. This finite intrinsic entropy can be
useful for exploring data compression over the manifold or,
as suggested in [8], clustering of multiple sub-populations on
the manifold. The question that we address in this paper is:
how to simultaneously estimate the intrinsic dimension and
intrinsic entropy on the manifold given a set of random sample
points? We present a novel geometric probability approach
to this question which is based on entropic graph methods
developed by us and reported in publications [8]-[10].

Techniques for manifold learning can be classified into three
categories: linear methods, local methods, and global methods.
Linear methods include principal components analysis (PCA)
[11] and classical multidimensional scaling (MDS) [12]. They
are based on analyzing eigenstructure of empirical covariance
matrices, and can be reliably applied only when the manifold
is a linear subspace. Local methods include linear local
imbedding (LLE) [2], locally linear projections (LLP) [13],
Laplacian eigenmaps [14], and Hessian eigenmaps [3]. They
are based on local approximation of the geometry of the man-
ifold, and are computationally simple to implement. Global
approaches include ISOMAP [1] and C-ISOMAP [15]. They
preserve the manifold geometry at all scales, and have better
stability than local methods when the number of manifold
samples is limited.

With regards to estimation of the intrinsic dimension m
several methods have been proposed [11], [16]. Most of
these methods are based on linear projection techniques: a
linear map is explicitly constructed and dimension is estimated
by applying Principal Component Analysis (PCA), factor
analysis, or MDS to analyze the eigenstructure of the data.
These methods rely on the assumption that only a small
number of the eigenvalues of the (processed) data covariance
will be significant. Linear methods tend to overestimate m
as they don’t account for non-linearities in the data. Both
nonlinear PCA [4] methods and the ISOMAP circumvent this
problem but they still rely on possibly unreliable and costly
eigenstructure estimates. Other methods have been proposed
based on local geometric techniques, e.g., estimation of local



neighborhoods [6] or fractal dimension [17], and estimating
packing numbers [5] of the manifold.

We propose a geodesic-minimal-spanning-tree (GMST)
method that jointly estimates both the intrinsic dimension and
intrinsic entropy on the manifold. The method is implemented
as follows. First a complete geodesic graph between all pairs
of data samples is constructed, as in ISOMAP or C-ISOMAP.
Then a minimal spanning graph, the GMST, is obtained by
pruning the complete geodesic graph down to a subgraph
that still connects all points but has minimum total geodesic
length. The intrinsic dimension and intrinsic a-entropy are
then estimated from the GMST length functional using a
simple linear least squares (LLS) and method of moments
(MOM) procedure.

The GMST method falls in the category of global ap-
proaches to manifold learning but it differs significantly from
the aforementioned methods. First, it has a different scope.
Indeed, unlike ISOMAP and C-ISOMAP, the GMST method
provides a statistically consistent estimate of the intrinsic
entropy in addition to the intrinsic dimension of the mani-
fold. To the best of our knowledge no other such technique
has been proposed for learning manifold dimension. Second,
unlike local methods that work on chunks of data in local
neighborhoods, GMST works on resampled data distributed
over the global data set. Third, the GMST method is simple
and elegant: it estimates intrinsic entropy and dimension by
detecting the rate of increase of a graph as a function of the
number of its resampled vertices.

The aims of this paper are limited to introducing GMST as a
novel method for estimating manifold dimension and entropy
of the samples. As in work of others on dimension estimation
[5], [17] we do not here consider the issue of reconstruction of
the complete manifold. Similarly to these authors, we believe
that dimension estimation and entropy estimation for non-
linear data are of interest in their own right. We also do
not consider the effect of additive noise or outliers on the
performance of GMST. Finally, the consistency results of
GMST reported here are limited to domain manifolds defined
by some smooth unknown mapping. The extension of GMST
methodology to general target manifolds, e.g. those defined by
implicit level set embeddings [18], [19], is a worthwhile topic
for future investigation.

What follows is a brief outline of the paper. We review
some necessary background on the mathematics of domain
manifolds in Sec. Il. In Sec. Il we review the asymptotic
theory of entropic graphs and obtain several new results
required for their extension to embedded manifolds. In Sec.
IV we define the general GMST algorithm. Finally, in Sec. V
we test the GMST algorithm on standard synthetic manifolds
and on a real data set consisting of human faces from different
subjects.

Il. GEOMETRIC BACKGROUND
A. A 3D Example

To illustrate ideas consider a 2D surface embedded
in 3D Euclidean space, called the embedding space. Let
{Z1,x2,...} C U C R? be a set of points (samples) in a

subset U of the plane. Naturally, the shortest path between
any pair (x;,x;) of these points is given by the straight
line in R? connecting them, with corresponding distance
given by its Euclidean (L) length, |z; — x;|. Now let U
be used as a parameterization space to describe a curved
surface in R® via a mapping ¢ : U — R3. Surfaces
M = p(U) defined in this explicit manner are called domain
or parameterized manifolds and they inherit the topological
dimension, equal to 2 in this case, of the parameterization
space. When ¢ is non-linear, the shortest path on M between
points y; = p(x;) and y; = p(x;) is a curve on the surface
called the geodesic curve. In this paper we will primarily
consider domain manifolds defined by conformal mappings
. Such conformal embeddings have the property that the
angles between tangent vectors to the surface are identical to
angles between corresponding vectors in the parameterization
space, possibly up to a smoothly varying local scale factor.
This property guarantees that, regardless of how the mapping
¢ “deforms” U onto M, the geodesic distances in M are
closely related to the Euclidean distances in U. When this
smooth surface representation holds there exist algorithms, e.g.
ISOMAP and C-ISOMAP [1], [15], which can be used to
estimate the Euclidean distances between points in U from
estimates of the geodesic distances between points in M.
If a certain type of minimal spanning graph is constructed
using these estimates, well established results in geometrical
probability [8], [20] allow us to develop simple estimates of
both entropy and dimension of the points distributed on the
surface.

B. Differential Geometry Setting

In the following, we recall some facts from differential
geometry needed to formalize and generalize the ideas just
described. We will consider smooth manifolds embedded in
R?. For the general theory we refer the reader to any standard
book in differential geometry (for example, [21], [22], [23]).
An m-dimensional smooth manifold M C R¢ is a set such that
each of its points has a neighborhood that can be parameterized
by an open set of R™ through a local change of coordinates.
Intuitively, this means that although M is a (hyper) surface in
R?, it can be locally identified with R™.

Let ¢ : Q@ — M be a mapping between two manifolds,
Q, M. Let v be a curve in €. The tangent map dyg assigns
each tangent vector v to 2 at point « the tangent vector dpgv
to M at point (), such that, if v is the initial velocity of
~ in Q, then dygwv is the initial velocity of the curve ()
in M. For example, if x € U C Q C R™, with U an open
set of R™, then dpgv = J,(x)v, where J, = [0p;/0z;],
i=1,...,d,j =1,...,m, is the Jacobian matrix associated
with ¢ at point z € Q.

The length of a smooth curve T' : [0,1] — M is defined as
LT) = fol | ST (t)|dt. The geodesic distance between points
Yo, Y1 € M is the length of the shortest (piecewise) smooth
curve between the two points:

dm (Yo, y1) = E{AT) : T(0) = yo, T(1) = 91} -

We can now define the following types of embeddings.



Definition 1: ¢ : Q — M is called a conformal mapping
if ¢ is a diffeomorphism (i.e., ¢ is differentiable, bijective
with differentiable inverse ¢ —!) and, at each point z € Q, ¢
preserves the angles between tangent vectors, i.e.,

T

(dpgv)” (dpgw) = c(x)vTw , N

for all vectors v and w that are tangent to Q at , and ¢(x) > 0
is a scaling factor that varies smoothly with x. If for all z € Q,
c(x) =1, then ¢ is said to be a (global) isometry. In this case
the length of tangent vectors is also preserved in addition to
the angles between them.

If there is an open set U C Q C R™ [21], then the
diffeomorphism ¢ is a conformal mapping iff J,,(z)” J,(x) =
c(x) I, where I, is the m x m identity matrix. In this case,
the geodesic distance in M can be computed as follows.
Any smooth curve T' : [0,1] — M can be represented as
T'(t) = ¢(v(t)), where v : [0,1] —» Q is a smooth curve in
R™. Then, the length £(T") of the curve T" is given by

(= [ |3 ‘dt_/u
:/0 Ve(y(®) [y(#)] dt .

As in R™ the shortest path between any two points is given by
the straight line that connects them, () = x¢ + t(x1 — o)
minimizes fo |¥(t)| dt, over all smooth curves with start and
end points at xq and x, respectively. So, if ¢(x) is constant,
i.e. c(x) = c for all z € N, the geodesic distance between

Yo = p(xo) and y; = p(x1) is
dam(p(@o), (1)) = Velwo — x| - @)

When ¢ = 1, i.e,, ¢ is an isometry, the geodesic distance in
M and the Euclidean distance in the parameterization space
R™ are the same. If ¢ > 1 (¢ < 1) there is a global expansion
(contraction) in the distances between points.

It is evident from the above discussion that geodesic dis-
tances carry strong information about a non-linear domain
manifold such as M. However, their computation requires the
knowledge of the analytical form of M via ¢ and its Jacobian.
Our goal is to learn the entropy of non-linear data on a domain
manifold together with its intrinsic dimension, given only the
data set ), of n samples in the embedding space R¢, and
without knowledge of its embedding function ¢.

(t)] dt

I1l. ENTROPIC GRAPH ESTIMATORS ON EMBEDDED
MANIFOLDS

Let YV, = {Y1,...,Y,} be n independent identically
distributed (i.i.d.) random vectors in a compact subset of R,
with multivariate Lebesgue density f, which we will also call
random vertices. Define the distance matrix D as the n x n
matrix of edge weights (w.r.t. a specified metric). A spanning
graph T over Y, is defined as the pair {V, E} where V = ),
and E is a subset of all graph edges connecting pairs of
vertices in V/, with weights given by D. When D is computed
from pairwise Euclidean distances, T is called a Euclidean
spanning graph.

It has long been known [24] that, when suitably normalized,
the sum of the edge weights of certain minimal Euclidean
spanning graphs 7' over ), converges with probability 1
(w.p.1) to the limit Sy [, f*(y)dy, where the integral is
interpreted in the sense of Lebesgue, a € (0,1) and 34 > 0.
This a.s. limit is the integral factor [ f* in what we will call
the extrinsic Rényi a-entropy of the multivariate Lebesgue
density f:

HE(f) = — 105 [ )iy - ©)
— Rd
In the Iimit when a. — 1 we obtain the usual Shannon entropy,

— Jea F(y)log f(y)dy. Graph constructions that converge to
the mtegral in the limit (3) were called continuous quasi-
additive (Euclidean) graphs in [20] and entropic (Euclidean)
graphs in [8]. See the monographs by Steele [25] and Yukich
[20] for an excellent introduction to the theory of such random
Euclidean graphs. Relevant details for these results are given
in the next subsection.

The a-entropy has proved to be an important quantity in
signal processing, where its applications range from vector
quantization [26], [27] to pattern matching [28] and image
registration [8], [29]. The a-entropy parameterizes the Cher-
noff exponent governing the minimum probability of error [30]
making it an important quantity in detection and classification
problems. Like the Shannon entropy, the a-entropy also has an
operational characterization in terms of source coding rates. In
[31] it was shown that the a-entropy of a source determines
the achievable block-code rates in the sense that the probability
of block decoding error converges to zero at an exponential
rate with rate constant HR*(f).

A. Beardwood-Halton-Hammersley Theorem in R¢

Let Y, = {Y,...,Y,} be a set of points in RZ. A
minimal Euclidean graph spanning ), is defined as the graph
spanning ), having minimal overall length

d
L5 (Vn) = min 3 [e[” - 4)
ecT
Here the sum is over all edges e (e.0.,e =Y ;=Y ;,¢ # j) in
the graph T, |e| is the Euclidean length of e, and v € (0, d)
is called the edge exponent or power-weighting constant. For
example when 7T is the set of spanning trees over ), one
obtains the MST. A minimal Euclidean graph is continuous
quasi-additive when it satisfies several technical conditions
specified in [20] (also see [9]). Continuous quasi-additive
Euclidean graphs include: the minimal spanning tree (MST),
the k-nearest neighbors graph (k-NNG), the minimal matching
graph (MMG), the traveling salesman problem (TSP), and their
power-weighted variants. While all of the results in this paper
apply to this larger class of minimal graphs we specialize to
the MST for concreteness.
A remarkable result in geometric probability was estab-
lished by Beardwood, Halton and Hammersley [24].

Beardwood-Halton-Hammersley (BHH) Theorem [20], [25]:
Let ), be an i.i.d. set of random variables taking values in a
compact subset of R? having common probability distribution



P. Let this distribution have the decomposition P = F + @
where F' is the Lebesgue continuous component and @ is the
singular component. The Lebesgue continuous component has
a Lebesgue density (no singular component) which is denoted
f(z), z € R Let LBd(J}n) be the length of the MST spanning
Yn, and assume that d > 2 and 0 < v < d. Then, w.p.1

lim LR (Va) /n® = Ba / [ (y)dy ©)
Rd

where a = (d—+y)/d and 3 is a constant not depenging on the
distribution P. Furthermore, the mean length E[LY"(V,)]/n®
converges to the same limit.

The limit on the right side of (5) in the BHH theorem is
zero when the distribution P has no Lebesgue continuous
component, i.e., when F' = 0. On the other hand, when P
has no singular component, i.e., @ = 0, a consequence of the
BHH Theorem is that

L (V)

def d
= g nd—n7d ~ log Bd] (6)

)% = o
On) =2

is an asymptotically unbiased and strongly consistent estimator
of the extrinsic a-entropy Hﬁd(f) defined in (3). For a
discussion about the role of the constant 3, in the proposed
estimators see section V.

B. Generalization of BHH Thm. to Embedded Manifolds

If the vertices ), are constrained to lie on a smooth compact
m-dimensional manifold M C R¢, the distribution of Y;
is singular with respect to Lebesgue measure, F = 0, and,
as previously mentioned, the limit (5) in the BHH Theorem
is zero. However, as shown below, if M is defined by an
isometric embedding from the parameterization space R™, if
Y; has a density f on M, and if the geodesic estimation
step of ISOMAP is used to approximate geodesic distances,
then the length of an MST constructed from the geodesic edge
lengths can be made to converge, after suitable normalization
and transformation, to the intrinsic a-entropy H(f) on M
defined by

H(f) = T log /M £ ) pa(dy) | @)

where paq(dy) denotes the differential volume element over
M.

More generally, assume that M is embedded in R? through
the diffeomorphism . As X; = ¢~1(Y;) lives in R™, let
T be the Euclidean minimal graph spanning X,, and having
length function LB" (X,) = LE”_E (w‘l(yn_)) according to
definition (4). We have the following extension of the BHH

Theorem.

Theorem 1: Let M be a smooth compact m-dimensional
manifold embedded in R? through the diffeomorphism ¢ :
Q= MQCR™ Assume 2 < m < dand 0 < v <
m. Suppose that Y;,Y»,... are i.i.d. random vectors on M
having common density f with respect to Lebesgue measure

0N M. Then, the length functional LE’"(go—l(yn)) of the
MST spanning ¢ ~1(,,) satisfies

Tim L5 (o7 (V) /0l 0/ = ®)
007 dl <m
a—1
Bm [ [det (JEI,)] = f*(y) prm(dy), d'=m
0: dl >m

w.p.1, where @« = (m — v)/m. Furthermore, the mean
E[LE" (¢~ 1(Vn))]/n{@=1)/4" converges to the same limit.

Proof: This theorem is a simple consequence of relation
(5) in the BHH Theorem and properties of integrals over
manifolds. By the BHH Theorem, w.p.1,

L5 (X)) =M | f§ (@) de + o(n(mm0/m),
Rm
9)
where fx is the density of X; = ¢~1(Y;). Therefore the
limits claimed in (8) for d' < m and d' > m are obvious. For
d' = m, relation (9) implies

lim LX"(X,) /0™ = 5, A f%(x)de, (10)

n—oo
and it remains to show that this limit is identical to the limit
asserted in (8).
For an integrable function F' defined on a domain manifold
M defined by the diffeomorphism ¢ : R™ — M, the integral
of F' over M satisfies the relation [22]:

| Fwyamiay = [ Fle@)g@)dz
M R™

(11)

where g(z) = y/det (JTJ,) is the Riemannian metric asso-
ciated with M. Specializing F' to the indicator function of a
small volume centered at a point y, (11) implies the following
relation between volume elements in M and R™: puaq(dy) =
g(z) d. Furthermore, specializing to F(y) = f(y) it is clear
from (11) that fx(x) = f(p(x))g(x). Therefore

f3(@)da = / (f(p(@)g(x))*de
-

=/ [ (p()g* () g(z)de ,

which, after the change of variable  — ¢(x), is equivalent
to the integral in the limit (8). ]

C. Estimating Geodesic Distances

If ¢ is an isometric or conformal embedding then it has
been shown that for sufficiently dense sampling over M,
i.e., for large n, the ISOMAP or the C-ISOMAP algorithm
summarized in Table I will approximate the matrix of pairwise
Euclidean distances between points &, = ¢~ 1(J,) in the
domain space R™ without explicit knowledge of . This
estimate is computed from an Euclidean graph G connecting
all local neighborhoods of data points in M. Specifically,
in the isometric case, ISOMAP proceeds as follows. Two
methods, called the e-rule and the k-rule [1], are available
for constructing G. The first method connects each point to



TABLE |
DISTANCE ESTIMATION STEPS OF ISOMAP/C-ISOMAP ALGORITHMSTO
RECONSTRUCT EUCLIDEAN DISTANCESBETWEEN X, ON THE
EMBEDDING PARAMETERIZATION SPACE FROM POINTSY,, OVER THE
EMBEDDED MANIFOLD.

Step 1.  Determine a Euclidean neighborhood graph G of the observed
data Y, according to the e-rule or the k-rule as defined in
ISOMAP [32].

Step 2. For isometric embeddings compute the edge matrix £ of the

ISOMAP graph [1] and for conformal imbeddings compute
the edge matrix £ of the C-ISOMAP graph [15]. The (i, j)
entry of this symmetric matrix is the sum of the lengths of the
edges in G along the shortest path between the pair of vertices
(Y';,Y ;) where the edge lengths between neighboring points
Y1, Y2 in G are defined as Euclidean distance |Y7-Y 2|
in the case of ISOMAP or |Y1-Y2|//M(1)M(2) in the
case of C-ISOMAP where M (%) is the mean distance of Y';
to its immediate nearest neighbors.

all points within some fixed radius € and the other connects
each point to all its k-nearest neighbors. The graph G defining
the connectivity of these local neighborhoods is then used to
approximate the geodesic distance between any pair of points
as the shortest path through G that connects them. Finally, this
results in a distance matrix whose (i, j) entry is the geodesic
distance estimate for the (i, j)-th pair of points. The geodesic
distance estimation algorithm just described is motivated by
the fact that locally a smooth manifold is well “approximated”
by a linear hyper-plane and, so, geodesic distances between
neighboring points are close to their Euclidean distances. For
faraway points, the geodesic distance is estimated by summing
the sequence of such local approximations over the shortest
path through the graph G.

Thus, if one uses these distances to construct an MST,
its length function will approximate LE" (¢! (),)) and we
can invoke Thm. 1 to characterize its asymptotic convergence
properties. As the estimated distances will use information
about the geodesic distances between pairs of points (Y ;,Y ;)
this graph will be called a geodesic MST (GMST).

More specifically, denote by Dx, the matrix of estimated
pairwise distances between points ¢! (Y;) and ¢~ (Y ;) in
@ Y (Yn), and by J(eij) the estimated length of the corre-
sponding edge e;; = ¢ 1(Y;) —¢ (Y ;). Define the GMST
T as the minimal graph over ), whose length is:

LY (V) = min D " d"(e) -
eeT

The following is the principal theoretical result of this
paper and is a simple consequence of Thm. 1.

(12)

Corollary 1: Let M be a smooth compact m-dimensional
manifold embedded in R? through the diffeomorphism ¢ :
R™ — M. Let 2 <m < dand 0 < vy < m. Suppose that
Y4,..., Y, are ii.d. random vectors on M with common
density f w.r.t. Lebesgue measure puas on M. If the entries
{di;} of matrix Dy, satisfy

max CiU
1<ij<n | oY) — o~ 1(Y ;)]

—1|—=>0asn— oo (13)

w.p.1, then the length functional of the GMST satisfies

nll)néo ﬁy(yn)/n(d'*v)/d' = (14)
00, d <m
Bm [y F2®) 977 (07 () pra(dy), d' =m
0, d >m

(m — v)/m and g(z) = \/det (JLJ,).

Furthermore, the mean E[L(Y,)]/n(¥ =~/ converges to
the same limit.

w.p.1, where a =

The sufficient condition (13) of Corollary 1 simply states
that the pairwise Euclidean distances between points in X, =
@ (V) should be uniformly well approximated by the
entries of matrix f)M. Constructions of DM which satisfy
condition (13) will be discussed in the next subsection.

Proof of Corollary 1: Write iy(yn) as

The uniform convergence expressed by condition (13) implies
that

LI YVn) = L+ o) LE" (071 (Vn)) -

Applying Thm. 1 and identifying (o — 1) = —y/m, =
¢ (y) and det (JTJ,) = g(o'(y)) provides the desired
result. ]

If ;> 2, as the parameter d' is increased from 2 to oo the
limit (14) in Corollary 1 transitions from infinity to a finite
limit and finally to zero over three consecutive steps d'l =
m—1,m,m+1. Asd indexes the rate constant n(¢ =7)/4 of
the length functional ﬁﬁ" (Vn), this abrupt transition suggests
that the intrinsic dimension m and the intrinsic entropy might
be easily estimated by investigating the growth rate of the
GMST’s length functional. This observation is the basis for
the estimation algorithm introduced in the next section.

We now specialize Corollary 1 to the following cases of
interest.

1) Isometric Embeddings: In the case that ¢ defines an
isometric embedding, the geodesic estimation step of ISOMAP
is asymptotically able to recover the true Euclidean distances
between the points in X, = ¢~1(,) and Dy, satisfies
condition (13) [32]. Furthermore, Jg’JLP = Iy. Thus, using
ISOMAP to construct D, limit (14) holds with the d' = m
limit replaced by

B /M () o (dy).

Furthermore, m /~log (ﬁ;"t (V) /nm=n/m _og ﬂm) con-
verges w.p.1 to the intrinsic entropy (7).

If ¢ defines an isometric embedding with contraction or
expansion, the geodesic estimation step of ISOMAP algorithm
is able to recover the true Euclidean distances between points
in X,, only up to an unknown scaling constant ¢ (c.f. (2)). As



Jng = ¢ I, limit (14) holds with the d' = m limit replaced
by
Bmc! 71? /M £ @) pa(dy).

Now, the entropy estimator defined above converges w.p.1 up
to an unknown additive constant (1 —-/2) logc to the intrinsic
entropy (7). We point out that in many signal processing
applications (e.g. image registration) a constant bias on the
entropy estimate does not pose a problem since an estimate
of the relative magnitude of the entropy functional is all that
is required.

2) Non-isometric Embeddings Defined by Conformal Map-
pings: In the case that ¢ is a general (hon-isometric) con-
formal mapping, it was stated in [33] without proof, that
the C-ISOMAP algorithm is once again able to recover the
true Euclidean distances between points in X,,. Furthermore,
JEJ, = (@) . Thus, when LM(Y,) is the length of the
geodesic MST constructed on the distance matrix generated
by the C-ISOMAP algorithm, we expect the limit (14) to hold
with the d' = m limit replaced by

B / £2() (60 ) ().
M

In this case, m /v log (iy(yn)/n(m—ﬂ/m —log ﬂm) would
converge a.s. to the weighted intrinsic entropy

L og /M Fo(y) 207 () () -

1—a

The weighted a-entropy is a “version” of the standard un-
weighted a-entropy HM(f) which is “tilted” by the space-
varying volume element of M. This unknown weighting
makes it impossible to estimate the intrinsic unweighted a-
entropy. However, as can be seen from the discussion in the
next section, as the growth rate exponent of the GMST length
depends on m we can still perform dimension estimation in
this case.

3) Non-conformal Diffeomorphic Embeddings: When ¢ de-
fines a general diffeomorphic embedding, an extension of the
C-ISOMAP algorithm that can provably learn the Euclidean
distances between the points X, in the parametrization space
is needed in order to apply Corollary 1. To the best of our
knowledge such an extension of C-ISOMAP does not yet exist.

IV. GMST ALGORITHM

Now that we have characterized the asymptotic limit (14)
of the length functional of the GMST we here apply this
theory to jointly estimate entropy and dimension. The key
is to notice that the growth rate of the length functional is
strongly dependent on the intrinsic dimension m, while the
constant in the convergent limit is equal to the intrinsic a-
entropy. We use this strong growth dependence as a motivation
for a simple estimator of m. Throughout we assume that the
geodesic minimal graph length Eﬁy‘”‘ (Vn) is determined from a
distance matrix D, that satisfies the assumption of Corollary
1, e.g., obtained using ISOMAP or C-ISOMAP. We also
assume that m > 2. This guarantees that LA*(),,) /n(¢ =7/
has a non-zero finite convergent limit for d’ = m. Next define

TABLE Il
GMST RESAMPLING ALGORITHM FOR ESTIMATING INTRINSIC
DIMENSION m AND INTRINSIC ENTROPY HM.

Initialize: Using entire database of signals ),
construct geodesic distance matrix D, using 1SOMAP
or C-1SOMAP method.
Sel ect paraneters: M >0, N >0, @ >0 and p;1 <...<
P <n
m=0, H=0;
for M =1,....,. M
forfP:PI,---:PQ
L=0;
for N'=1,...,N
Randomly select a subset of p signals ),
from Y, ;
Compute geodesic MST length L, over ), and
from Dag;
Z:f—l—Lp;
end for
Compute sample average geodesic MST length;
E[L}(Yp)] = L/N;
end for
Estimate dimension r,p and a-entropy H,; from
{BILAM(Vp)}p2p, Via LLS/NLLS;
mM=m+ruy, H=H+Hy;
end for

Iy = logﬁfy"‘(yn). According to (14) [,, has the following
approximation

l,=alogn+b+e¢,, (15)

where
a = (m - ’7)/m )
b =1log Bm +v/m H}'(f) ,

a = (m—~)/m and €, is an error residual that goes to zero
w.p.1 as n = oo.

The additive model (15) could be the basis for many differ-
ent methods for estimation of m and H. For example, we could
invoke a central limit theorem on the MST length functional
[34] to motivate a Gaussian approximate to e, and apply
maximum likelihood principles. However, in this paper we
adopt a simpler non-parametric least squares strategy which
is based on resampling from the population Y, of available
points in M. The proposed algorithm is summarized in Table
I1. Specifically, let p1,...,pg, 1 < p1 < ..., < pg < n, be
@ integers and let NV be an integer that satisfies N/n = p for
some fixed p € (0,1]. For each value of p € {p1,...,po}
randomly draw N bootstrap data sets yg, j=1,...,N,
with replacement, where the p data points within each )7
are chosen from the entire data set ),, independently. From
these samples compute the empirical mean of the GMST
length functionals L, = N~! Zj'v:l LM(Y3). Defining I =

(16)

log Ly, ,...,log Ly, )", and motivated by (15) we write down
the linear model
ZzA[Z]—I—e, (17)
where
T
A= | logm log p
1 ... 1
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Fig. 1. Computing the dimension estimators by averaging over the length
functional values, i.e., (M, N) = (1, N) (dashed line), or by averaging over
the dimension estimates, i.e., (M, N) = (M, 1) (solid lines).

Expressing a and b explicitly as functions of m and H, via
(16), the dimension and entropy quantities could be estimated
using a combination of non-linear least squares (NLLS) and
integer programming. Instead we take a simpler method-of-
moments (MOM) approach in which we use (17) to solve for
the linear least squares (LLS) estimates &, b of a, b followed
by inversion of the relations (16). After making a simple large
n approximation, this approach yields the following estimates:

m = round{vy/(1 —a)}

N /s 18
AWM = % (b— logﬁm) . (18)
It is easily shown that the law of large numbers and Thm. 1
imply that these estimators are consistent as N,n — oo. We
omit the details.

By running the algorithm M times independently over the
population V,,, one obtains M estimates, {rn;, H;}M,, that
can be averaged to obtain final regularized dimension and
entropy estimators, 7 = Y 7n; /M and H = Y H;/M. The
role of parameter M, together with parameter N, is to provide
a tradeoff between the bias and variance performance of the
estimators for finite n. The two cases of interest (considered in
the next section) are (M, N) = (1,N) and (M,N) = (M, 1).
In the first case, the smoothing is performed on the GMST
length functional values before dimension and entropy are
estimated, resulting in low variance but possibly high bias. In
the second case, the smoothing is performed directly on the
dimension and entropy estimates, resulting in higher variance
but less bias.

Fig. 1 shows a graphical illustration of the smoothing step
of the algorithm. Left panel shows N = 2 resampled GMST
lengths, labeled “+” and “0”, along with their average, labeled
“x” for GMSTs built on p1 < pa < ps randomly chosen
vertices. For (M, N) = (1, N), a linear least squares fit to the
average GMST trajectory, C = (A+ B)/2, is used to compute
the dimension estimate m.c. For (M, N) = (M, 1), dimension
estimates 4 and /g are computed from sub-trajectories A
and B, forming a histogram from which a final estimate can
be computed.

A word about determination of the sequence of constants
{Bm}m is inorder. First of all, in the large n regime for which
the above estimates were derived, 3,, is not required for the
dimension estimator. j,,, is the limit of the normalized length
functional of the Euclidean MST for a uniform distribution on

Original Data P
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Fig. 2. The S-shaped surface manifold and corresponding GMST (k = 7)
graph on 400 sample points.

the unit cube [0, 1]™. Closed form expressions are not available
but several approximations and bounds can be used in various
regimes of m [20], [35]. For example, one could use the large
m approximation of Bertsimas and van Ryzin [36]: log 8, =~
v/2 log(m/2me). Another strategy, adopted in this paper, is
to determine S, by simulation of the Euclidean MST length
on the m-dimensional cube for uniform random samples.
Before turning to applications we briefly discuss compu-
tational issues. For n samples, computing the MST scales
as O(nlogn), for which we have implemented Kruskal’s
algorithm [29]. On the other hand, the geodesic distances
needed to compute the GMST require O(n? logn) operations
using Dijkstra’s algorithm multiple times. Thus, like ISOMAP,
the GMST has overall O(n? logn) computational complexity.

V. APPLICATIONS

We illustrate the performance of the GMST algorithm on
manifolds of known dimension as well as on a real data set
consisting of face images. In all the simulations we fixed the
parameters y=1and p1 =n —Q,...,pg =n — 1. We also
used the k-rule method, as described in table I, to estimate
geodesic lengths. With regards to intrinsic dimension estima-
tion, we compare our algorithm to ISOMAP. In ISOMAP,
similarly to PCA, intrinsic dimension is usually estimated by
detecting changes in the residual fitting errors as a function of
subspace dimension.

A. S-Shaped Surface

The first manifold considered is the standard 2-dimensional
S-shaped surface [2] embedded in R?® (Fig. 2). Fig. 3 shows
the evolution of the average GMST length L,, as a function
of the number of samples, for a random set of i.i.d. points
uniformly distributed on the surface.

To compare the dimension estimation performance of the
GMST method to ISOMAP we ran a Monte Carlo simulation.
For each of several sample sizes, 30 independent sets of i.i.d.
random vectors uniformly distributed on the surface were
generated. We then counted the number of times that the
intrinsic dimension was correctly estimated. To automatically
estimate dimension with ISOMAP, we follow a standard PCA
order estimation procedure. Specifically, we graph the residual
variance of the MDS fit as a function of the PCA dimension
and try to detect the “elbow” at which residuals cease to
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Fig. 3. Illustration of GMST dimension estimation for (M, N) = (1,
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of the number of samples; (b) log-log plot of (a); (c) blowup of the Iast ten points in (b) and its linear least squares fit. The estimated slope is @ = 0.4976
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which implies m =2. k=7, M =1, N =5

decrease “significantly” as estimated dimension increases [1].
The elbow detector is implemented by a simple minimum
angle threshold rule. Table 111 shows the results of this experi-
ment. As it can be observed, the GMST algorithm outperforms
ISOMAP in terms of dimension estimation error rates for
small sample sizes. Fig. 4 shows the histogram of the entropy
estimates for the same experiment.

B. Hyper-Planes

Next, we investigated linear m-dimensional hyper-planes in
R™+1 for which PCA methods are designed. We consider
hyper-planes of the form =1 + ... + z,,41 = 0. Table IV
shows the results of running a Monte Carlo simulation under
the same conditions as in the previous subsection. When
M = 1 (i.e., least squares applied to the average length
functional values), the GMST method showed a tendency
to underestimate the correct dimension at smaller sample
sizes. However, by taking N 1 instead (i.e., averaging
of least squares dimension estimates), this negative bias was
eliminated and the GMST performed as well as the ISOMAP,
which was observed to correctly predict the dimension for all
sample sizes investigated.

Of course, as expected, the number of samples required
to achieve the same level of accuracy increases with the
manifold dimension. This is the usual curse of dimensionality
phenomenon: as the dimension increases, more samples are
needed for the asymptotic regime in (14) to settle in and
validate the limit in Corollary 1.

TABLE Il
NUMBER OF CORRECT ISOMAP AND GMST DIMENSION ESTIMATES
OVER 30 TRIALSAS A FUNCTION OF THE NUMBER OF SAMPLES FOR THE
S-SHAPED MANIFOLD (k = 7).

| n

|| 200 | 400 | 600 |
ISOMAP 23 [ 20 | 30
GMST (M =1,N=5Q=10) || 20 | 30 [ 30

6
5k
4L
€
g
g3
@
T
2+
1+
0 L
2 3 4 35 T 4 45 5
True Sample estimated entropy (bits)
Mean

Fig. 4. Histogram of GMST entropy estimates over 30 trials of 600 samples
uniformly distributed on the S-shaped manifold (k =7,M =1,N =5,Q =
10). True entropy ("true”) was computed analytically from the area of S curve
supporting the uniform distribution of manifold samples.

TABLE IV
NUMBER OF CORRECT GMST DIMENSION ESTIMATESOVER 30 TRIALSAS
A FUNCTION OF THE NUMBER OF SAMPLES FOR HYPER-PLANES (k = 5).

Hyper-plane v~ n
dimension Q 600 | 800 | 1000
) NERE 30 | 30 30
5 | 1 30 | 30 30
NERE 24 | 24 27
3 5 | 1 25 | 26 27
5| L]t 30 ] 3 30
10 | 1 30 | 30 30
sl T ] s 26
4 10 | 1 27 | 28 28
oo | 1|10 25| 28 29
10| 1 29 | 29 30




Fig. 5. Samples from ISOMAP face database [1].
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Fig. 6. GMST intrinsic dimension estimate histogram for the ISOMAP face
database: left plot, k = 6, M = 1, N = 10, Q = 15; right plot, £ = 6,
M=10,N=1,Q =15.

C. ISOMAP Face Database

We applied our method to a high dimensional synthetic
image data set. For this purpose we used the ISOMAP face
database [1]. This set consists of 698 images of the same face
generated by varying three different parameters: vertical and
horizontal pose, and lighting direction. Each image has 64 x 64
pixels with 256 gray levels, normalized between 0 and 1 (Fig.
5). For processing, we embedded each image in the 4096-
dimensional Euclidean space using the common lexicographic
order. We applied the algorithm 30 times over the data set
with the histogram of the dimension estimates displayed in
Figure 6. The estimated intrinsic dimension oscillates between
3 and 4, which, as in [5], deviates from the “informal” intrinsic
dimension of 3 estimated by ISOMAP with thresholding. The
estimated entropy was 21.8 bits, with a standard deviation
of 0.5. Note that as @ = (m — 1)/m is close to one
for the estimated values of m, the estimate of a-entropy is
expected to be close to the Shannon entropy. This estimate
suggests that one could, in theory, compress the ISOMAP face
database, with little loss, using at most 21.8/(64 x64) ~ 0.005
bits/pixel.

D. Yale Face Database B

Finally, we applied the GMST method to a real data set,
and, consequently, of unknown manifold structure, intrinsic
dimension and intrinsic entropy. We chose the set of 256
gray levels images of several individuals taken from the Yale

Fig. 7.

Samples from Yale face database B [37].

Face Database B [37]. This is a publicly available database®
containing a number of portfolios of face images under 585
different viewing conditions for each subject (Figure 7). Each
portfolio consists of 9 poses and 65 illumination conditions
(including ambient lighting) for each subject. The images were
taken against a fixed background which we did not bother
to segment out. This is justified since any fixed structures
throughout the images would not change the intrinsic dimen-
sion or the intrinsic entropy of the dataset. We randomly
selected 4 individuals from this data base and subsampled each
person’s face images down to a 64 x 64 pixels image. Similarly
to the ISOMAP face data set, we normalized the pixel values
between 0 and 1.

Fig. 8 displays the results of running 30 trials of the
algorithm using face 2. The first panel shows the real valued
estimates of the intrinsic dimension, i.e., estimates obtained
before the rounding operation in (18). Any value that falls in
between the dashed lines will then be rounded to the integer at
the midpoint. The second panel of Fig. 8 shows the histogram
for these rounded estimates over the 30 generated trials. The
intrinsic dimension estimate is between 5 and 6. Fig. 9 shows
the corresponding residual variance plots used by ISOMAP
to estimate intrinsic dimension. From these plots it is not
obvious how to determine the “elbow” at which the residuals
cease to decrease “significantly” with added dimensions. This
illustrates one of the major drawbacks of ISOMAP (and other
spectral based methods like PCA) as an intrinsic dimension
estimator, as it relies on a specific eigenstructure that may
not exist in real data. The simple minimum angle threshold
rule on ISOMAP produced estimates between 3 and 6. Table
V summarizes the results of the GMST method for the four
faces. The intrinsic entropy estimates expressed in log base
2 were between 24.9 and 28 bits. Similarly to the ISOMAP
face database, as « is close to one, these values suggest that
the portfolio of a person’s face image could be accurately

lhttp://cvc.yale.edu/projects/yalefacesB/
yalefacesB.html



10

7.5 : : 30

7,

25|
[0
265
£ "
D X x 201
e 6 . h=6
g X x x*
c x xx x X
g5 o« x 15}
S Xx X XX
kel XX
g 5- X m=5
g X 10}
3
Q 45)
5 L
4l
355 10 20 30 0 4§ 5 6

simulation number dimension estimate

Fig. 8. GMST real valued intrinsic dimension estimates and histogram for
face 2 in the Yale face database B (k =7, M =1 N = 10, Q = 20).

0.45

0.4

0.35

0.3

0.25

0.2

Residual variance

0.15

0.1

0.05; 5 3 4 5 6 7 8 1

ISOMAP dimensionality

Fig. 9. ISOMAP (k = 7) residual variance for face 2 in the Yale face
database B.

compressed using at most 28/(64 x 64) = 0.007 bits/pixel.

V1. CONCLUSION

We have introduced a novel method for intrinsic dimension
and entropy estimation based on the growth rate of the
geodesic total edge length functional of entropic graphs. The
proposed method has two main advantages. First, it is global in
the sense that the MST is constructed over the entire set and
thus avoids local linearizations. Second, it does not require
reconstructing the manifold or estimating the multivariate
density of the samples. We validated the new method by testing
it on synthetic manifolds of known dimension and on high
dimensional real data sets.

One drawback of GMST, or any other dimension estimator
based on ISOMAP geodesic fitting to data, is the restriction to
isometric embeddings. We are currently working on extending
Thm. 1 and Corollary 1 to general (non-isometric) Riemann
manifolds, thus avoiding any assumptions about global embed-
dings and eliminating the effect of the Jacobian on the intrinsic

TABLE V
GMST DIMENSION ESTIMATES 72 AND ENTROPY ESTIMATES H FOR FOUR
FACESIN THE YALE FACE DATABASE B.

| || Facel | Face2 | Face3 | Face 4 |

m 6 6 7 7
H (bits) || 249 | 264 | 258 28.0

entropy. We are also studying the use of entropic graphs that
bypass the complex step of geodesic estimation. In particular,
in [38], we consider k-nearest neighbor graphs due to their
low complexity and local properties. Future work includes
the characterization of the statistics in the linear model (15),
optimization of the bias/variance tradeoff parameters of the
GMST algorithm and the study of the effect of additive noise
on the manifold samples.
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