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Abstract

The developing theory of geometric random walks is outlined here.
Three aspects — general methods for estimating convergence (the “mix-
ing” rate), isoperimetric inequalities in R

n and their intimate connection
to random walks, and algorithms for fundamental problems (volume com-
putation and convex optimization) that are based on sampling by random
walks — are discussed.

1 Introduction

A geometric random walk starts at some point in R
n and at each step, moves

to a “neighboring” point chosen according to some distribution that depends
only on the current point, e.g., a uniform random point within a fixed distance
δ. The sequence of points visited is a random walk. The distribution of the
current point, in particular, its convergence to a steady state (or stationary)
distribution, turns out to be a very interesting phenomenon. By choosing the 1-
step distribution appropriately, one can ensure that the steady state distribution
is, for example, the uniform distribution over a convex body, or indeed any
reasonable distribution in R

n.
Geometric random walks are Markov chains, and the study of the existence

and uniqueness of and the convergence to a steady state distribution is a classical
field of mathematics. In the geometric setting, the dependence on the dimen-
sion (called n in this survey) is of particular interest. Pólya proved that with
probability 1, a random walk on an n-dimensional grid returns to its starting
point infinitely often for n ≤ 2, but only a finite number of times for n ≥ 3.

Random walks also provide a general approach to sampling a geometric
distribution. To sample a given distribution, we set up a random walk whose
steady state is the desired distribution. A random (or nearly random) sample
is obtained by taking sufficiently many steps of the walk. Basic problems such
as optimization and volume computation can be reduced to sampling. This
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connection, pioneered by the randomized polynomial-time algorithm of Dyer,
Frieze and Kannan [12] for computing the volume of a convex body, has lead to
many new developments in recent decades.

In order for sampling by a random walk to be efficient, the distribution of
the current point has to converge rapidly to its steady state. The first part
of this survey (Section 3) deals with methods to analyze this convergence, and
describes the most widely used method, namely, bounding the conductance, in
detail. The next part of the survey is about applying this to geometric random
walks and the issues that arise therein. Notably, there is an intimate connection
with geometric isoperimetric inequalities. The classical isoperimetric inequality
says that among all measurable sets of fixed volume, a ball of this volume is the
one that minimizes the surface area. Here one is considering all measurable sets.
In contrast, we will encounter the following type of question: Given a convex
set K, and 0 < t < 1, what subset S of volume tvol(K) has the smallest surface
area inside K (i.e., not counting the boundary of S that is part of the boundary
of K)? The inequalities that result are interesting in their own right.

The last two sections describe polynomial-time algorithms for minimizing a
quasi-convex function over a convex body and for computing the volume of a
convex body. The application to volume computation is rather remarkable in the
light of results that no deterministic polynomial-time algorithm can approximate
the volume to within an exponential (in n) factor. In Section 9, we briefly discuss
the history of the problem and describe the latest algorithm.

Several topics related to this survey have been addressed in detail in the
literature. For a general introduction to discrete random walks, the reader is
referred to the survey by Lovász [31] or the book by Aldous and Fill [1]. For an
in-depth account of the volume problem that includes all but the most recent
improvements, there is a survey by Simonovits [44] and an earlier article by
Bollobás [7].

1.1 Three walks

Before we introduce various concepts and tools, let us state precisely three
different ways to walk randomly inside a convex body K in R

n. It might be
useful to keep these examples in mind. Later, we will see generalizations of
these walks.

The Grid Walk is restricted to a discrete subset of K, namely, all points in
K whose coordinates are integer multiples of a fixed parameter δ. These points
form a grid, and the neighbors of a grid point x are the points reachable by
changing one coordinate by ±δ. Let e1, . . . , en denote the coordinate vectors in
R

n; then the neighbors of a grid point x are {x ± δei}. The grid walk tries to
move to a random neighboring point.
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Grid Walk (δ)

• Pick a grid point y uniformly at random from the neighbors

of the current point x.

• If y is in K, go to y; else stay at x.

The Ball Walk tries to step to a random point within distance δ of the
current point. Its state space is the entire set K.

Ball Walk (δ)

• Pick a uniform random point y from the ball of radius δ
centered at the current point x.

• If y is in K, go to y; else stay at x.

Hit-and-run picks a random point along a random line through the current
point. It does not need a “step-size” parameter. The state space is again all of
K.

Hit-and-run

• Pick a uniform random line ` through the current point x.

• Go to a uniform random point on the chord ` ∩ K.

To implement the first step of hit-and-run, we can generate n independent
random numbers, u1, . . . , un each from the standard Normal distribution, and
then the direction of the vector u = (u1, . . . , un) is uniformly distributed. For
the second step, using the membership oracle for K, we find an interval [a, b] that
contains the chord through x parallel to u so that |a− b| is at most twice (say)
the length of the chord (this can be done by a binary search with a logarithmic
overhead). Then pick random points in [a, b] till we find one in K.

For the first step of the ball walk, in addition to a random direction u, we
generate a number r in the range [0, δ] with density f(x) proportional to xn−1

and then z = ru/|u| is uniformly distributed in a ball of radius δ.
Do these random walks converge to a steady state distribution? If so, what

is it? How quickly do they converge? How does the rate of convergence depend
on the convex body K?

These are some of the questions that we will address in analyzing the walks.
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2 Basic definitions

2.1 Markov chains

A Markov chain is defined using a σ-algebra (K,A), where K is the state space
and A is a set of subsets of K that is closed under complements and countable
unions. For each element u of K, we have a probability measure Pu on (K,A),
i.e., each set A ∈ A has a probability Pu(A). Informally, Pu is the distribution
obtained on taking one step from u. The triple (K,A, {Pu : u ∈ K}) along with
a starting distribution Q0 defines a Markov chain, i.e., a sequence of elements
of K, w0, w1, . . ., where w0 is chosen from Q0 and each subsequent wi is chosen
from Pwi−1

. Thus, the choice of wi+1 depends only on wi and is independent of
w0, . . . , wi−1.

A distribution Q on (K,A) is called stationary if one step from it gives the
same distribution, i.e., for any A ∈ A,

∫

A

Pu(A) dQ(u) = Q(A).

A distribution Q is atom-free if there is no x ∈ K with Q(x) > 0.
The ergodic flow of subset A w.r.t. the distribution Q is defined as

Φ(A) =

∫

A

Pu(K \ A) dQ(u).

It is easy to verify that a distribution Q is stationary iff Φ(A) = Φ(K \A). The
existence and uniqueness of the stationary distribution Q for general Markov
chains is a rather technical issue that is not covered in this survey (the reader is
referred to the book by Revuz [42])1. In all the chains we study in this survey,
the stationary distribution will be given explicitly and can be easily verified. To
avoid the issue of uniqueness of the stationary distribution, we only consider
lazy Markov chains. In a lazy version of a given Markov chain, at each step,
with probability 1/2, we do nothing; with the rest we take a step according to
the Markov chain. The next theorem is folklore and will also be implied by
convergence theorems that we present later.

Theorem 2.1 If Q is stationary w.r.t. a lazy Markov chain then it is the
unique stationary distribution for that Markov chain.

For some additional properties of lazy Markov chains, see Section 1 of [34]. We
will hereforth assume that the distribution in the definition of Φ is the unique
stationary distribution.

The conductance of a subset A is defined as

φ(A) =
Φ(A)

min{Q(A), Q(K \ A)}
1For Markov chains on discrete state spaces, the characterization is much simpler; see e.g.,

[39].
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and the conductance of the Markov chain is

φ = min
A

φ(A) = min
0<Q(A)≤ 1

2

∫

A
Pu(K \ A) dQ(u)

Q(A)
.

The local conductance of an element u is `(u) = 1 − Pu({u}).
The following weaker notion of conductance will also be useful. For any

0 ≤ s < 1
2 , the s-conductance of a Markov chain is defined as

φs = min
A:s<Q(A)≤ 1

2

Φ(A)

Q(A) − s
.

2.2 Comparing distributions

We will often have to compare two distributions P and Q (typically, the distri-
bution of the current point and the stationary distribution). There are many
reasonable ways to do this. Here are three that will come up.

1. Total variation distance of P and Q is

||P − Q||tv = sup
A∈A

|P (A) − Q(A)|.

2. L2 distance of P with respect to Q is

‖P/Q‖ =

∫

K

dP (u)

dQ(u)
dP (u) =

∫

K

(

dP (u)

dQ(u)

)2

dQ(u).

3. P is said to be M-warm w.r.t. Q if

M = sup
A∈A

P (A)

Q(A)
.

If Q0 is O(1)-warm w.r.t. the stationary distribution Q for some Markov
chain, then we say that Q0 is a warm start for Q.

2.3 Convexity

Convexity plays a key role in the convergence of geometric random walks. The
following notation/concepts will be used.

The unit ball in R
n is Bn and its volume is vol(Bn). For two subsets A, B

of R
n, their Minkowski sum is

A + B = {x + y : x ∈ A, y ∈ B}.

The Brunn-Minkowski theorem says that if A, B and A + B are measurable,
then

vol(A + B)
1
n ≥ vol(A)

1
n + vol(B)

1
n . (1)
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Recall that a subset S of R
n is convex if for any two points x, y ∈ S, the

interval [x, y] ⊆ S. A function f : R
n → R+ is said to be logconcave if for any

two points x, y ∈ R
n and any λ ∈ [0, 1],

f(λx + (1 − λ)y) ≥ f(x)λf(y)1−λ.

The product and the minimum of two logconcave functions are both logcon-
cave; the sum is not in general. The following fundamental properties, proved
by Dinghas [9], Leindler [27] and Prékopa [41, 40], are often useful.

Theorem 2.2 All marginals as well as the distribution function of a logcon-
cave function are logconcave. The convolution of two logconcave functions is
logconcave.

Logconcave functions have many properties that are reminiscent of convexity.
For a logconcave density f , we denote the induced measure by πf and its centroid
by zf = Ef (X). The second moment of f refers to Ef (|X−zf |2). The next three
lemmas are chosen for illustration from [35]. The first one was proved earlier
by Grünbaum [16] for the special case of the uniform density over a convex
body. We will later see a further refinement of this lemma that is useful for
optimization.

Lemma 2.3 Let f : R
n → R+ be a logconcave density function, and let H be

any halfspace containing its centroid. Then
∫

H

f(x) dx ≥ 1

e
.

Lemma 2.4 If X is drawn from a logconcave distribution in R
n, then for any

integer k > 0,
E(|X |k)1/k ≤ 2kE(|X |).

Note that this can be viewed as a converse to Hölder’s inequality which says
that

E(|X |k)1/k ≥ E(|X |).

Lemma 2.5 Let X ∈ R
n be a random point from a logconcave distribution with

second moment R2. Then for any t > 1, P(|X | > tR) < e−t.

A density function f : R
n → R+ is said to be isotropic, if its centroid is the

origin, and its covariance matrix is the identity matrix. This latter condition
can be expressed in terms of the coordinate functions as

∫

Rn

xixjf(x) dx = δij

for all 1 ≤ i, j ≤ n. This condition is equivalent to saying that for every vector
v ∈ R

n,
∫

Rn

(vT x)2f(x) dx = |v|2.
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In terms of the associated random variable X , this means that

E(X) = 0 and E(XXT ) = I.

We say that f is near-isotropic up to a factor of C or C-isotropic, if

1

C
≤

∫

Rn

(vT x)2 dπf (x) ≤ C

for every unit vector v. The notions of “isotropic” and “near-isotropic” extend
to non-negative integrable functions f , in which case we mean that the density
function f/

∫

Rn f is isotropic. For any full-dimensional integrable function f
with bounded second moment, there is an affine transformation of the space
bringing it to isotropic position, and this transformation is unique up to an
orthogonal transformation of the space. Indeed if f is not isotropic, we can
make the centroid be the origin by a translation. Next, compute A = E(XXT )
for the associated random variable X . Now A must be positive semi-definite
(since each XXT is) and so we can write A = BBT for some matrix B. Then
the transformation B−1 makes f isotropic.

It follows easily that for an isotropic distribution in R
n, the second moment

is
E(|X |2) =

∑

i

E(X2
i ) = n.

Further, Lemma 2.5 implies that for an isotropic logconcave distribution f ,

P(X > t
√

n) < e−t

which means that most of f is contained in a ball of radius O(
√

n), and this is
sometimes called its effective diameter.

2.4 Computational model

If the input to an algorithm is a convex body K in R
n, we assume that it is

given by a membership oracle which on input x ∈ R
n returns “YES” if x ∈ K

and “NO” otherwise. In addition we will have some bounds on K — typically,
Bn ⊆ K ⊆ RBn, i.e., K contains a unit ball around the origin and is contained
in a ball of given radius. It is enough to have any point x in K and the guarantee
that a ball of radius r around x is contained in K and one of radius R contains
K (by translation and scaling this is equivalent to the previous condition).
Sometimes, we will need a separation oracle for K, i.e., a procedure which
either verifies that a given point x is in K or returns a hyperplane that separates
x from K. The complexity of the algorithm will be measured mainly by the
number of oracle queries, but we will also keep track of the number of arithmetic
operations.

In the case of a logconcave density f , we have an oracle for f , i.e., for any
point x it returns Cf(x) where C is an unknown parameter independent of x.
This is useful when we know a function proportional to the desired density, but
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not its integral, e.g., in the case of the uniform density over a bounded set, all we
need is the indicator function of the support. In addition, we have a guarantee
that the centroid of f satisfies |zf |2 < Z and the eigenvalues of the covariance
matrix of f are bounded from above and below by two given numbers. Again,
the complexity is measured by the number of oracle calls. We will say that an
algorithm is efficient if its complexity is polynomial in the relevant parameters.

To emphasize the essential dependence on the dimension we will sometimes
use the O∗(.) notation which suppresses logarithmic factors and also the depen-
dence on error parameters. E.g., n log n/ε = O∗(n).

2.5 Examples

For the ball walk in a convex body, the state space K is the convex body, and
A is the set of all measurable subsets of K. Further,

Pu({u}) = 1 − vol (K ∩ (u + δBn))

vol(δBn)

and for any measurable subset A, such that u 6∈ A,

Pu(A) =
vol (A ∩ (u + δBn))

vol(δBn)
.

If u ∈ A, then
Pu(A) = Pu(A \ {u}) + Pu({u}).

It is straightforward to verify that the uniform distribution is stationary, i.e.,

Q(A) =
vol(A)

vol(K)
.

For hit-and-run, the one-step distribution for a step from u ∈ K is given as
follows. For any measurable subset A of K,

Pu(A) =
2

voln−1(∂Bn)

∫

A

dx

`(u, x)|x − u|n−1
(2)

where `(u, x) is the length of the chord in K through u and x. The uniform
distribution is once again stationary. One way to see this is to note that the
one-step distribution has a density function and the density of stepping from u
to v is the same as that for stepping from v to u.

These walks can be modified to sample much more general distributions. Let
f : R

n → R+ be a nonnegative integrable function. It defines a measure πf (on
measurable subsets of R

n):

πf (A) =

∫

A
f(x) dx

∫

Rn f(x) dx
.

The following extension of the ball walk, usually called the ball walk with a
Metropolis filter has πf as its stationary distribution (it is a simple exercise to
prove, but quite nice that this works).
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Ball walk with Metropolis filter (δ, f)

• Pick a uniformly distributed random point y in the ball of

radius δ centered at the current point x.

• Move to y with probability min
{

1, f(y)
f(x)

}

; stay at x with the

remaining probability.

Hit-and-run can also be extended to sampling from such a general distribu-
tion πf . For any line ` in R

n, let π`,f be the restriction of π to `, i.e.,

π`,f (S) =

∫

p+tu∈S f(p + tu) dt
∫

` f(x) dx
,

where p is any point on ` and u is a unit vector parallel to `.

Hit-and-run (f)

• Pick a uniform random line ` through the current point x.

• Go to a random point y along ` chosen from the

distribution π`,f.

Once again, it is easy to verify that πf is the stationary distribution for this
walk. One way to carry out the second step is to use a binary search to find
the point p on ` where the function is maximal, and the points a and b on both
sides of p on ` where the value of the function is εf(p). We allow a relative error
of ε, so the number of oracle calls is only O(log(1/ε)). Then select a uniformly
distributed random point y on the segment [a, b], and independently a uniformly
distributed random real number in the interval [0, 1]. Accept y if f(y) > rf(p);
else, reject y and repeat.

3 Convergence and conductance

So far we have seen that random walks can be designed to approach any rea-
sonable distribution in R

n. For this to lead to an efficient sampling method, the
convergence to the stationary distribution must be fast. This section is devoted
to general methods for bounding the rate of convergence.

One way to define the mixing rate of a random walk is the number of steps
required to reduce some measure of the distance of the current distribution to
the stationary distribution by a factor of 2 (e.g., one of the distance measures
from Section 2.2). We will typically use the total variation distance. For a
discrete random walk (i.e., the state space is a finite set), the mixing rate is
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characterized by the eigenvalues gap of the transition matrix P whose ijth
entry is the probability of stepping from i to j, conditioned on currently being
at i. Let λ1 ≥ λ2 . . . ≥ λn be the eigenvalues of P . The top eigenvalue is 1 (by
the definition of stationarity) and let λ = max{λ2, |λn|} (in the lazy version of
any walk, all the λi are nonnegative and λ = λ2). Then, for a random walk
starting at the point x, with Qt being the distribution after t steps, the following
bound on the convergence can be derived (see e.g., [31]). For any point y ∈ K,

|Qt(y) − Q(y)| ≤
√

Q(y)

Q(x)
λt. (3)

Estimating λ can be difficult or impractical even in the discrete setting (if e.g.,
the state space is too large to write down P explicitly).

Intuitively, a random walk will “mix” slowly if it has a bottleneck, i.e., a
partition S, K \ S of its state space, such that the probability of stepping from
S to K \ S (the ergodic flow out of S) is small compared to the measures of S
and K \S. Note that this ratio is precisely the conductance of S, φ(S). It takes
about 1/φ(S) steps in expectation to even go from one side to the other. As we
will see in this section, the mixing rate is bounded from above by 2/φ2. Thus,
conductance captures the mixing rate upto a quadratic factor. This was first
proved for discrete Markov chains by Jerrum and Sinclair [17] who showed that
conductance can be related to the eigenvalue gap of the transition matrix. A
similar relationship for a related quantity called expansion was found by Alon [2]
and by Dodziuk and Kendall [10]. The inequality below is a discrete analogue
of Cheeger’s inequality in differential geometry.

Theorem 3.1
φ2

2
≤ 1 − λ ≤ 2φ.

As a consequence of this and (3), we get that for a discrete random walk starting
at x, and any point y ∈ K,

|Qt(y) − Q(y)| ≤
√

Q(y)

Q(x)

(

1 − φ2

2

)t

. (4)

For the more general continuous setting, Lovász and Simonovits [34] proved
the connection between conductance and convergence. Their proof does not
use eigenvalues. We will sketch it here since it is quite insightful, but does not
seem to be well-known. It also applies to situations where the conductance can
be bounded only for subsets of bounded size (i.e., the s-conductance, φs, can
be bounded from below for some s > 0). We remind the reader that we have
assumed that our Markov chains are lazy.

To show convergence, we need to prove that |Qt(A) − Q(A)| falls with t
for every measurable subset A of K. However, this quantity might converge at
different rates for different subsets. So we consider

sup
A:Q(A)=x

Qt(A) − Q(A)
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for each x ∈ [0, 1]. A bound for every x would imply what we want. To prove
inductively that this quantity decreases with t, Lovász and Simonovits define
the following formal upper bound. Let Gx be the set of functions defined as

Gx =

{

g : K → [0, 1] :

∫

u∈K

g(u) dQ(u) = x

}

.

Using this, define

ht(x) = sup
g∈Gx

∫

u∈K

g(u) (dQt(u) − dQ(u)) = sup
g∈Gx

∫

u∈K

g(u) dQt(u) − x,

It is clear that for A with Q(A) = x, ht(x) ≥ Qt(A) − Q(A) since the indicator
function of A is in Gx. The function ht(x) has the following properties.

Lemma 3.2 For any positive integer t,

a. The function ht is concave.

b. If Q is atom-free, then ht(x) = supA:Q(A)=x Qt(A)−Q(A) and the supre-
mum is achieved by some subset.

c. Let Q be atom-free and t ≥ 1. For any 0 ≤ x ≤ 1, let y = min{x, 1 − x}.
Then,

ht(x) ≤ 1

2
ht−1(x − 2φy) +

1

2
ht−1(x + 2φy).

The first part of the lemma is easily verified. We sketch the second part: to
maximize ht, we should use a function g that puts high weight on points u with
dQt(u)/dQ(u) as high as possible. Let A be a subset with Q(A) = x, so that
for any point y not in A, the value of dQt(y)/dQ(y) is no more than the value
for any point in A (i.e., A consists of the top x fraction of points according to
dQt(u)/dQ(u)). Let g be the corresponding indicator function. These points
give the maximum payoff per unit of weight, so it is optimal to put as much
weight on them as possible. We mention in passing that the case when Q has
atoms is a bit more complicated, namely we might need to include one atom
fractionally (so that Q(A) = x). In the general case, ht(x) can be achieved by
a function g that is 0 − 1 valued everywhere except for at most one point.

The third part of the lemma, which is the key to convergence, is proved
below.
Proof. (of Lemma 3.2(c)) Assume that 0 ≤ x ≤ 1

2 . The other range is proved
in a similar way. We will construct two functions, g1 and g2, and use these to
bound ht(x). Let A be a subset to be chosen later with Q(A) = x. Let

g1(u) =

{

2Pu(A) − 1 if u ∈ A,

0 if u /∈ A,
and g2(u) =

{

1 if u ∈ A,

2Pu(A) if u /∈ A.
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First, note that 1
2 (g1 + g2)(u) = Pu(A) for all u ∈ K, which means that

1

2

∫

u∈K

g1(u) dQt−1(u) +
1

2

∫

u∈K

g2(u) dQt−1(u) =

∫

u∈K

Pu(A) dQt−1(u)

= Qt(A). (5)

By the laziness of the walk (Pu(A) ≥ 1
2 iff u ∈ A), the range of the functions g1

and g2 is between 0 and 1 and if we let

x1 =

∫

u∈K

g1(u) dQ(u) and x2 =

∫

u∈K

g2(u) dQ(u),

then g1 ∈ Gx1
and g2 ∈ Gx2

. Further,

1

2
(x1 + x2) =

1

2

∫

u∈K

g1(u) dQ(u) +
1

2

∫

u∈K

g2(u) dQ(u)

=

∫

u∈K

Pu(A) dQ(u) = Q(A) = x

since Q is stationary. Next, since Q is atom-free, there is a subset A ⊆ K that
achieves ht(x). Using this and (5),

ht(x) = Qt(A) − Q(A)

=
1

2

∫

u∈K

g1(u) dQt−1(u) +
1

2

∫

u∈K

g2(u) dQt−1(u) − Q(A)

=
1

2

∫

u∈K

g1(u) (dQt−1(u) − dQ(u)) +
1

2

∫

u∈K

g2(u) (dQt−1(u) − dQ(u))

≤ 1

2
ht−1(x1) +

1

2
ht−1(x2).

We already know that x1 + x2 = 2x. In fact, x1 and x2 are separated from x.

x1 =

∫

u∈K

g1(u) dQ(u)

= 2

∫

u∈A

Pu(A) dQ(u) −
∫

u∈A

dQ(u)

= 2

∫

u∈A

(1 − Pu(K \ A)) dQ(u) − x

= x − 2

∫

u∈A

Pu(K \ A) dQ(u)

= x − 2Φ(A)

≤ x − 2φx

= x(1 − 2φ).

(In the penultimate step, we used the fact that x ≤ 1
2 .) Thus we have,

x1 ≤ x(1 − 2φ) ≤ x ≤ x(1 + 2φ) ≤ x2.
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x0 1x1 x2x(1-2�) x(1+2�)

ht-1

ht

Figure 1: Bounding ht.

Since ht−1 is concave, the chord from x1 to x2 on ht−1 lies below the chord from
x(1 − 2φ) to x(1 + 2φ) (see Figure 1). Therefore,

ht(x) ≤ 1

2
ht−1(x(1 − 2φ)) +

1

2
ht−1(x(1 + 2φ))

which is the conclusion of the lemma. �

In fact, a proof along the same lines implies the following generalization of
part (c).

Lemma 3.3 Let Q be atom-free and 0 ≤ s ≤ 1. For any s ≤ x ≤ 1 − s, let
y = min{x − s, 1 − x − s}. Then for any integer t > 0,

ht(x) ≤ 1

2
ht−1(x − 2φsy) +

1

2
ht−1(x + 2φsy).

Given some information about Q0, we can now bound the rate of convergence
to the stationary distribution. We assume that Q is atom-free in the next
theorem and its corollary. These results can be extended to the case when Q
has atoms with slightly weaker bounds [34].

Theorem 3.4 Let 0 ≤ s ≤ 1 and C0 and C1 be such that

h0(x) ≤ C0 + C1 min{
√

x − s,
√

1 − x − s}.

Then

ht(x) ≤ C0 + C1 min{
√

x − s,
√

1 − x − s}
(

1 − φ2
s

2

)t

.

Proof. By induction on t. The inequality is true for t = 0 by the hypothesis.
Now, suppose it holds for all values less than t. Assume s = 0 (for convenience)
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and w.l.o.g. that x ≤ 1/2. From Lemma 3.3, we know that

ht(x) ≤ 1

2
ht−1(x(1 − 2φ)) +

1

2
ht−1(x(1 + 2φ))

≤ C0 +
1

2
C1

(

√

x(1 − 2φ) +
√

x(1 + 2φ)
)

(

1 − φ2

2

)t−1

= C0 +
1

2
C1

√
x

(

√

1 − 2φ +
√

1 + 2φ
)

(

1 − φ2

2

)t−1

≤ C0 + C1

√
x

(

1 − φ2

2

)t

.

Here we have used
√

1 − 2φ +
√

1 + 2φ ≤ 2(1 − φ2

2 ). �

The following corollary, about convergence from various types of “good”
starting distributions, gives concrete implications of the theorem.

Corollary 3.5 a. Let M = supA Q0(A)/Q(A). Then,

||Qt − Q||tv ≤
√

M

(

1 − φ2

2

)t

.

b. Let 0 < s ≤ 1
2 and Hs = sup{|Q0(A) − Q(A)| : Q(A) ≤ s}. Then,

||Qt − Q||tv ≤ Hs +
Hs

s

(

1 − φ2
s

2

)t

.

c. Let M = ||Q0/Q||. Then for any ε > 0,

||Qt − Q||tv ≤ ε +

√

M

ε

(

1 − φ2

2

)t

.

Proof. The first two parts are straightforward. For the third, observe that
the L2 norm,

||Q0/Q|| = EQ0

(

dQ0(x)

dQ(x)

)

.

So, for 1−ε of Q0, dQ0(x)/dQ(x) ≤ M/ε. We can view the starting distribution
as being generated as follows: with probability 1 − ε it is a distribution with
sup Q0(A)/Q(A) ≤ M/ε; with probability ε it is some other distribution. Now
using part (a) implies part (c). �

Conductance and s-conductance are not the only known ways to bound
the rate of convergence. Kannan et al.[20, 21] have extended conductance to
the notion of blocking conductance which is a certain type of average of the
conductance over various subset sizes. In some cases, it provides a sharper
bound than conductance. Let φ(x) denote the minimum conductance over all
subsets of measure x. Then one version of their main theorem is the following.

14



Theorem 3.6 Let π0 be the measure of the starting point. Then, after

t > C ln

(

1

ε

)
∫ 1

2

π0

dx

xφ(x)2

steps, where C is an absolute constant, we have ||Qt − Q|| ≤ ε.

The theorem can be extended to continuous Markov chains. Another way to
bound convergence which we do not describe here is via the log-Sobolev inequal-
ities [8].

4 Isoperimetry

How to bound the conductance of a geometric random walk? To show that
the conductance is large, we have to prove that for any subset A ⊂ K, the
probability that a step goes out of A is large compared to Q(A) and Q(K \A).
To be concrete, consider the ball walk. For any particular subset S, the points
that are likely to “cross over” to K \ S are those that are “near” the boundary
of S inside K. So, showing that φ(S) is large seems to be closely related to
showing that there is a large volume of points near the boundary of S inside
K. This section is devoted to inequalities which will have such implications and
will play a crucial role in bounding the conductance.

To formulate an isoperimetric inequality for convex bodies, we consider a
partition of a convex body K into three sets S1, S2, S3 such that S1 and S2 are
“far” from each other, and the inequality bounds the minimum possible volume
of S3 relative to the volumes of S1 and S2. We will consider different notions of
distance between subsets. Perhaps the most basic is the Euclidean distance:

d(S1, S2) = min{|u − v| : u ∈ S1, v ∈ S2}.

Suppose d(S1, S2) is large. Does this imply that the volume of S3 = K\(S1∪S2)
is large? The classic counterexample to such a theorem is a dumbbell — two
large subsets separated by very little. Of course, this is not a convex set!

The next theorem, proved in [11] (improving on a theorem in [33] by a factor
of 2; see also [34]) asserts that the answer is yes.

Theorem 4.1 Let S1, S2, S3 be a partition into measurable sets of a convex
body K of diameter D. Then,

vol(S3) ≥
2d(S1, S2)

D
min{vol(S1), vol(S2)}.

A limiting version of this inequality is the following: For any subset S of a
convex body of diameter D,

voln−1(∂S ∩ K) ≥ 2

D
min{vol(S), vol(K \ S)}
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which says that the surface area of S inside K is large compared to the volumes of
S and K \S. This is in direct analogy with the classical isoperimetric inequality,
which says that the surface area to volume ratio of any measurable set is at least
the ratio for a ball.

How does one prove such an inequality? In what generality does it hold?
(i.e., for what measures besides the uniform measure on a convex set?) We
will address these questions in this section. We first give an overview of known
inequalities and then outline the proof technique.

Theorem 4.1 can be generalized to arbitrary logconcave measures. Its proof
is very similar to that of 4.1 and we will presently give an outline.

Theorem 4.2 Let f be a logconcave function whose support has diameter D
and let πf be the induced measure. Then for any partition of R

n into measurable
sets S1, S2, S3,

πf (S3) ≥
2d(S1, S2)

D
min{πf (S1), πf (S2)}.

In terms of diameter, this inequality is the best possible, as shown by a
cylinder. A more refined inequality is obtained in [22, 35] using the average
distance of a point to the center of gravity (in place of diameter). It is possible
for a convex body to have much larger diameter than average distance to its
centroid (e.g., a cone). In such cases, the next theorem provides a better bound.

Theorem 4.3 Let f be a logconcave density in R
n and πf be the corresponding

measure. Let zf be the centroid of f and define M(f) = Ef (|x− zf |). Then, for
any partition of R

n into measurable sets S1, S2, S3,

πf (S3) ≥
ln 2

M(f)
d(S1, S2)πf (S1)πf (S2).

For an isotropic density, M(f)2 ≤ Ef (|x − zf |2) = n and so M(f) ≤ √
n. The

diameter could be unbounded (e.g., an isotropic Gaussian).
A further refinement, based on isotropic position, has been conjectured in

[22]. Let λ be the largest eigenvalue of the inertia matrix of f , i.e.,

λ = max
v:|v|=1

∫

Rn

f(x)(vT x)2 dx. (6)

Then the conjecture says that there is an absolute constant c such that

πf (S3) ≥
c√
λ

d(S1, S2)πf (S1)πf (S2).

Euclidean distance and isoperimetric inequalities based on it are relevant
for the analysis of “local” walks such as the ball walk. Hit-and-run, with its
nonlocal moves, is connected with a different notion of distance.
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The cross-ratio distance between two points u, v in a convex body K is
computed as follows: Let p, q be the endpoints of the chord in K through u and
v such that the points occur in the order p, u, v, q. Then

dK(u, v) =
|u − v||p − q|
|p − u||v − q| = (p : v : u : q).

where (p : v : u : q) denotes the classical cross-ratio. We can now define the
cross-ratio distance between two sets S1, S2 as

dK(S1, S2) = min{dK(u, v) : u ∈ S1, v ∈ S2}.

The next theorem was proved in [30] for convex bodies and extended to logcon-
cave densities in [36].

Theorem 4.4 Let f be a logconcave density in R
n whose support is a convex

body K and let πf be the induced measure. Then for any partition of R
n into

measurable sets S1, S2, S3,

πf (S3) ≥ dK(S1, S2)πf (S1)πf (S2).

All the inequalities so far are based on defining the distance between S1

and S2 by the minimum over pairs of some notion of pairwise distance. It is
reasonable to think that perhaps a much sharper inequality can be obtained by
using some average distance between S1 and S2. Such an inequality was proved
in [38]. As we will see in Section 6, it leads to a radical improvement in the
analysis of random walks.

Theorem 4.5 Let K be a convex body in R
n. Let f : K → R+ be a logconcave

density with corresponding measure πf and h : K → R+, an arbitrary function.
Let S1, S2, S3 be any partition of K into measurable sets. Suppose that for any
pair of points u ∈ S1 and v ∈ S2 and any point x on the chord of K through u
and v,

h(x) ≤ 1

3
min(1, dK(u, v)).

Then
πf (S3) ≥ Ef(h(x))min{πf (S1), πf (S2)}.

The coefficient on the RHS has changed from a “minimum” to an “average”.
The weight h(x) at a point x is restricted only by the minimum cross-ratio
distance between pairs u, v from S1, S2 respectively, such that x lies on the line
between them (previously it was the overall minimum). In general, it can be
much higher than the minimum cross-ratio distance between S1 and S2.

4.1 The localization lemma

The proofs of these inequalities are based on an elegant idea: integral inequalities
in R

n can be reduced to one-dimensional inequalities! Checking the latter can
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be tedious but is relatively easy. We illustrate the main idea by sketching the
proof of Theorem 4.2.

For a proof of Theorem 4.2 by contradiction, let us assume the converse of
its conclusion, i.e., for some partition S1, S2, S3 of R

n and logconcave density f ,

∫

S3

f(x) dx < C

∫

S1

f(x) dx and

∫

S3

f(x) dx < C

∫

S2

f(x) dx

where C = 2d(S1, S2)/D. This can be reformulated as

∫

Rn

g(x) dx > 0 and

∫

Rn

h(x) dx > 0 (7)

where

g(x) =











Cf(x) if x ∈ S1,

0 if x ∈ S2,

−f(x) if x ∈ S3.

and h(x) =











0 if x ∈ S1,

Cf(x) if x ∈ S2,

−f(x) if x ∈ S3.

These inequalities are for functions in R
n. The main tool to deal with them is

the localization lemma [34] (see also [22] for extensions and applications).

Lemma 4.6 Let g, h : R
n → R be lower semi-continuous integrable functions

such that
∫

Rn

g(x) dx > 0 and

∫

Rn

h(x) dx > 0.

Then there exist two points a, b ∈ R
n and a linear function ` : [0, 1] → R+ such

that

∫ 1

0

`(t)n−1g((1 − t)a + tb) dt > 0 and

∫ 1

0

`(t)n−1h((1 − t)a + tb) dt > 0.

The points a, b represent an interval A and one may think of l(t)n−1dA as the
cross-sectional area of an infinitesimal cone with base area dA. The lemma says
that over this cone truncated at a and b, the integrals of g and h are positive.
Also, without loss of generality, we can assume that a, b are in the union of the
supports of g and h.

The main idea behind the lemma is the following. Let H be any halfspace
such that

∫

H

g(x) dx =
1

2

∫

Rn

g(x) dx.

Let us call this a bisecting halfspace. Now either
∫

H

h(x) dx > 0 or

∫

Rn\H

h(x) dx > 0.

Thus, either H or its complementary halfspace will have positive integrals for
both g and h. Thus we have reduced the domains of the integrals from R

n to a
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halfspace. If we could repeat this, we might hope to reduce the dimensionality
of the domain. But do there even exist bisecting halfspaces? In fact, they are
aplenty: for any (n−2)-dimensional affine subspace, there is a bisecting halfspace
with A contained in its bounding hyperplane. To see this, let H be halfspace
containing A in its boundary. Rotating H about A we get a family of halfspaces
with the same property. This family includes H ′, the complementary halfspace
of H . Now the function

∫

H g −
∫

Rn\H g switches sign from H to H ′. Since this

is a continuous family, there must be a halfspace for which the function is zero,
which is exactly what we want (this is sometimes called the “ham sandwich”
theorem).

If we now take all (n−2)-dimensional affine subspaces given by some xi = r1,
xj = r2 where r1, r2 are rational, then the intersection of all the corresponding
bisecting halfspaces is a line (by choosing only rational values for xi, we are
considering a countable intersection). As long as we are left with a two or higher
dimensional set, there is a point in its interior with at least two coordinates that
are rational, say x1 = r1 and x2 = r2. But then there is a bisecting halfspace
H that contains the affine subspace given by x1 = r1, x2 = r2 in its boundary,
and so it properly partitions the current set. With some additional work, this
leads to the existence of a concave function on an interval (in place of the linear
function ` in the theorem) with positive integrals. Simplifying further from
concave to linear takes quite a bit of work.

Going back to the proof sketch of Theorem 4.2, we can apply the lemma to
get an interval [a, b] and a linear function ` such that
∫ 1

0

`(t)n−1g((1−t)a+tb) dt > 0 and

∫ 1

0

`(t)n−1h((1−t)a+tb) dt > 0. (8)

(The functions g, h as we have defined them are not lower semi-continuous.
However, this can be easily achieved by expanding S1 and S2 slightly so as to
make them open sets, and making the support of f an open set. Since we are
proving strict inequalities, we do not lose anything by these modifications).

Let us partition [0, 1] into Z1, Z2, Z3.

Zi = {t ∈ [0, 1] : (1 − t)a + tb ∈ Si}.
Note that for any pair of points u ∈ Z1, v ∈ Z2, |u − v| ≥ d(S1, S2)/D. We can
rewrite (8) as

∫

Z3

`(t)n−1f((1 − t)a + tb) dt < C

∫

Z1

`(t)n−1f((1 − t)a + tb) dt

and
∫

Z3

`(t)n−1f((1 − t)a + tb) dt < C

∫

Z2

`(t)n−1f((1 − t)a + tb) dt.

The functions f and `(.)n−1 are both logconcave, so F (t) = `(t)n−1f((1−t)a+tb)
is also logconcave. We get,

∫

Z3

F (t) dt < C min

{
∫

Z1

F (t) dt,

∫

Z2

F (t) dt

}

. (9)
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Now consider what Theorem 4.2 asserts for the function F (t) over the interval
[0, 1] and the partition Z1, Z2, Z3:

∫

Z3

F (t) dt ≥ 2d(Z1, Z2)min

{
∫

Z1

F (t) dt,

∫

Z2

F (t) dt

}

. (10)

We have substituted 1 for the diameter of the interval [0, 1]. Also, d(Z1, Z2) ≥
d(S1, S2)/D = C/2. Thus, Theorem 4.2 applied to the function F (t) contradicts
(9) and to prove the theorem in general, it suffices to prove it in the one-
dimensional case.

In fact, it will be enough to prove (10) for the case when each Zi is a
single interval. Suppose we can do this. Then, for each maximal interval (c, d)
contained in Z3, the integral of F over Z3 is at least C times the smaller of the
integrals to its left [0, c] and to its right [d, 1] and so one of these intervals is
“accounted” for. If all of Z1 or all of Z2 is accounted for, then we are done. If
not, there is an unaccounted subset U that intersects both Z1 and Z2. But then,
since Z1 and Z2 are separated by at least d(S1, S2)/D, there is an interval of Z3

of length at least d(S1, S2)/D between U ∩ Z1 and U ∩ Z2 which can account
for more.

We are left with proving (10) when each Zi is an interval. Without the
factor of two, this is trivial by the logconcavity of F . To get C as claimed, one
can reduce this to the case when F (t) = ect and verify it for this function [34].
The main step is to show that there is a choice of c so that when the current
F (t) is replaced by ect, the LHS of (10) does not increase and the RHS does not
decrease.

5 Mixing of the ball walk

With the isoperimetric inequalities at hand, we are now ready to prove bounds
on the conductance and hence on the mixing time. In this section, we focus on
the ball walk in a convex body K. Assume that K contains the unit ball.

A geometric random walk is said to be rapidly mixing if its conductance is
bounded from below by an inverse polynomial in the dimension. By Corollary
3.5, this implies that the number of steps to halve the variation distance to
stationary is a polynomial in the dimension. The conductance of the ball walk
in a convex body K can be exponentially small. Consider, for example, starting
at point x near the apex of a rotational cone in R

n. Most points in a ball of
radius δ around x will lie outside the cone (if x is sufficiently close to the apex)
and so the local conductance is arbitrarily small. So, strictly speaking, the ball
walk is not rapidly mixing.

There are two ways to get around this. For the purpose of sampling uniformly
from K, one can expand K a little bit by considering K ′ = K+αBn, i.e., adding
a ball of radius α around every point in K. Then for α > 2δ

√
n, it is not hard

to see that `(u) is at least 1/8 for every point u ∈ K ′. We can now consider the
ball walk in K ′. This fix comes at a price. First, we need a membership oracle
for K ′. This can be constructed as follows: given a point x ∈ R

n, we find a point
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y ∈ K such that |x−y| is minimum. This is a convex program and can be solved
using the Ellipsoid algorithm [15] and the membership oracle for K, Second, we
need to ensure that vol(K ′) is comparable to vol(K). Since K contains a unit
ball, K ′ ⊆ (1+α)K and so with α < 1/n, we get that vol(K ′) < evol(K). Thus,
we would need δ < 1/2n

√
n.

Does large local conductance imply that the conductance is also large? We
will prove that the answer is yes. The next lemma about one-step distributions
of nearby points will be useful.

Lemma 5.1 Let u, v be such that |u − v| ≤ tδ√
n

and `(u), `(v) ≥ `. Then,

||Pu − Pv||tv ≤ 1 + t − `.

Roughly speaking, the lemma says that if two points with high local con-
ductance are close in Euclidean distance, then their one-step distributions have
a large overlap. Its proof follows from a computation of the overlap volume of
the balls of radius δ around u and v.

We can now state and prove a bound on the conductance of the ball walk.

Theorem 5.2 Let K be a convex body of diameter D so that for every point u
in K, the local conductance of the ball walk with δ steps is at least `. Then,

φ ≥ `2δ

16
√

nD
.

The structure of most proofs of conductance is similar and we will illustrate
it by proving this theorem.
Proof. Let K = S1 ∪ S2 be a partition into measurable sets. We will prove
that

∫

S1

Px(S2) dx ≥ `2δ

16
√

nD
min{vol(S1), vol(S2)} (11)

Note that since the uniform distribution is stationary,

∫

S1

Px(S2) dx =

∫

S2

Px(S1) dx.

Consider the points that are “deep” inside these sets, i.e. unlikely to jump
out of the set (see Figure 2):

S′
1 = {x ∈ S1 : Px(S2) <

`

4
}

and

S′
2 = {x ∈ S2 : Px(S1) <

`

4
}.

Let S′
3 be the rest i.e., S′

3 = K \ S′
1 \ S′

2.
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S’
S’

1
2

Figure 2: The conductance proof. The dark line is the boundary between S1

and S2.

Suppose vol(S′
1) < vol(S1)/2. Then
∫

S1

Px(S2) dx ≥ `

4
vol(S1 \ S′

1) ≥
`

8
vol(S1)

which proves (11).
So we can assume that vol(S′

1) ≥ vol(S1)/2 and similarly vol(S′
2) ≥ vol(S2)/2.

Now, for any u ∈ S′
1 and v ∈ S′

2,

||Pu − Pv||tv ≥ 1 − Pu(S2) − Pv(S1) > 1 − `

2
.

Applying Lemma 5.1 with t = `/2, we get that

|u − v| ≥ `δ

2
√

n
.

Thus d(S1, S2) ≥ `δ/2
√

n. Applying Theorem 4.1 to the partition S′
1, S

′
2, S

′
3, we

have

vol(S′
3) ≥ `δ√

nD
min{vol(S′

1), vol(S′
2)}

≥ `δ

2
√

nD
min{vol(S1), vol(S2)}

We can now prove (11) as follows:
∫

S1

Px(S2) dx =
1

2

∫

S1

Px(S2) dx +
1

2

∫

S2

Px(S1) dx

≥ 1

2
vol(S′

3)
`

4

≥ `2δ

16
√

nD
min{vol(S1), vol(S2)}.
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As observed earlier, by going to K ′ = K + (1/n)Bn and using δ = 1/2n
√

n,
we have ` ≥ 1/8. Thus, for the ball walk in K ′, φ = Ω(1/n2D). Using Corollary
3.5, the mixing rate is O(n4D2).

We mentioned earlier that there are two ways to get around the fact that the
ball walk can have very small local conductance. The second, which we describe
next, is perhaps a bit cleaner and also achieves a better bound on the mixing
rate. It is based on the observation that only a small fraction of points can have
small local conductance. Define the points of high local conductance as

Kδ =

{

u ∈ K : `(u) ≥ 3

4

}

Lemma 5.3 Suppose that K is a convex body containing a unit ball in R
n.

Then,

a. Kδ is a convex set.

b. vol(Kδ) ≥ (1 − 2δ
√

n)vol(K).

The first part follows from the Brunn-Minkowski inequality (1). The second
is proved by estimating the average local conductance [23] and has the following
implication: if we set δ ≤ ε/2

√
n, we get that at least (1−ε) fraction of points in

K have large local conductance. Using this, we can prove the following theorem.

Theorem 5.4 For any 0 ≤ s ≤ 1, we can choose the step-size δ for the ball
walk in a convex body K of diameter D so that

φs ≥ s

200nD
.

Proof. The proof is quite similar to that of Theorem 5.2. Let S1, S2 be a
partition of K. First, since we are proving a bound on the s-conductance, we
can assume that vol(S1), vol(S2) ≥ svol(K). Next, we choose δ = s/4

√
n so

that by Lemma 5.3,

vol(Kδ) ≥ (1 − s

2
)vol(K).

So only an s/2 fraction of K has small local conductance and we will be able to
ignore it. Define

S′
1 = {x ∈ S1 ∩ Kδ : Px(S2) <

3

16
}

and

S′
2 = {x ∈ S2 ∩ Kδ : Px(S1) <

3

16
}.

As in the proof of Theorem 5.2, these points are “deep” in S1 and S2 respectively
and they are also restricted to be in Kδ. Recall that the local conductance of
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every point in Kδ is at least 3/4. We can assume that vol(S′
1) ≥ vol(S1)/3.

Otherwise,

∫

S1

Px(S2) dx ≥
(

2

3
vol(S1) −

s

2
vol(K)

)

3

16

≥ vol(S1)

32
.

which implies the theorem. Similarly, we can assume that vol(S′
2) ≥ vol(S2)/3.

For any u ∈ S′
1 and v ∈ S′

2,

||Pu − Pv||tv ≥ 1 − Pu(S2) − Pv(S1) > 1 − 3

8
.

Applying Lemma 5.1 with t = 3/8, we get that

|u − v| ≥ 3δ

8
√

n
.

Thus d(S1, S2) ≥ 3δ/8
√

n. Let S′
3 = Kδ \ (S′

1 ∪ S′
2) Applying Theorem 4.1 to

the partition S′
1, S

′
2, S

′
3 of Kδ, we have

vol(S′
3) ≥ 3δ

4
√

nD
min{vol(S′

1), vol(S′
2)}

≥ s

16nD
min{vol(S1), vol(S2)}

The theorem follows:
∫

S1

Px(S2) dx ≥ 1

2
vol(S′

3)
3

16

>
s

200nD
min{vol(S1), vol(S2)}.

�

Using Corollary 3.5(b), this implies that from an M-warm start, the variation
distance of Qt and Q is smaller than ε after

t ≥ C
M2

ε2
n2D2 ln

(

2M

ε

)

(12)

steps, for some absolute constant C.
There is another way to use Lemma 5.3. In [23], the following modification

of the ball walk, called the speedy walk, is described. At a point x, the speedy
walk picks a point uniformly from K ∩ x + δBn. Thus, the local conductance
of every point is 1. However, there are two complications with this. First, the
stationary distribution is not uniform, but proportional to `(u). Second, each
step seems unreasonable — we could make δ > D and then we would only need
one step to get a random point in K. We can take care of the first problem
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with a rejection step at the end (and using Lemma 5.3). The root of the second
problem is the question: how do we implement one step of the speedy walk? The
only general way is to get random points from the ball around the current point
till one of them is also in K. This process is the ball walk and it requires 1/`(u)
attempts in expectation at a point u. However, if we count only the proper
steps, i.e., ones that move away from the current point, then it is possible to
show that the mixing rate of the walk is in fact O(n2D2) from any starting
point [20]. Again, the proof is based on an isoperimetric inequality which is
slightly sharper than Theorem 4.2. For this bound to be useful, we also need to
bound the total number of improper or “wasted” steps. If we start at a random
point, then this is the number of proper steps times E(1/`(u)), which can be
unbounded. But, if we allow a small overall probability of failure, then with
the remaining probability, the expected number of wasted steps is bounded by
O(n2D2) as well.

The bound of O(n2D2) on the mixing rate is the best possible in terms of
the diameter, as shown by a cylinder. However, if the convex body is isotropic,
then the isoperimetry conjecture (6) implies a mixing rate of O(n2).

For the rest of this section, we will discuss how these methods can be ex-
tended to sampling more general distributions. We saw already that the ball
walk can be used along with a Metropolis filter to sample arbitrary density func-
tions. When is this method efficient? In [3] and [14] respectively, it is shown
that the ball walk and the lattice walk are rapidly mixing from a warm start,
provided that the density is logconcave and it does not vary much locally, i.e.,
its Lipschitz constant is bounded. In [35], the assumptions on smoothness are
eliminated, and it is shown that the ball walk is rapidly mixing from a warm
start for any logconcave function in R

n. Moreover, the mixing rate is O(n2D2)
(ignoring the dependence on the start), which matches the case of the uniform
density on a convex body. Various properties of logconcave functions are devel-
oped in [35] with an eye to the proof. In particular, a smoother version of any
given logconcave density is defined and used to prove an analogue of Lemma
5.3. For a logconcave density f in R

n, the smoother version is defined as

f̂(x) = min
C

1

vol(C)

∫

C

f(x + u) du,

where C ranges over all convex subsets of the ball x + rBn with vol(C) =
vol(Bn)/16. This function is logconcave and bounded from above by f every-
where (using Theorem 2.2). Moreover, for δ small enough, its integral is close
to the integral of f . We get a lemma very similar to Lemma 5.3. The function
f̂ can be thought of as a generalization of Kδ.

Lemma 5.5 Let f be any logconcave density in R
n. Then

1. The function f̂ is logconcave.

2. If f is isotropic, then
∫

Rn f̂(x) dx ≥ 1 − 64δ1/2n1/4.
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Using this along with some technical tools, it can be shown that φs is large.
Perhaps the main contribution of [35] is to move the smoothness conditions
from requirements on the input (i.e., the algorithm) to tools for the proof.

In summary, analyzing the ball walk has led to many interesting develop-
ments: isoperimetric inequalities, more general methods of proving convergence
(φs) and many tricks for sampling to get around the fact that it is not rapidly
mixing from general starting points (or distributions). The analysis of the
speedy walk shows that most points are good starting points. However, it
is an open question as to whether the ball walk is rapidly mixing from a pre-
determined starting point, e.g., the centroid.

6 Mixing of hit-and-run

Hit-and-run, introduced by Smith [45], offers the attractive possibility of long
steps. There is some evidence that it is fast in practice [5, 48].

6.1 Warm start

Lovász [30] showed that hit-and-run mixes rapidly from a warm start in a convex
body K. If we start with an M -warm distribution, then in

O

(

M2

ε2
n2D2 ln

(

M

ε

))

steps, the distance between the current distribution and the stationary is at
most ε. This is essentially the same bound as for the ball walk, and so hit-and-
run is no worse. The proof is based on cross-ratio isoperimetry (Theorem 4.5)
for convex bodies and a new lemma about the overlap of one-step distributions.
For x ∈ K, let y be a random step from x. Then the step-size F (x) at x is
defined as

P (|x − y| ≤ F (x)) =
1

8
.

The lemma below asserts that if u, v are close in Euclidean distance and cross-
ratio distance then their one-step distributions overlap substantially. This is
analogous to Lemma 5.1 for the ball walk.

Lemma 6.1 Let u, v ∈ K. Suppose that

dK(u, v) <
1

8
and |u − v| <

2√
n

max{F (u), F (v)}.

Then

||Pu − Pv||tv < 1 − 1

500
.

Hit-and-run generalizes naturally to sampling arbitrary functions. The isoperime-
try, the one-step lemma and the bound on φs were all extended to arbitrary log-
concave densities in [36]. Thus, hit-and-run is rapidly mixing for any logconcave
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density from a warm start. While the analysis is along the lines of that in [30]
and uses the tools developed in [35], it has to overcome substantial additional
difficulties.

So hit-and-run is at least as fast as the ball walk. But is it faster? Can it
get stuck in corners (points of small local conductance) like the ball walk?

6.2 Any start

Let us revisit the bad example for the ball walk: starting near the apex of a
rotational cone. If we start hit-and-run at any interior point, then it exhibits a
small, but inverse polynomial, drift towards the base of the cone. Thus, although
the initial steps are tiny, they rapidly get larger and the current point moves
away from the apex. This example shows two things. First, the “step-size” of
hit-and-run can be arbitrarily small (near the apex), but hit-and-run manages
to escape from such regions. This phenomenon is in fact general as shown by
the following theorem, proved recently in [38].

Theorem 6.2 The conductance of hit-and-run in a convex body of diameter D
is Ω(1/nD).

Unlike the ball walk, we can bound the conductance of hit-and-run (for arbi-
trarily small subsets). From this we get a bound on mixing time.

Theorem 6.3 Let K be a convex body that contains a unit ball and has centroid
zK. Suppose that EK(|x − zK |2) ≤ R2 and ||Q0/Q|| ≤ M . Then after

t ≥ Cn2R2 ln3 M

ε
,

steps, where C is an absolute constant, we have ||Qt − Q|| ≤ ε.

The theorem improves on the bound for the ball walk (12) by reducing the
dependence on M and ε from polynomial (which is unavoidable for the ball
walk) to logarithmic, while maintaining the (optimal) dependence on R and n.
For a body in near-isotropic position, R = O(

√
n) and so the mixing time is

O∗(n3). One also gets a polynomial bound starting from any single interior
point. If x is at distance d from the boundary, then the distribution obtained
after one step from x has ||Q1/Q|| ≤ (n/d)n and so applying the above theorem,
the mixing time is O(n4 ln3(n/dε)).

The main tool in the proof is a new isoperimetric inequality based on “aver-
age” distance (Theorem 4.5). The proof of conductance is on the same lines as
shown for Theorem 5.2 in the previous section. It uses Lemma 6.1 for comparing
one-step distributions.

Theorems 6.2 and 6.3 have been extended in [38] to the case of sampling an

exponential density function, i.e., f(x) is proportional to eaT x for some fixed
vector a. It remains open to determine if hit-and-run has high conductance for
arbitrary logconcave functions.
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As in the ball walk analysis, it is not known (even in the convex body case)
if starting at the centroid is as good as a warm start. Also, while the theorem
is the best possible in terms of R, it is conceivable that for an isotropic body
the mixing rate is O(n2).

7 Efficient sampling

Let f be a density in R
n with corresponding measure πf . Sampling f , i.e.,

generating independent random points distributed according to πf is a basic
algorithmic problem with many applications. We have seen in previous sections
that if f is logconcave there are natural random walks in R

n that will converge
to πf . Does this yield an efficient sampling algorithm?

7.1 Rounding

Take the case when f is uniform over a convex body K. The convergence
depends on the diameter D of K (or the second moment). So the resulting
algorithm to get a random point would take poly(n, D) steps. However, the
input to the algorithm is only D and an oracle. So we would like an algorithm
whose dependence on D is only logarithmic. How can this be done? The
Ellipsoid algorithm can be used to find a transformation that achieves D =
O(n1.5) in poly(n, log D) steps.

Isotropic position provides a better solution. For a convex body in isotropic
position D ≤ n. For an isotropic logconcave distribution, (1− ε) of its measure
lies in a ball of radius

√
n ln(1/ε). But how to make f isotropic? One way is by

sampling. We get m random points from f and compute an affine tranformation
that makes this set of points isotropic. We then apply this transformation to
f . It is shown in [43], that the resulting distribution is near-isotropic with m =
O(n log2 n) points for convex bodies and and m = O(n log3 n) for logconcave
densities [35] with large probability.

Although this sounds cyclic (we need samples to make the sampling efficient)
one can bootstrap and make larger and larger subsets of f isotropic. For a convex
body K such an algorithm was given in [23]. Its complexity is O∗(n5). This
has been improved to O∗(n4) in [37]. The basic approach in [23] is to define a
series of bodies, Ki = K ∩ 2i/nBn. Then K0 = Bn is isotropic upto a radial
scaling. Given that Ki is 2-isotropic, Ki+1 will be 6-isotropic and so we can
sample efficiently from it. We use these samples to compute a transformation
that makes Ki+1 2-isotropic and continue. The number of samples required
in each phase is O∗(n) and the total number of phases is O(n log D). Since
each sample is drawn from a near-isotropic convex body, the sample complexity
is O∗(n3) on average (O∗(n4) for the first point and O∗(n3) for subsequent
points since we have a warm start). This gives an overall complexity of O∗(n5).
The improvement to O∗(n4) uses ideas from the latest volume algorithm [37],
including sampling from an exponential density and the pencil construction (see
Section 9).
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A similar method also works for making a logconcave density f isotropic
[35]. We consider a series of level sets

Li = {x ∈ R
n : f(x) ≥ Mf/2(1+ 1

n
)i}

where Mf is the maximum value of f . In phase i, we make the restriction of
f to Li isotropic. The complexity of this algorithm is O∗(n5). It is an open
question to reduce this to O∗(n4).

7.2 Independence

The second important issue to be addressed is that of independence. If we
examine the current point every m steps for some m, then are these points
independent? Unfortunately, they might not be independent even if m is as
large as the mixing time. Another problem is that the distribution might not
be exactly πf . The latter problem is easier to deal with. Suppose that x is
from some distribution π so that ||π − πf ||tv ≤ ε. Typically this affects the
algorithm using the samples by some small function of ε. There is a general
way to handle this (sometimes called divine intervention). We can pretend that
x is drawn from πf with probability 1−ε and from some other distribution with
probability at most ε. If we draw k samples, then the probability of success (i.e.,
each sample is drawn from the desired distribution) is at least 1 − kε.

Although points spaced apart by m steps might not be independent, they
are “nearly” independent in the following sense. Two random variables X, Y
will be called µ-independent (0 < µ < 1) if for any two sets A, B in their ranges,

∣

∣P(X ∈ A, Y ∈ B) − P(X ∈ A)P(Y ∈ B)
∣

∣ ≤ µ.

The next lemma summarizes some properties of µ-independence.

Lemma 7.1 1. Let X and Y be µ-independent, and f, g be two measurable
functions. Then f(X) and g(Y ) are also µ-independent.

2. Let X, Y be µ-independent random variables such that 0 ≤ X ≤ a and
0 ≤ Y ≤ b. Then

∣

∣E(XY ) − E(X)E(Y )
∣

∣ ≤ µab.

3. Let X0, X1, . . . , be a Markov chain, and assume that for some i > 0, Xi+1

is µ-independent from Xi. Then Xi+1 is µ-independent from (X0, . . . , Xi).

The guarantee that π is close to πf will imply the following.

Lemma 7.2 Let Q be the stationary distribution of a Markov chain and t be
large enough so that for any starting distribution Q0 with ||Q0/Q|| ≤ 4M we
have ||Qt − Q||tv ≤ ε. Let X be a random point from a starting distribution
Q0 such that ||Q0/Q|| ≤ M . Then the point Y obtained by taking t steps of the
chain starting at X is 2ε-independent from X.
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Proof. Let A, B ⊆ R
n; we claim that

∣

∣P(X ∈ A, Y ∈ B) − P(X ∈ A)P(Y ∈ B)
∣

∣

= P(X ∈ A)
∣

∣P(Y ∈ B| X ∈ A) − P(Y ∈ B)
∣

∣

≤ 2ε.

Since
∣

∣P(X ∈ A, Y ∈ B) − P(X ∈ A)P(Y ∈ B)
∣

∣

=
∣

∣P(X ∈ A, Y ∈ B) − P(X ∈ A)P(Y ∈ B)
∣

∣

we may assume that Q0(A) ≥ 1/2. Let Q′
0 be the restriction of Q0 to A, scaled

to a probability measure. Then Q′
0 ≤ 2Q0 and so ‖Q′

0/Q‖ ≤ 4‖Q0/Q‖ ≤ 4M .
Imagine running the Markov chain with starting distribution Q′

0. Then, by the
assumption on t,

∣

∣P(Y ∈ B| X ∈ A) − P(Y ∈ B)
∣

∣ = ||Q′
t(B) − Qt(B)||

≤ ||Q′
t(B) − Q(B)|| + ||Qt(B) − Q(B)||

≤ 2ε,

and so the claim holds. �

Various versions of this lemma, adapted to the mixing guarantee at hand,
have been used in the literature. See [34, 23, 37] for developments along this
line.

8 Application I: Convex optimization

Let S ⊂ R
n, and f : S → R be a real-valued function. Optimization is the

following basic problem: min f(x) s.t. x ∈ S, that is, find a point x ∈ S which
minimizes by f . We denote by x∗ a solution for the problem. When the set S
and the function f are convex2, we obtain a class of problems which are solvable
in poly(n, log(1/ε)) time where ε defines an optimality criterion. If x is the point
found, then |x − x∗| ≤ ε.

The problem of minimizing a convex function over a convex set in R
n is

a common generalization of well-known geometric optimization problems such
as linear programming as well as a variety of combinatorial optimization prob-
lems including matchings, flows and matroid intersection, all of which have
polynomial-time algorithms [15]. It is shown in [15] that the Ellipsoid method
[47, 25] solves this problem in polynomial time when K is given by a separation
oracle. A different, more efficient algorithm is given in [46]. Here, we discuss
the recent algorithm of [6] which is based on random sampling.

Note that minimizing a quasi-convex function is easily reduced to the fea-
sibility problem: to minimize a quasi-convex function f(x), we simply add the
constraint f(x) ≤ t and search (in a binary fashion) for the optimal t.

2In fact, it is enough for f to be quasi-convex.
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In the description below, we assume that the convex set K is contained in
the axis-aligned cube of width R centered at the origin; further if K is non-
empty then it contains a cube of width r. It is easy to show that any algorithm
with this input specification needs to make at least n log(R/r) oracle queries.
The parameter L is equal to log R

r .

Algorithm.
Input: A separation oracle for a convex set K and L.
Output: A point in K or a guarantee that K is empty.

1. Let P be the axis-aligned cube of side length R and

center z = 0.

2. Check if z is in K. If so, report z and stop. If not,

set

H = {x | aT x ≤ aT z}.
where aT x ≤ b is the halfspace containing K reported by

the oracle.

3. Set P = P ∩ H. Pick m random points y1, y2, . . . , ym from P.

Set z to be their average.

4. Repeat steps 2 and 3 at most 2nL times. Report K is

empty.

The number of samples required in each iteration, m, is O(n). Roughly
speaking, the algorithm is computing an approximate centroid in each iteration.
The idea of an algorithm based on computing the exact centroid was suggested
in 1965 by Y. Levin [28]. Indeed, if we could compute the centroid in each
iteration, then by Lemma 2.3, the volume of P falls by a constant factor (1−1/e)
in each iteration. But, finding the centroid, is #P-hard, i.e., computationally
intractable.

The idea behind the algorithm is that an approximate centroid can be com-
puted using O(n) random points and the volume of P is likely to drop by a
constant factor in each iteration with this choice of z. This is formalized in the
next lemma. Although we need it only for convex bodies, it holds for arbitrary
logconcave densities.

Lemma 8.1 Let g be a logconcave density in R
n and z be the average of m

random points from πg. If H is a halfspace containing z,

E (πg(H)) ≥
(

1

e
−

√

n

m

)

.

Proof. First observe that we can assume g is in isotropic position. This is
because a linear transformation A affects the volume of a set S as vol(AS) =
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Figure 3: An illustration of the algorithm.

| det(A)|vol(S) and so the ratio of the volumes of two subsets is unchanged by
the transformation. Applying this to all the level sets of g, we get that the ratio
of the measures of two subsets is unchanged.

Since z = 1
m

∑m
i=1 yi,

E
(

|z|2
)

=
1

m2

m
∑

i=1

E
(

|yi|2
)

=
1

m
E

(

|yi|2
)

=
1

m

n
∑

j=1

E
(

(yi
j)

2
)

=
n

m
,

where the first equality follows from the independence between yi’s, and equal-
ities of the second line follow from the isotropic position. Let h be a unit vector
normal to H . We can assume that h = e1 = (1, 0, . . . , 0).

Next, let f be the marginal of g along h, i.e.,

f(y) =

∫

x:x1=y

g(x) dx. (13)

It is easy to see that f is isotropic. The next lemma (from [35]; see [6] for the
case of f arising from convex bodies) states that its maximum must be bounded.

Lemma 8.2 Let f : R → R+ be an isotropic logconcave density function. Then,

max
y

f(y) < 1.
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Using Lemma 2.3,
∫ ∞

z1

f(y) dy =

∫ ∞

0

f(y) dy −
∫ z1

0

f(y) dy

≥ 1

e
− |z1|max

y
f(y)

≥ 1

e
− |z|.

The lemma follows from the bound on E(|z|). �

The guarantee on the algorithm follows immediately. This optimal guarantee
is also obtained in [46]; the Ellipsoid algorithm needs O(n2L) oracle calls.

Theorem 8.3 With high probability, the algorithm works correctly using at
most 2nL oracle calls (and iterations).

The algorithm can also be modified for optimization given a membership
oracle only and a point in K. It has a similar flavor: get random points from
K; restrict K using the function value at the average of the random points;
repeat. The oracle complexity turns out to be O(n5L) which is an improvement
on previous methods. This has been improved for linear objective functions
using a variant of simulated annealing [19].

9 Application II: Volume computation

Finally, we come to perhaps the most important application and the princi-
pal motivation behind many developments in the theory of random walks: the
problem of computing the volume of a convex body.

Let K be a convex body in R
n of diameter D such that Bn ⊂ K. The

next theorem from [4], improving on [13], essentially says that a deterministic
algorithm cannot estimate the volume efficiently.

Theorem 9.1 For every deterministic algorithm that runs in time O(na) and
outputs two numbers A and B such that A ≤ vol(K) ≤ B for any convex body
K, there is some convex body for which the ratio B/A is at least

(

cn

a log n

)n

where c is an absolute constant.

So, in polynomial-time, the best possible approximation is exponential in n
and to get a factor 2 approximation (say), one needs exponential time. The
basic idea of the proof is simple. Consider an oracle that answers “yes” for any
point in a unit ball and “no” to any point outside. After m “yes” answers, the
convex body K could be anything between the ball and the convex hull of the
m query points. The ratio of these volumes is exponential in n.

Given this lower bound, the following result of Dyer, Frieze and Kannan [12]
is quite remarkable.
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Authors Complexity New ingredient(s)

Dyer-Frieze-Kannan [12] n23 Everything
Lovász-Simonovits [32] n16 Localization lemma
Applegate-Kannan [3] n10 Logconcave sampling
Lovász [29] n10 Ball walk
Dyer-Frieze [11] n8 Better error analysis
Lovász-Simonovits [34] n7 Many improvements
Kannan-Lovász-Simonovits [23] n5 Isotropy, speedy walk
Lovász-Vempala [37] n4 Annealing, hit-and-run

Table 1: Complexity comparison

Theorem 9.2 For any convex body K and any 0 ≤ ε, δ ≤ 1, there is a random-
ized algorithm which computes an estimate V such that with probability at least
1 − δ, we have (1 − ε)vol(K) ≤ V ≤ (1 + ε)vol(K), and the number of oracle
calls is poly(n, 1/ε, log(1/δ).

Using randomness, we can go from an exponential approximation to an arbi-
trarily small one!

The main tool used in [12] is sampling by a random walk. They actually
used the grid walk and showed that by “fixing up” K a bit without changing its
volume by much, the grid walk can sample nearly random points in polynomial
time. Even though the walk is discrete, its analysis relies on a continuous isoperi-
metric inequality, quite similar to the one used for the analysis of the ball walk.
The original algorithm of Dyer, Frieze and Kannan had complexity O∗(n23).
In the years since, there have been many interesting improvements. These are
summarized in Table 9. In this section, we describe the latest algorithm from
[37] whose complexity is O∗(n4).

Let us first review the common structure of previous volume algorithms. As-
sume that the diameter D of K is poly(n). All these algorithms reduce volume
computation to sampling from a convex body, using the “Multi-Phase Monte-
Carlo” technique. They construct a sequence of convex bodies K0 ⊆ K1 ⊆
· · · ⊆ Km = K, where K0 = Bn or some body whose volume is easily computed.
They estimate the ratios vol(Ki−1)/vol(Ki) by generating sufficiently many in-
dependent (nearly) uniformly distributed random points in Ki and counting
the fraction that lie in Ki−1. The product of these estimates is an estimate of
vol(K0)/vol(K).

In order to get a sufficiently good estimate for the ratio vol(Ki−1)/vol(Ki),
one needs about mvol(Ki)/vol(Ki−1) random points. So we would like to have
the ratios vol(Ki)/vol(Ki−1) be small. But, the ratio of vol(K) and vol(K0)
could be nΩ(n) and so m has to be Ω(n) just to keep the ratios vol(Ki)/vol(Ki−1)
polynomial. The best choice is to keep these ratios bounded; this can be achieved
e.g., if K0 = Bn and Ki = K ∩ (2i/nBn) for i = 1, 2, . . . , m = Θ(n log n).
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Thus, the total number of random points used is O(m2) = O∗(n2). Since
vol(Ki) ≤ 2vol(Ki−1) for this sequence, a random point in Ki−1 provides a
warm start for sampling from Ki. So each sample takes O∗(n3) steps to generate,
giving an O∗(n5) algorithm. In [3, 34], sampling uniformly from Ki was replaced
by sampling from a smooth logconcave function to avoid bad local conductance
and related issues.

The number of phases, m, enters the running time as its square and one
would like to make it as small as possible. But, due to the reasons described
above, m = Θ(n log n) is optimal for this type of algorithm and reducing m any
further (i.e., o(n)) seems to be impossible for this type of method.

The algorithm in [37] can be viewed as a variation of simulated annealing.
Introduced by Kirkpatrick et al. [26], simulated annealing is a general-purpose
randomized search method for optimization. It walks randomly in the space of
possible solutions, gradually adjusting a parameter called “temperature”. At
high temperature, the random walk converges to the uniform distribution over
the whole space; as the temperature drops, the stationary distribution becomes
more and more biased towards the optimal solutions.

Instead of a sequence of bodies, the algorithm in [37] constructs a sequence
of functions f0 ≤ f1 ≤ · · · ≤ fm that “connect” a function f0 whose integral is
easy to find to the characteristic function fm of K. The ratios (

∫

fi−1)/(
∫

fi)
can be estimated by sampling from the distribution whose density function is
proportional to fi, and averaging the function fi−1/fi over the sample points.
Previous algorithms can be viewed as the special case where the functions fi

are characteristic functions of the convex bodies Ki. By choosing a different set
of fi, the algorithm uses only m = O∗(

√
n) phases, and O∗(

√
n) sample points

in each phase. In fact, it uses exponential functions of the form f(x) = e−aT x/T

restricted to some convex body. The temperature T will start out at a small
value and increase gradually. This is the reverse of what happens in simulated
annealing.

Besides annealing, the algorithm uses a pre-processing step called the pencil
construction. We describe it next.

Let K be the given body in R
n and ε > 0. Let C denote the cone in R

n+1

defined by

C = {x ∈ R
n+1 : x0 ≥ 0,

n
∑

i=1

x2
i ≤ x2

0}

where x = (x0, x1 . . . , xn)T. We define a new convex body K ′ ∈ R
n+1 as follows:

K ′ =
(

[0, 2D]× K
)

∩ C.

In words, K ′ is a sharpened (n + 1)-dimensional “pencil” whose cross-section is
K and its tip is at the origin. See Fig. 4 for an illustration. The idea of the
algorithm is to start with a function that is concentrated near the tip of the
pencil, and is thus quite close to an exponential over a cone, and gradually move
to a nearly constant function over the whole pencil, which would give us the
volume of the pencil. The integral of the starting function is easily estimated.
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Figure 4: The pencil construction when K is a square.

The sharpening takes less than half of the volume of the pencil away. Hence, if
we know the volume of K ′, it is easy to estimate the volume of K by generating
O(1/ε2) sample points from the uniform distribution on [0, 2D] × K and then
counting how many of them fall into K ′.

We describe the annealing part of the algorithm in a bit more detail. For
each real number a > 0, let

Z(a) =

∫

K′

e−ax0 dx

where x0 is the first coordinate of x. For a ≤ ε2/D, an easy computation shows
that

(1 − ε)vol(K ′) ≤ Z(a) ≤ vol(K).

On the other hand, for a ≥ 2n the value of Z(a) is essentially the same as
the integral over the whole cone which is easy to compute. So, if we select a
sequence a0 > a1 > · · · > am for which a0 ≥ 2n and am ≤ ε2/D, then we can
estimate vol(K ′) by

Z(am) = Z(a0)

m−1
∏

i=0

Z(ai+1)

Z(ai)
.

The algorithm estimates each ratio Ri = Z(ai+1)/Z(ai) as follows. Let µi be
the probability distribution over K ′ with density proportional to e−aix0 , i.e., for
x ∈ K ′,

dµi(x)

dx
=

e−aix0

Z(ai)
.

To estimate the ratio Ri, the algorithm draws random samples X1, . . . , Xk from
µi, and computes

Wi =
1

m

m
∑

j=1

e(ai−ai+1)(X
j)0 .

It is easy to see that E(Wi) = Ri. The main lemma in the analysis is that the
second moment of Wi is small.
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Lemma 9.3 Let X be a random sample from dµi and

Y = e(ai−ai+1)X0 .

Then,
E(Y 2)

E(Y )2
≤ a2

i+1

ai(2ai+1 − ai)
.

From the lemma, it follows that with

ai+1 = ai

(

1 − 1√
n

)

we get that E(Y 2)/E(Y )2 is bounded by a constant. So with k samples,

E(W 2
i )

E(Wi)2
≤

(

1 +
O(1)

k

)

.

Hence, the standard deviation of the estimate Z = W1W2 . . . Wm is at most ε
times E(W1W2 . . . Wm) = vol(K), for k = O(m/ε2). Further, the number of
phases needed to go from a0 = 2n to am ≤ ε2/D is only

√
n log(D/ε2). So the

total number of sample points needed is only O∗(n) (it would be interesting to
show that this is a lower bound for any algorithm that uses a blackbox sampler).

As mentioned earlier, the samples obtained are not truly independent. This
introduces technical complications. In previous algorithms, the random variable
estimating the ratio was bounded (between 1 and 2) and so we could directly
use Lemma 7.1. For the new algorithm, the individual ratios being estimated
could be unbounded. To handle this further properties of µ-independence are
developed in [37]. We do not go into the details here.

How fast can we sample from µi? Sampling from µ0 is easy. But each µi−1 no
longer provides a warm start for µi, i.e., dµi−1(x)/dµi(x) could be unbounded.
However, as the next lemma asserts, the L2 distance is bounded.

Lemma 9.4 ||µi−1/µi|| < 8.

The proof of this lemma and that of Lemma 9.3 are both based on the following
property of logconcave functions proved in [37].

Lemma 9.5 For a > 0, any convex body K and logconcave function f in R
n,

the function

Z(a) = an

∫

K

f(ax) dx

is logconcave.

Finally, hit-and-run only needs bounded L2 norm to sample efficiently, and
by the version of Theorem 6.3 for the exponential density, we get each sample
in O∗(n3) time. Along with the bound on the number of samples, this gives the
complexity bound of O ∗ (n4) for the volume algorithm.

It is apparent that any improvement in the mixing rate of random walks will
directly affect the complexity of volume computation. Such improvements seem
to consistently yield interesting new mathematics as well.
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[4] I. Bárány and Z. Füredi: Computing the Volume is Difficult. Discrete &
Computational Geometry 2, (1987), 319-326.

[5] H. C. Berbee, C.G. Boender, A. H. G. Rinnooy Kan, C. L. Scheffer, R.
L. Smith and J. Telgen: Hit-and-run algorithms for the identification of
nonredundant linear inequalities. Math. Prog., 37, (1987), 184–207.

[6] D. Bertsimas and S. Vempala: Solving convex programs by random walks.
J. ACM 51(4), (2004), 540–556.

[7] B. Bollobás: Volume estimates and rapid mixing. In Flavors of geometry,
151-182, MSRI Publ. 31, Cambridge University Press, Cambridge 1997.

[8] P. Diaconis and L. Saloff-Coste: Logarithmic Sobolev inequalities for finite
Markov chains. Ann. Appl. Prob., 6(3), (1996), 695-750.
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