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WHAT IS KNOWN ABOUT UNIT CUBES

CHUANMING ZONG

Abstract. Unit cubes, from any point of view, are among the simplest and
the most important objects in n-dimensional Euclidean space. In fact, as
one will see from this survey, they are not simple at all. On the one hand,
the known results about them have been achieved by employing complicated
machineries from Number Theory, Group Theory, Probability Theory, Matrix
Theory, Hyperbolic Geometry, Combinatorics, etc.; on the other hand, the
answers for many basic problems about them are still missing. In addition,
the geometry of unit cubes does serve as a meeting point for several applied
subjects such as Design Theory, Coding Theory, etc. The purpose of this
article is to figure out what is known about the unit cubes and what do we
want to know about them.

Introduction

Taking a unit box (a three-dimensional unit cube) in a hand, one can easily see
that it is a very symmetric object with six faces, twelve edges and eight vertices.
In addition, one can simply conclude that its volume is one and its surface area is
six. Then a layman perhaps will have no further questions and is satisfied with the
belief that he has known everything about the box. However, a geometer may ask
further questions of the following types.

1. What is the maximum area of its cross sections?

2. What is the maximum area of its projections?

3. What is the maximum volume of a tetrahedron inscribed in the box?

4. What is the smallest number of simplices to triangulate the box?

In fact, they are nontrivial problems. Especially, their analogues in higher dimen-
sions are important, fascinating and challenging.

Let R denote the real number field, let En denote the n-dimensional Euclidean
space, let small boldface letters denote points (or vectors) in En and let the corre-
sponding small letters with lower indices denote their coordinates. Especially, the
origin of En is denoted by o in the whole paper. For different purposes, we define
two particular unit cubes:

In =
{
x = (x1, x2, · · · , xn) ∈ En : |xi| ≤ 1

2

}
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and
In = {x = (x1, x2, · · · , xn) ∈ En : 0 ≤ xi ≤ 1} .

To have some intuition about the geometric shape of an n-dimensional unit cube,
one may define it inductively as a cylinder based on an (n− 1)-dimensional one. In
this way, one can deduce that an n-dimensional unit cube has exactly 2n−k

(
n

n−k

)
different k-dimensional faces, each of which is a k-dimensional unit cube.

The geometry of unit cubes is a meeting point of several different subjects in
mathematics. For example, as one will see in the following sections, Probability
Theory does play an important role in the study of cross sections, Linear Algebra
is fundamental in the study of both projections and inscribed simplices, Combi-
natorics is basic for both triangulations and 0/1 polytopes, and Group Theory is
essential in the study of both Minkowski’s conjecture and Keller’s conjecture. In
addition, Keller’s conjecture, inscribed simplices, 0/1 polytopes and triangulations
are closely related with applied subjects such as Coding Theory and Design Theory.

In this article we will review several important topics about n-dimensional unit
cubes, such as cross sections, projections, inscribed simplices, Minkowski’s conjec-
ture, triangulations, Keller’s conjecture, etc. Besides introducing the fundamental
results and some key open problems, we will briefly discuss some creative ideas by
which the fascinating results have been achieved. For a detailed study we refer to
the original papers or to Zong [117].

1. Cross-sections

Problem 1.1. What is the maximum or minimum area of an i-dimensional cross-
section of In?

This problem is so natural that it makes no sense to ask whoever first proposed
it. However, it is indeed a challenging one. K. Ball, D. Hensley and J.D. Vaaler
have made essential progress in this problem and have solved many particular cases.
However, a complete solution is still missing. In addition, the proofs for the known
results are based on deep and unexpectedly complicated analysis.

Let Hi denote an i-dimensional hyperplane containing o and let vi(X) denote
the i-dimensional measure of a set X in En. According to Hensley [49], Anton
Good made the following conjecture.

Good’s conjecture. If 1 ≤ i ≤ n − 1, then

vi(In ∩ Hi) ≥ 1.

In 1979, unexpectedly, Hensley [49] introduced a probability method into the
study of this conjecture and solved the i = n − 1 case. Almost at the same time,
J.D. Vaaler improved Hensley’s method into a much more powerful setting and
proved a fundamental theorem about section measure, by which one can deduce
Good’s conjecture as a corollary. Let Bj denote the j-dimensional ball of unit j-
dimensional volume and centered at the origin of the space and let χ(V,x) denote
the characteristic function of a set V . Then Vaaler’s theorem can be stated as
follows.

Theorem 1.1 (Vaaler [107]). Suppose that n1, n2, · · · , nj are positive integers
satisfying n = n1 + n2 + · · · + nj, D = Bn1 ⊕ Bn2 ⊕ · · · ⊕ Bnj ⊂ En, and A is an
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i × n real matrix of rank i. Then we have∫
Ei

χ(D,xA)dx ≥ |AA′|− 1
2 ,

where A′ is the transpose of A.

Taking n1 = n2 = · · · = nn = 1 and choosing A such that its rows form an
orthonormal basis for Hi in En, then we have D = In, |AA′| = 1 and∫

Ei

χ(D,xA)dx = vi(In ∩ Hi).

Thus, Good’s conjecture follows as a corollary.

Corollary 1.1 (Vaaler [107]). If 1 ≤ i ≤ n − 1, then

vi(In ∩ Hi) ≥ 1.

In the proof of Vaaler’s theorem, some deep analytic methods do play very
important roles. Let us start with a couple of basic concepts. A nonnegative
function f(x) defined in En is said to be logconcave if

f(λx1 + (1 − λ)x2) ≥ f(x1)λf(x2)1−λ

holds for every pair of points x1 and x2 in En and for every λ with 0 < λ < 1.
Similarly, a probability measure µ defined on En is said to be logconcave if

µ(λK1 + (1 − λ)K2) ≥ µ(K1)λµ(K2)1−λ

holds for every pair of open convex sets K1 and K2 in En and for every λ with
0 < λ < 1. Logconcave functions and logconcave probability measures are closely
related. It was shown by Borell [15] and Prékopa [88] that, roughly speaking, µ is
a logconcave probability measure if and only if there is a logconcave function f(x)
defined on some i-dimensional subspace Hi of En such that

dµ = f(x)dνi,

where νi is the i-dimensional Lebesgue measure on Hi.
Let µ1 and µ2 be probability measures with density functions f1(x) and f2(x),

respectively. We say that µ1 (or f1(x)) is more peaked than µ2 (or f2(x)) if

µ1(C) ≥ µ2(C)

holds for every centrally symmetric convex body C centered at o. It can be shown
that both χ(Bi,x) and e−π‖x‖2

are logconcave and χ(Bi,x) is more peaked than
e−π‖x‖2

. In addition, one can prove (see Kanter [60]) that µ1 ⊗ µ2 is more peaked
than µ′

1⊗µ′
2 if µ1, µ2, µ′

1 and µ′
2 are logconcave, µ1 is more peaked than µ′

1 and µ2

is more peaked than µ′
2. Therefore χ(D,x) is more peaked than e−π‖x‖2

; that is,∫
C

e−π‖x‖2
dx ≤

∫
C

χ(D,x)dx (1.1)

holds for every centrally symmetric convex body C centered at o.
Let Ei denote the i-dimensional subspace of En spanned by the rows of A, let

En−i denote its orthogonal complement, let B denote an (n − i) × n matrix such
that its rows form an orthonormal basis in En−i and let In−i denote a unit cube
in En−i and centered at its origin. Writing

T =
(

A

B

)
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and
Hε = Ei + εIn−i,

where + is the Minkowski sum and ε is a small positive number, by (1.1) we have∫
Hε

e−π‖xT‖2
dx ≤

∫
Hε

χ(D,xT )dx,

by which one can deduce Theorem 1.1.
Slightly before Vaaler’s work, Hensley [49] did prove

1 ≤ vn−1(In ∩ Hn−1) ≤ 5

and made a conjecture that

vn−1(In ∩ Hn−1) ≤
√

2.

As for a general upper bound for vi(In ∩ Hi), K. Ball proved the following two
theorems.

Theorem 1.2 (Ball [7]). For every i-dimensional hyperplane Hi in En we have

vi(In ∩ Hi) ≤ (n
i

) i
2 ,

where the upper bound is best possible if i|n.

Theorem 1.3 (Ball [7]). For every i-dimensional hyperplane Hi in En we have

vi(In ∩ Hi) ≤ 2
n−i
2 ,

where the upper bound is optimal if i ≥ n/2.

It is easy to see that these theorems do provide an answer to Problem 1.1 for
many cases, especially to Hensley’s conjecture. However, the answers to many other
cases are still missing.

Ball’s proofs were based on deep analysis of another character. Let ui be m unit
vectors in En and let ci be m positive numbers (m ≥ n) satisfying

m∑
i=1

ciui ⊗ ui = In,

where ui ⊗ ui indicates the tensor product and In is the n × n unit matrix. Then
for nonnegative integrable functions fi we have∫

En

m∏
i=1

fi(〈ui,x〉)cidx ≤
m∏

i=1

(∫
R

fi(x)dx

)ci

, (1.2)

where the equality holds if fi(x) are identical Gaussian densities. This is a special
case of the Brascamp-Lieb inequality (see [17]).

Let e1, e2, · · · , en be a standard basis of En and let Γ denote the orthogonal
projection onto Hi. Taking

cj = ‖Γ(ej)‖2 and uj = 1√
cj

Γ(ej),

one can deduce
n∑

j=1

cjuj ⊗ uj = Ii.
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On the other hand, letting gj(x) denote the characteristic function of the interval
[− 1

2
√

cj
, 1

2
√

cj
], it can be shown that

vi(In ∩ Hi) =
∫

Hi

n∏
j=1

gj(〈uj ,x〉)cj dx.

By (1.2) one can deduce Theorem 1.2.
To prove Theorem 1.3, besides the above method, Fourier’s inversion formula

plays an important role. Let Hi denote the orthogonal complement of Hi and, for
any v ∈ Hi, define

f(v) = vi(Ii ∩ (Hi + v)).
One can deduce ∫

Hi

ei〈v,w〉f(v)dv =
n∏

j=1

sin
√

cj

2 〈w,uj〉√
cj

2 〈w,uj〉
.

By the standard Fourier inversion formula we have

vi(In ∩ Hi) = f(o) =
1

(2π)n−i

∫
Hi

n∏
j=1

sin
√

cj

2 〈w,uj〉√
cj

2 〈w,uj〉
dw.

Then Theorem 1.3 can be deduced by (1.2) and the fact that if λ ≥ 2,

1
π

∫ ∞

−∞

∣∣∣∣sin t

t

∣∣∣∣λ dt ≤
√

2
λ

.

For convenience, let α(n, i) denote the maximum area of an i-dimensional cross
section of In. By Theorem 1.2 and Theorem 1.3, most values of α(n, i) are known
when n is relatively small. We list them up to n = 12 in Table 1.

Table 1.

i 1 2 3 4 5 6 7 8 9 10 11 12

α(3, i)
√

3
√

2 1

α(4, i) 2 2
√

2 1

α(5, i)
√

5 ?? 2
√

2 1

α(6, i)
√

6 3
√

8 2
√

2 1

α(7, i)
√

7 ?? ??
√

8 2
√

2 1

α(8, i)
√

8 4 ?? 4
√

8 2
√

2 1

α(9, i) 3 ??
√

27 ?? 4
√

8 2
√

2 1

α(10, i)
√

10 5 ?? ??
√

32 4
√

8 2
√

2 1

α(11, i)
√

11 ?? ?? ?? ??
√

32 4
√

8 2
√

2 1

α(12, i)
√

12 6 8 9 ?? 8
√

32 4
√

8 2
√

2 1

As for the shapes of the cross sections of In, our knowledge is very limited.
According to a well-known theorem of Dvoretzky [28], for any fixed k, when n
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is sufficiently large there is a k-dimensional hyperplane H such that In ∩ H is
almost spherical. On the other hand, any n-dimensional centrally symmetric convex
polytope with m pairs of facets can be realized as an n-dimensional cross section of
an m-dimensional cube (see Ball [8]). In addition, according to Bárány and Lovász
[9], if a k-dimensional cross section of In has no common point with the (n−k−1)-
dimensional faces of In, then it has at least 2k vertices. However, we do not know
any good bound for the number of the j-dimensional faces of a k-dimensional cross
section of In. Let E(n, k, j) denote the expected number of j-dimensional faces of
a random k-dimensional cross section of In. Lonke [72] recently proved

E(n, k, 0) = 2k

(
n

k

)√
2k

π

∫ ∞

0

e−kt2/2µn−k(tIn−k)dt

where µn−k indicates the (n − k)-dimensional Gaussian probability measure, and

E(n, n − k, n − j) ∼ (2n)j−k

(j − k)!

for fixed 1 ≤ k < j as n → ∞. As consequences of the first formula, for fixed k,
when n → ∞ one can deduce

E(n, k, 0) ∼ 2k

√
k
(π log n)(k−1)/2

and

E(n, n − 1, 0) ∼ 2n
√

n

π
.

2. Projections

Similar to Problem 1.1, we have the following problem about the projections of
In.

Problem 2.1. What is the maximum (minimum) area of an i-dimensional projec-
tion of In?

It is known (see Table 1) that the maximum area of a two-dimensional cross
section of I3 is

√
2. However, by routine computation one can deduce that the

maximum area of a two-dimensional projection of I3 is
√

3. This example does show
the essential difference between cross sections and projections of In. In addition,
as one will see, while the key method to deal with the cross sections is analytic the
basic technique for projections is algebraic.

Let Hi denote an i-dimensional hyperplane containing o and let Pi denote the
orthogonal projection from In to Hi. It is easy to see that Pi is a polytope and

In ∩ Hi ⊆ Pi

holds for every Hi. Therefore, by Theorem 1.1 we have the following lower bound
for vi(Pi).

Theorem 2.1 (Chakerian and Filliman [20]). If 1 ≤ i ≤ n − 1, for any i-
dimensional orthogonal projection Pi of In we have

vi(Pi) ≥ 1,

where the equality holds if and only if Hi is spanned by i axes of En.
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Turning to the upper bound, the situation is much more complicated. Let us
start with some easy observations. It is obvious that In is contained in a ball of
radius

√
n/2. Therefore, for any i-dimensional projection Pi of In we have

vi(Pi) ≤ ωi · (
√

n/2)i, (2.1)

where ωi is the volume of the i-dimensional unit ball.
Write q = [n/(i + 1)]. For j = 1, 2, · · · , i + 1, let pj = (pj1, pj2, · · · , pjn) be the

vertex of In with coordinates

pjk =
{

1 if (j − 1)q + 1 ≤ k ≤ jq,
0 otherwise.

It can be verified that the simplex S with vertices p1, p2, · · · , pi+1 is regular and
its edge length is

√
2q. Therefore there is a corresponding Pi which contains a

translate of S and thus
vi(Pi) ≥ vi(S) = ci · ni/2, (2.2)

where ci is a suitable positive constant depending only on i. Comparing (2.1) with
(2.2) one can conclude that, if i is fixed and n is sufficiently large, the asymptotic
order in (2.1) is optimal.

Now let us introduce two better upper bounds for the areas of the projections.

Theorem 2.2 (Chakerian and Filliman [20]). If 1 ≤ i ≤ n − 1, for every i-
dimensional projection Pi we have

vi(Pi) ≤
ωi

i−1

ωi−1
i

(n

i

)i/2

.

Theorem 2.3 (Chakerian and Filliman [20]). If 1 ≤ i ≤ n − 1, for every i-
dimensional projection Pi we have

vi(Pi) ≤
√

n!
(n − i)! · i! .

A polytope is called a zonotope if it is a Minkowski sum of a finite number
of segments. Clearly both In and Pi are zonotopes. Let Wi(K) denote the i-th
quermassintegral of an n-dimensional convex body K. It is well known in Convex
Geometry that

Wn−1(K1 + K2) = Wn−1(K1) + Wn−1(K2),

vn(K) ≤ Wn−1(K)n

ωn−1
n

(2.3)

and, if K is a segment of length �,

Wn−1(K) =
� · ωn−1

n
.

Usually (2.3) is known as Urysohn’s inequality. Then considering Pi in i-dimensional
space, one can deduce

Wi−1(Pi) ≤ ωi−1

√
n/i

and therefore Theorem 2.2.
If Pi is an i-dimensional zonotope which can be written as a Minkowski sum of

segments,

Pi =
n∑

j=1

Lj ,
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then it was proved by Shephard [96] that

vi(Pi) =
∑

vi

(
i∑

k=1

Ljk

)
, (2.4)

where the summation is over
(
n
i

)
sets of indices. Assume that

Hi = {x : xj = 0 if j > i}
and I is an n-dimensional unit cube expressed as

I =
n∑

j=1

uj ,

where uj = (uj1, uj2, · · · , ujn) are pairwise orthogonal unit segments. Then U =
(ujk) is an n × n unimodular matrix and, by (2.4),

vi(Pi) =
∑

{j1,j2,··· ,ji}

∥∥∥∥∥∥∥∥∥
uj11 uj12 · · · uj1i

uj21 uj22 · · · uj2i

...
...

. . .
...

uji1 uji2 · · · ujii

∥∥∥∥∥∥∥∥∥ . (2.5)

Thus, by Cauchy’s inequality one can deduce Theorem 2.3.
Let D be an i × i sub-matrix of U and let D∗ denote its algebraic complement.

It is known as the Jacobi identity that, if U ′U = In,

|det(D∗)| = |det(D)|.
Therefore by (2.5) we can get the following result.

Theorem 2.4 (McMullen [76], Chakerian and Filliman [20]). Suppose that En =
Ei⊕En−i. Let P denote the projection of In into Ei and let P ′ denote the projection
of In into En−i. Then

vi(P ) = vn−i(P ′).

Let β(n, i) denote the maximum area of the i-dimensional projection of In. By
Theorem 2.4, the isoperimetric inequality for polygons (see L. Fejes Tóth [33]), and
a skillful construction based on complex numbers one can get

β(n, 1) = β(n, n − 1) =
√

n

and
β(n, 2) = β(n, n − 2) = cot( π

2n ).
Based on these results, we list the known values of β(n, i) up to n = 7 in Table 2.

Similar to the cross sections, Dvoretzky [29] and Larman and Mani [68] proved
that, for any fixed k, when n is sufficiently large there is a k-dimensional projection
of In, which is almost spherical. However, no good bound for the number of the
j-dimensional faces of a k-dimensional projection of In is known. Let E′(n, k, j)
denote the expected number of the j-dimensional faces of a random k-dimensional
projection of In. Based on a general formula of Affentranger and Schneider [1], it
was proved by Böröczky and Henk [16] that

E′(n, k, j) = 2
(

n

j

)∑
i≥0

(
n − j

k − 1 − 2i − j

)
∼ 2

nk−1

(k − 1 − j)!j!
.
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Table 2.

i 1 2 3 4 5 6 7

β(3, i)
√

3
√

3 1

β(4, i) 2 cot(π/8) 2 1

β(5, i)
√

5 cot(π/10) cot(π/10)
√

5 1

β(6, i)
√

6 cot(π/12) ?? cot(π/12)
√

6 1

β(7, i)
√

7 cot(π/14) ?? ?? cot(π/14)
√

7 1

3. Inscribed simplices

Simplices are another family of important geometric objects. In this section we
deal with the following problem.

Problem 3.1. What is the maximum volume γ(n, i) of an i-dimensional simplex
inscribed in an n-dimensional unit cube?

Let us start with a simple observation. If T is a tetrahedron with vertices v1, v2,
v3 and v4 and if [v′

4,v
∗
4] is a segment containing v4 as a relative interior point, then

one of the two tetrahedra T ′ = conv{v1,v2,v3,v′
4} and T ∗ = conv{v1,v2,v3,v∗

4}
is not smaller than T in volume. As usual conv{X} denotes the convex hull of X .
Based on this simple observation we can deduce the following fact: For any fixed
i and n, i ≤ n, one of the maximal i-dimensional simplices inscribed in In is a
vertex simplex; that is, all its vertices are vertices of In as well.

Let Si be an i-dimensional simplex with vertices v0 = (0, 0, · · · , 0), v1 = (v11,
v12, · · · , v1n), · · · , vi = (vi1, vi2, · · · , vin) in the n-dimensional Euclidean space En,
let Vi = (vjk) denote the corresponding i×n matrix, let H denote the i-dimensional
subspace spanned by v1, v2, · · · , vi, and let H ′ denote the (n − i)-dimensional
subspace which is orthogonal to H in En. Let

In−i =
n∑

j=i+1

vj

be an (n− i)-dimensional unit cube, where vj are pairwise orthogonal unit vectors
in H ′, let V be the n × n matrix (vjk) and define

S = Si ⊕ In−i.

Then one can deduce that

vi(Si) = vn(S) = 1
i!

√
det(V V ′) = 1

i!

√
det(ViV ′

i ).

Especially, if Si is an i-dimensional vertex simplex of In, then the corresponding
Vi is an i × n binary matrices and therefore

γ(n, i) = 1
i! max

√
det(ViV ′

i ), (3.1)

where the maximum is over all i × n binary matrices Vi.
By studying a binary i × n matrix, M. Hudelson, V. Klee and D.G. Larman

proved the following general upper bound.
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Theorem 3.1 (Hudelson, Klee and Larman [51]). For 1 ≤ i ≤ n we have

γ(n, i) ≤


1

i!2i

√
(i+1)i+1ni

ii if i is odd,

1
i!2i

√
(i+2)ini

(i+1)i−1 if i is even.

This theorem can be proved by studying the determinant of ((i + 1)I − J)AA′,
where I is the i × i unit matrix, J is the i × i matrix with all entries being one
and A is an i× n binary matrix. Let λ1, λ2, · · · , λi denote the eigenvalues of ((i +
1)I − J)AA′. It is known in Linear Algebra that they are the nonzero eigenvalues
of A′((i + 1)I − J)A as well. Therefore we have

det(((i + 1)I − J)AA′) ≤
i∏

j=1

λj ≤
(

1
i

i∑
j=1

λj

)i

=
(

tr(A′((i + 1)I − J)A)
i

)i

,

where tr(B) is the trace of B. By representing the diagonal elements of A′((i +
1)I − J)A in terms of the number of ones in the corresponding column of A, one
can prove the theorem via some basic inequalities.

It was observed by L. Fejes Tóth [33] that the maximal i-dimensional simplices
contained in the n-dimensional unit ball are regular. In fact, the first upper bound
in Theorem 3.1 can be deduced from this observation. On the other hand, in both
cases of Theorem 3.1, one can construct a corresponding arithmetic series n = kci,
where ci is a constant determined by i and k takes all positive integers, such that the
upper bounds for γ(n, i) are optimal. Therefore we have the following counterpart
for Theorem 3.1.

Theorem 3.2 (Neubauer, Watkins and Zeitlin [81]). For any fixed i we have

lim
n→∞

γ(n, i)
ni/2

=


1

i!2i

√
(i+1)i+1

ii if i is odd,

1
i!2i

√
(i+2)i

(i+1)i−1 if i is even.

When i = 2 or 3, we do know the exact values of γ(n, i). If A is a 2 × n binary
matrix with k1 columns identical with (1, 0)′, k2 columns identical with (0, 1)′ and
k3 columns identical with (1, 1)′, then we have

AA′ =
(

k1 + k3 k3

k3 k2 + k3

)
.

By routine analysis on det(AA′) one can determine the exact values of γ(n, 2) as
follows.

Theorem 3.3 (Hudelson, Klee and Larman [51]; Neubauer, Watkins and Zeitlin
[81]). If k = [n/3] and j = n − 3k, then

γ(n, 2) =


1
2

√
3k2 if j = 0,

1
2

√
3k2 + 2k if j = 1,

1
2

√
3k2 + 4k + 1 if j = 2.
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When i = 3 the proof argument is similar but more complicated. Assume that
T is a maximal vertex tetrahedron of In containing o as one of its vertices. First
of all, if three of the four vertices of a vertex tetrahedron of In belong to one facet
of In, then its volume is smaller than the upper bound listed in the next theorem.
Therefore, if A is the corresponding binary 3×n matrix of one of the maximal vertex
tetrahedra, since o = (0, 0, · · · , 0) is a vertex of T , A has no column identical with
(1, 0, 0)′, (0, 1, 0)′, (0, 0, 1)′ or (1, 1, 1)′. Then we can prove the following result.

Theorem 3.4 (Hudelson, Klee and Larman [51]; Neubauer, Watkins and Zeitlin
[81]). If k = [n/3] and j = n − 3k, then

γ(n, 3) = 1
3

√
k3−j(k + 1)j .

Remark 3.1. Besides γ(n, 2) and γ(n, 3), for different n and i, no exact value of
γ(n, i) is known except

γ(10, 4) =
√

405
4!

,

which was discovered by Hudelson, Klee and Larman [51].

Now we turn to the most interesting and the most important case, i = n. For
convenience, we define

κn = max{det(B)},
where the maximum is over all n × n binary matrices, and

κ∗
n = max{det(A)},

where the maximum is over all n×n matrices with ±1 entries. By simple transfor-
mations it is easy to see that

κ∗
n+1 = 2nκn. (3.2)

Therefore, by (3.1), to estimate or determine the value of γ(n, n) is equivalent with
the corresponding problems for κn and κ∗

n+1.

Theorem 3.5 (Hadamard [42], Barba [11], Ehlich [31], [32] and Wojtas [111]). For
any n × n matrix A with ±1 entries we have

det(AA′) ≤


nn if n ≡ 0 (mod 4),
(2n − 1)(n − 1)n−1 if n ≡ 1 (mod 4),
4(n − 1)2(n − 2)n−2 if n ≡ 2 (mod 4),
4·116

77 n7(n − 3)n−7 if n ≡ 3 (mod 4) and n ≥ 63.

The proof of this theorem is very complicated, especially the fourth case. It is
based on detailed analysis of the structure of AA′ and induction. For example, one
can observe that, in the fourth case, every element of AA′ is 3 (mod 4). Then we
can try to get an upper bound for det(C) instead, where C is a symmetric metric
with elements congruent to 3 (mod 4).

The first case is the well-known Hadamard inequality. An n×n matrix with ±1
entries is called a Hadamard matrix if AA′ = nIn. By (3.2) one can easily deduce
that Hadamard matrices do exist only if n ≡ 0 (mod 4). It was conjectured by Paley
[84] that the condition is also sufficient. However, this has not been proved yet.
On the other hand, it was observed by Grigorév [37] that there is an n-dimensional
regular vertex simplex in In if and only if there exists an (n+1)×(n+1) Hadamard
matrix. It is very surprising indeed that all of the first three upper bounds can be
attained at infinitely many n, though they are very different.

This theorem can be restated in terms of inscribed simplices in In as follows.
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Theorem 3.5∗. Let S denote an n-dimensional simplex contained in In. Then

vn(S) ≤



1
n!2n

√
(2n + 1)nn if n ≡ 0 (mod 4),

1
(n−1)!2n−1

√
(n − 1)n−1 if n ≡ 1 (mod 4),

113

n!2n−1

√
(n−2)n−6(n+1)7

77 if n ≡ 2 (mod 4) and n ≥ 62,
1

n!2n

√
(n + 1)n+1 if n ≡ 3 (mod 4).

Based on Theorem 3.5 it makes sense to investigate the following problem.

Problem 3.2. Determine the value of

γ = lim inf
n→∞

κ∗
n

n
n
2

.

Is the sequence {κ∗
n/n

n
2 : n = 1, 2, · · · } dense in [γ, 1]?

Now let us end this section by listing in Table 3 the known values of κn, κ∗
n and

γn = γ(n, n) up to n = 11.

Table 3.

n 2 3 4 5

κ∗
n+1 4 16 48 160

κn = κ∗
n+1/2n 1 2 3 5

γn = κn/n! 0.5 0.3333333 0.125 0.0416666

Author Williamson [110] Hall, Jr. [48] Ehlich [31] Ehlich [31]

6 7 8 9 10 11

576 4096 ?? 73728 ?? 2985984

9 32 ?? 144 ?? 1458

0.0125 0.0063492 ?? 0.0003968 ?? 0.0000365

Williamson [110] Hall, Jr. [48] Ehlich [31] Hall, Jr. [48]

4. Triangulations

Taking a box in hand, one can observe that it has four vertices such that any
edge of the box contains at most one of them. By the four planes determined by
the triples of these vertices the cube can be divided into five tetrahedra. Then we
may ask the following question.

Can one divide the box into four or even fewer tetrahedra?
By a routine argument based on the induced face division and volume estimation
one can prove that the answer to this question is “no”.
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For convenience, let V (P ) denote the set of the vertices of a polytope P . A set
� = {S1, S2, · · · , Sk} of simplices is called a decomposition of P if it satisfies the
following conditions.
1. P =

⋃
Si∈� Si.

2. int(Si) ∩ int(Sj) = ∅ holds for all distinct indices i and j.
It will be called a triangulation for P if it satisfies two more conditions.
3. Si ∩ Sj is a common face of Si and Sj whenever it is nonempty.
4. V (Si) ⊂ V (P ) holds for all indices i.

Then we define
ϕ(P ) = min

�
{card{�}},

where the minimum is over all decompositions of P , and

τ(P ) = min
�

{card{�}},
where the minimum is over all triangulations for P . Especially, we abbreviate ϕ(In)
and τ(In) to ϕn and τn, respectively.

Clearly, triangulations are special cases of decompositions, and therefore

ϕ(P ) ≤ τ(P )

holds for all polytopes P . Decompositions and triangulations are important in
Geometry, Topology and Combinatorics. However, in this section we only focus
on the particular case, the cube triangulations. We will deal with two kinds of
problems: to find efficient triangulations and to determine the values of τn. Let us
start with introducing several known triangulations for In.

Triangulation I. When n = 2, we can triangulate I2 into two triangles. Assume
that In−1 can be triangulated into (n − 1)! simplices. Let v be a vertex of In

and let F1, F2, · · · , Fn be the n facets which do not contain v. If {Si,j : j =
1, 2, · · · , (n − 1)!} are triangulations for Fi, then the set {conv{v ∪ Si,j} : i =
1, 2, · · · , n; j = 1, 2, · · · , (n − 1)!} will be a triangulation of cardinality n! for In.

Remark 4.1. In fact, this is the worst triangulation in the sense that it has the
maximal cardinality of the simplices. By Theorem 3.5∗ we have

vn(S) ≥ 1
n!

for all simplices of a triangulation. Therefore

card{�} ≤ n! (4.1)

holds for any triangulation � of In.

Triangulation II. First of all, we divide In into several polytopes P1, P2, · · · , Pl

such that V (Pi) ⊂ V (In) holds for all indices i and Pi ∩ Pj is a common face of Pi

and Pj whenever it is nonempty. Let V = {v1,v2, · · · ,v2n} be an ordering of the
2n vertices of In. For a face F of a polytope we define

i(F ) = min{i : vi ∈ F}
and

v(F ) = vi(F ).

For each sequence of faces P = Fn ⊃ Fn−1 ⊃ · · · ⊃ F0 �= ∅ such that v(Fi+1) �∈ Fi

holds for 0 ≤ i ≤ n−1 we define a simplex conv{v(Fn),v(Fn−1), · · · ,v(F0)}. Then
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all simplices of this kind produce a triangulation � for In. In this way, by dividing
In into suitable polytopes and choosing a suitable ordering V , Sallee [93] was able
to improve (4.1) to

τn = o(1) · n!. (4.2)

Triangulation III. Let Si denote an i-dimensional simplex. It was proved by
Billera, Cushman and Sanders [13] that

τ(Sk ⊕ Sl) =
(k + l)!
k! · l! .

If �k = {Sk
1 , Sk

2 , · · · , Sk
τk
} is a triangulation for Ik and �l = {Sl

1, S
l
2, · · · , Sl

τl
} is a

triangulation for I l, then
Ik+l =

⋃
i,j

Sk
i ⊕ Sl

j .

Let �i,j be a triangulation for Sk
i ⊕ Sl

j . Then
⋃

i,j �i,j will be a triangulation for
Ik+l. Based on this observation, Haiman [45] and Orden and Santos [82] were able
to prove the following theorem. So far it is the best known upper bound for τn.

Theorem 4.1. When n is large,

τn ≤ 0.816n · n!. (4.3)

On the other hand, it is well known (see Theorem 3.5∗) that

vn(S) ≤ (n + 1)
n+1

2

2n · n!
holds for all simplices of a triangulation for In. Therefore we have

τn ≥ 2nn!

(n + 1)
n+1
2

. (4.4)

In the spherical model of Hyperbolic Geometry, the measure of a set A contained
in the unit ball is defined by

�(A) =
∫

A

(1 − ‖x‖2)−
n+1

2 dx.

It was conjectured by Thurston [106] and proved by Haagerup and Munkholm [41]
that

�(S) ≤
(

n + 1
n − 1

)n+1
2 1

n!
holds for any simplex S inscribed in the unit ball. By proving

�(I) ≥
(

4
n

)n
2
(

3
2

)n+1
2

for the cube I inscribed in the unit ball, Smith was able to improve (4.4) into the
following theorem. So far it is the best known lower bound for τn.

Theorem 4.2 (Smith [98]).

τn ≥ 6
n
2 · n!

2 · (n + 1)
n+1

2

. (4.5)
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Comparing Theorem 4.2 with Theorem 4.1, one notices that the gap between
the known upper bound and the known lower bound for τn is still huge. As for the
exact values of τn we have the following results.

Theorem 4.3 (Mara [74], Cottle [23], Sallee [93], Lee [69], Hughes [53], Hughes
and Anderson [55]).

n 2 3 4 5 6 7
τn 2 5 16 67 308 1493

As one can imagine the cases n = 5, 6 and 7 were achieved by complicated
linear and integer programs, with computer aid. The n = 4 case can be deduced
by volume estimation and dealing with several cases. It also can be deduced by
f -vectors and h-vectors.

Remark 4.2. In 2000, Below, Brehm, De Loera and Richter-Gebert [12] discovered
that there are three-dimensional polytopes P satisfying

ϕ(P ) �= τ(P ).

However, we do not know if
τn = ϕn

holds for all n. So far this is known up to n = 5.

5. 0/1 polytopes

0/1 polytopes are convex hulls of subsets of the vertex set of In. Besides their own
geometric and combinatorial interest, 0/1 polytopes do provide intuitive models to
Coding Theory, Combinatorial Optimization, etc. There are several fundamental
problems concerning the geometry and the combinatorics of 0/1 polytopes. For
example,

Problem 5.1. Determine or estimate the number of different classes of all n-
dimensional 0/1 polytopes (with respect to a certain equivalence).

Problem 5.2. Determine or estimate the maximal number of the i-faces of an
n-dimensional 0/1 polytope.

Problem 5.3. Given n and s. What is the maximal number A(n, s) such that there
is an n-dimensional 0/1 polytope with A(n, s) vertices and the minimal distance
between them is not smaller than

√
s?

Let φ(n) denote the number of the n-dimensional 0/1 polytopes reduced from
In. By simple combinatorial arguments one can show that

c · 22n

< φ(n) < 22n

(5.1)

holds for some suitable constant c.
There are several types of classification for 0/1 polytopes based on distinct equiv-

alence relations. For example, the classification based on affine equivalence, con-
gruence, combinatorial equivalence or 0/1 equivalence. The first two are well known
in geometry. Now, let us briefly introduce the third and the fourth ones. Let FP

denote the face lattice of a polytope P , that is, the set of all faces of P partially
ordered by inclusion. Two polytopes P1 and P2 are combinatorially equivalent if
FP1 is isomorphic to FP2 . Two 0/1 polytopes P1 and P2 are 0/1 equivalent if one
can be transformed into the other by a symmetry of the unit cube In.
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Restricting to the family of n-dimensional 0/1 polytopes, we have the following
relations between 0/1 equivalence (E1), congruence (E2), affine equivalence (E3)
and combinatorial equivalence (E4).

Theorem 5.1 (Ziegler [115]).

E1 =⇒ E2 =⇒ E3 =⇒ E4.

This assertion is easy to prove. However, the converse to any of the three im-
plications is false. It is easy to get 0/1 polytopes that are affinely equivalent but
not congruent. To show the other cases we have the following examples, both from
Ziegler [115].

Example 5.1. Let S1 be a five-dimensional simplex with vertices u1 = (0, 0, 0, 0, 0),
u2 = (0, 0, 1, 1, 0), u3 = (0, 1, 0, 1, 0), u4 = (1, 0, 0, 1, 0), u5 = (0, 1, 1, 0, 0) and u6 =
(0, 1, 1, 0, 1) and let S2 be a five-dimensional simplex with vertices v1 = (0, 0, 0, 0, 0),
v2 = (0, 0, 1, 1, 0), v3 = (0, 1, 0, 1, 0), v4 = (0, 1, 1, 0, 0), v5 = (1, 0, 0, 1, 0) and
v6 = (1, 0, 0, 1, 1). It is easy to verify that

‖ui − uj‖ = ‖vi − vj‖
holds for all index pairs {i, j}. Thus S1 and S2 are congruent. However, S1 and S2

are not 0/1 equivalent.

Example 5.2. Let P1 be a five-dimensional polytope with vertices u1 = (0, 0, 0,
0, 0), u2 = (1, 0, 0, 0, 0), u3 = (0, 1, 0, 0, 0), u4 = (0, 0, 1, 0, 0), u5 = (0, 0, 0, 1, 0),
u6 = (0, 0, 0, 0, 1) and u7 = (1, 1, 1, 1, 1) and let P2 be a five-dimensional poly-
tope with vertices v1 = (0, 0, 0, 0, 0), v2 = (1, 1, 0, 0, 0), v3 = (0, 1, 1, 0, 0), v4 =
(0, 0, 1, 1, 0), v5 = (0, 0, 0, 1, 1), v6 = (1, 0, 0, 0, 1) and v7 = (1, 1, 1, 1, 1). In fact,
both P1 and P2 are bipyramids over a four-dimensional simplex. Therefore they
are combinatorially equivalent. However, since in P1 and P2 the main diagonals
are divided by the simplex in the ratios 1 : 4 and 2 : 3 respectively, they are not
affinely equivalent.

Let φ1(n), φ2(n), φ3(n) and φ4(n) denote the numbers of the different classes of
n-dimensional 0/1 polytopes with respect to 0/1 equivalence, congruence, affine
equivalence and combinatorial equivalence, respectively. It follows from Theo-
rem 5.1 that

φ4(n) ≤ φ3(n) ≤ φ2(n) ≤ φ1(n) ≤ φ(n). (5.2)
For large n to determine the exact values of φi(n) or even φ(n) is a very hard
job. So far, our knowledge of this kind is very limited. We list the known ones in
Table 4. Especially, we point out that the values of φ(5) and φ1(5) were discovered
by Aichholzer [3].

It follows by (5.1) and (5.2) that

φi(n) < 22n

(5.3)

holds for all i = 1, 2, 3 and 4. These upper bounds are certainly not optimal. How-
ever, so far no essentially better upper bound for φi(n) is known. As a counterpart
of (5.3) we have the following lower bound for φi(n).

Theorem 5.2 (Ziegler [115]). When n ≥ 6 we have

φi(n) ≥ 22n−2

for all i = 1, 2, 3 and 4.
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Table 4.

n φ(n) φ1(n) φ2(n) φ3(n) φ4(n)

2 5 2 2 2 2

3 151 12 12 8 8

4 60879 347 347 ?? 172

5 4292660729 1226525 ?? ?? ??

Let F 0
i and F 1

i denote the facets of In given by xi = 0 and xi = 1, respectively.
For convenience we will call F 0

n the bottom facet, F 1
n the top facet and all the others

vertical facets of In. For n ≥ 3 let Pn denote the family of 0/1 polytopes P reduced
from In and satisfying the following conditions.
1. It contains the whole bottom facet of In.
2. It contains both en = (0, 0, · · · , 1) and e = (1, 1, · · · , 1).
3. It contains neither en + e1 = (1, 0, · · · , 1) nor e− e1 = (0, 1, · · · , 1).

Clearly all the polytopes contained in Pn are n-dimensional and

card{Pn} =
2n−1−4∑

i=0

(
2n−1 − 4

i

)
= 22n−1−4. (5.4)

On the other hand, assuming that Pn can be divided into combinatorially equivalent
classes C1, C2, · · · , Ck, by detailed analysis one can prove that

card{Cj} ≤ 2n−1 · (n − 1)! (5.5)

holds for all j = 1, 2, · · · , k. Thus the theorem follows by (5.4) and (5.5).
Next we discuss some known results about Problem 5.2. Let ς(n, k) denote the

maximal number of the k-dimensional faces of an n-dimensional 0/1 polytope, and
especially abbreviate ς(n, n− 1) to ς(n). The known exact values of ς(n) are listed
in Table 5 (see Ziegler [115]).

Table 5.

n 2 3 4 5

ς(n) 4 8 16 40

Let e1, e2, · · · , en denote the n vectors of an orthonormal basis of En and write
e = (1, 1, · · · , 1). Then it is easy to see that

Tn = conv{e1, e− e1, · · · , en, e− en}
is centrally symmetric with respect to the center of In and therefore it is an n-
dimensional 0/1 cross polytope. By this example one can easily deduce that

ς(n) ≥ 2n.

In fact, for sufficiently large n, by a similar technique this lower bound can be
improved into

ς(n) ≥ 3.6n.
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Very recently, by a complicated random method, I. Bárány and A. Pór proved the
following result. So far this is the best known lower bound for ς(n).

Theorem 5.3 (Bárány and Pór [10]). When n is sufficiently large, we have

ς(n) ≥
(

c · n
log n

)0.25n

for some suitable positive constant c.

As a counterpart for Theorem 5.3, we have the following upper bound for ς(n).

Theorem 5.4 (Fleiner, Kaibel and Rote [34]). There is a positive number c such
that

ς(n) ≤ c · (n − 2)!.

Let P denote an n-dimensional 0/1 polytope with ς(n) facets. The proof of this
theorem is based on two key ideas. First, if ς(n) ≤ (n − 2)!, there is nothing to
prove; if ς(n) ≥ (n− 2)!, then try to prove ς(n) ≤ c · (n− 2)!. Second, for any facet
F of P there is a normal vector u of the form

u = (n − 1)! · (u1, u2, · · · , un),

where the ui are integers. Then consider the sum of the absolute norm of all these
vectors.

Remark 5.1. Comparing Theorem 5.3 with Theorem 5.4, it is easy to see that

c1n · log n ≤ log ς(n) ≤ c2n · log n

holds for two constants c1 and c2. From this point of view, both bounds are quite
good.

Next we introduce some known results pertaining to Problem 5.3. In fact, it is a
basic problem in Coding Theory. Let F2 denote the binary field and let Hn

2 denote
the Hamming space, the n-dimensional linear space over F2 and associated with the
Hamming metric

‖x,y‖H = card{i : xi �= yi}.
We notice that

‖x,y‖ =
√
‖x,y‖H

holds whenever both x and y belong to Hn
2 .

Usually, a point c ∈ Hn
2 will be called a binary codeword, a subset C of Hn

2 will be
called a binary code and the minimum Hamming distance between distinct points
in C is called the separation of C, denoted by s(C). In addition, for convenience, a
code of length n, size m and separation s will be called an (n, m, s)-code. Then we
can restate Problem 5.3 as follows.

Problem 5.3∗. Given n and s. What is the maximal number A(n, s) such that
there is a code C in Hn

2 with cardinality A(n, s) and separation s?

Roughly speaking, an information transmission process can be described as fol-
lows. First, design a code C and encode the information into codewords. Second,
transmit the codewords through a channel to a receiver. Since the channel may add
errors, the received words (in Hn

2 ) perhaps are not the sent ones. Third, design a
decoder to eliminate the errors. In this step, if a received word w is not a codeword
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of C, then it will be replaced by one of its closest codewords c. It is easy to imag-
ine that if s = s(C) is relatively large, then the errors caused by the transmitting
channel will be eliminated more easily. On the other hand, if card{C} is relatively
large, then the code is more efficient. Therefore it is easy to see that Problem 5.3∗

is indeed a key problem in Coding Theory.
Let us start with some basic results about A(n, s). First of all, it is obvious that

A(n, 1) = 2n

and
A(n, n) = 2.

Second, if C is a binary (n, m, s)-code with m = A(n, s) and if for i = 0 and 1 we
define

Ci = {c ∈ C : c1 = i},
then C0 will reduce to an (n−1, m0, s)-code and C1 will reduce to an (n−1, m1, s)-
code. Since one of them has a cardinality not smaller than A(n, s)/2, we have

A(n, s) ≤ 2A(n − 1, s).

Third, if C is a binary (n, m, 2k − 1)-code with m = A(n, 2k − 1), by adding
an overall parity check to each codeword one can produce an (n + 1, m, 2k)-code.
On the other hand, suppose that C is a binary (n + 1, m, 2k)-code with m =
A(n + 1, 2k), by puncturing C in a position at which two codewords disagree one
gets an (n, m, 2k − 1)-code with m = A(n + 1, 2k). Thus we have

A(n, 2k − 1) = A(n + 1, 2k). (5.6)

Now let us introduce several well-known bounds for A(n, s).

Theorem 5.5 (The Gilbert-Varshamov bound [36] and [109]).

A(n, s) ≥ 2n∑s−1
k=0

(
n
k

) .
Theorem 5.6 (The Hamming bound).

A(n, s) ≤ 2n∑s′−1
k=0

(
n
k

) ,
where s′ = [(s − 1)/2].

Theorem 5.7 (The Elias bound). Assume that r is an integer satisfying r ≤ n/2
and r2 − nr + ns/2 > 0. Then

A(n, s) ≤ ns

2r2 − 2nr + ns
· 2n∑r

k=0

(
n
k

) .
Theorem 5.8 (Delsarte [26] and [27]). When s is even (if it is odd, then apply
(5.6)) we have

A(n, s) ≤ max

{
n∑

j=0

aj : a0 = 1; aj = 0 for 1 ≤ j ≤ s or j is odd;

aj ≥ 0;
n∑

j=0

ajKi(j) ≥ 0 for 0 ≤ i ≤ n

}
,
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where Ki(x) are Krawtchouk polynomials defined as

Ki(x) =
i∑

j=0

(−1)j

(
x

j

)(
n − x

i − j

)
.

Theorem 5.5 and Theorem 5.6 can be easily proved by ideas of sphere packing and
sphere covering, respectively. However, the proofs for Theorem 5.7 and Theorem
5.8 are complicated, especially Theorem 5.8. Since they are well known, we refer
the interested readers to the standard books in Coding Theory such as Pless and
Huffman [87] or van Lint [108]. As one can notice from the above theorems, the
gap between the known lower bound and the best known upper bound is still
remarkable.

We list some known values of A(n, s) in Table 6, which is quoted from Sloane
[97].

Table 6.

n 5 6 7 8 9 10 11 12 13 14 15

A(n, 3) 4 8 16 20 40 72 144 256 512 1024 2048

A(n, 5) 2 2 2 4 6 12 24 32 64 128 256

A(n, 7) − − 2 2 2 2 4 4 8 16 32

Remark 5.2. Concerning the volume of a 0/1 polytope, there is an interesting but
rather isolated result. Let σ(n, m) denote the average volume of the 0/1 polytopes
in En and with m vertices. It was shown by Dyer, Füredi and McDiarmid [30] that,
letting ε be any positive number and writing α = 2/

√
e,

lim
n→∞ σ(n, m) =

{
1 if m ≥ (α + ε)n;
0 if m ≤ (α − ε)n.

6. Minkowski’s conjecture

Let I2 + Λ be a lattice tiling in E2 and let b1 = (1, β) ∈ Λ be a suitable point
such that I2 + b1 meets I2 at its boundary. If β = 0, then I2 + b1 meets I2 at a
whole edge. If β �= 0, since I2 + Λ is a tiling in E2, then we have b2 = (0, 1) ∈ Λ
and therefore I2 + b2 meets I2 at a whole edge. As a conclusion, if I2 + Λ is a
lattice tiling of E2, then I2 meets one of its neighbors at a whole edge. By a similar
argument this result can be easily extended to three dimensions. In 1896 Minkowski
[78] discovered this fact and promised to prove a similar statement in En. However,
the promised proof did not appear. For this reason the n-dimensional case is known
as Minkowski’s conjecture. For convenience, we will call two n-dimensional cubes
a twin whenever they share a whole facet.

Minkowski’s conjecture. Every lattice tiling In + Λ of En has twins.

To approach this simple sounding conjecture in high dimensions, T. Schmidt
proved the following intermediate result, which plays a very important role in the
final proof of this conjecture.
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Lemma 6.1 (Schmidt [95]). If there is a lattice tiling In +Λ of En without a twin,
then there is a rational lattice tiling In + Λ′ without a twin.

Of course, a rational lattice means all the lattice points have rational coordinates,
or in other words it has a rational basis. Clearly, if In + (a1, · · · , an) touches In at
its boundary and if a1 is irrational, then −1 < a1 < 1 and therefore one can find
a small ε such that In + (a1 + ε, · · · , an) touches In at its boundary and a1 + ε is
rational. Based on this observation the lemma can be proved by detailed analysis.

Let Λ be a rational lattice with a basis b1, · · · , bn, where

bi =
(

ci1
di1

, · · · , cin

din

)
and where cij and dij are integers. Let qj denote the common multiple of d1j , · · · ,
dnj , and let Λ denote the lattice generated by b1 = 1

q1
e1, · · · , bn = 1

qn
en, where

ei indicates the i-th unit axis. Then Λ/Λ can be uniquely expressed as
n∑

i=1

zibi

with zi ∈ Z and 0 ≤ zi ≤ qi − 1. Especially, we have ei ∈ Λ for some i whenever
In + Λ has a twin. Therefore Hajós [46] was able to reformulate Minkowski’s
conjecture into the following version.

Minkowski’s conjecture in algebraic version. Let G be a finite abelian group
with unit 1. If g1, · · · , gn are elements of G and q1, · · · , qn are positive integers
such that each element of G can be uniquely written in the form

n∏
i=1

gzi

i , 0 ≤ zi ≤ qi − 1,

then gqi

i = 1 for some i with 1 ≤ i ≤ n.

Let �(G) denote the group ring generated by G. In other words,

�(G) =
{∑

zigi : zi ∈ Z; gi ∈ G
}

in which the addition is defined by∑
zigi +

∑
z′igi =

∑
(zi + z′i)gi

and the multiplication is defined by(∑
zigi

)(∑
z′igi

)
=
∑ ∑

gjgk=gi

zjz
′
k

gi.

In 1942, by deep study in group rings, Hajós [46] was able to prove Minkowski’s
conjecture.

Theorem 6.1 (The Minkowski-Hajós theorem). Every lattice tiling In + Λ of En

has twins.

Before Hajós’ proof, Jansen [57], Schmidt [95], Keller [61], [62] and Perron [86]
made different approaches to Minkowski’s conjecture and proved it for n ≤ 9.
Perron’s proof was based on the observation that, if the center of a cube of a lattice
tiling is not the origin, at least one of its coordinates is a nonzero integer.
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It is known that every tile (translative) is a polytope and the unit cube is the
most regular one. Based on Theorem 6.1 it is reasonable to make the following
conjecture.

Conjecture 6.1. Let T be a tile. Every lattice tiling T +Λ of En has two translates
sharing a facet.

Besides the geometric version and the algebraic version, the Minkowski-Hajós
theorem can also be stated as a version of Diophantine equations (see Kolountzakis
[63]) and as a version of Diophantine approximation. In fact, Minkowski did first
state his conjecture in the form of Diophantine approximation. Ten years later he
restated it in the language of geometry.

Theorem 6.1∗. If A is an n × n matrix such that detA = 1, then there is a
z ∈ Zn \ {o} such that

‖Az‖∞ < 1,

unless A has an integral row. Here, as usual,

‖x‖∞ = max{|xi| : 1 ≤ i ≤ n}.
By induction one can even restate Theorem 6.1 in the following version.

Theorem 6.1∗∗. If In + Λ is a lattice tiling of En and Λ = AZn, then there is a
unimodular integral matrix U such that

AU =


1 0 0 · · · 0

α21 1 0 · · · 0
α31 α32 1 · · · 0
...

...
...

. . .
...

αn1 αn2 αn3 · · · 1

 ,

where |αij | < 1 holds for all i and j.

The unit cube In = I1 ⊕ I1 ⊕ · · · ⊕ I1 is a very special cylinder. Thus, based on
Theorem 6.1∗∗ one can ask the following question which will be useful in the study
of the packing and covering of a general convex body.

Problem 6.1. Let Ti denote a tile in Eni . If T1 ⊕ T2 + Λ is a lattice tiling of
En1+n2 and Λ = AZn1+n2 , is there always a unimodular integral matrix U such
that

AU =
(

A11 A12

A21 A22

)
,

where A12 is an n1 × n2 zero matrix?

7. Keller’s conjecture and Furtwängler’s conjecture

In 1930, besides proving Minkowski’s conjecture for some special dimensions,
Keller [61] made an even more ambitious conjecture.

Keller’s conjecture. Every translative tiling In + X of En has a twin.

In fact, by elementary methods like that at the beginning of Section 6, one
can easily deduce this conjecture in E2 and E3. In this direction, by complicated
arguments O. Perron even proved Keller’s conjecture for n ≤ 6 (Keller [62] contained
a proof sketch for this result).
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Theorem 7.1 (Keller [62], Perron [85]). When n ≤ 6, every translative tiling
In + X of En has a twin.

Similar to Minkowski’s conjecture, Keller’s conjecture also has an algebraic ver-
sion, which was discovered by Hajós [47] in 1950.

Keller’s conjecture in algebraic version. Let G be an abelian group with basis
elements g1, · · · , gn of orders 2q1, · · · , 2qn respectively. If G = HA1 · · ·An is a
factorization, where |H | = 2n and Ai = {1,gi, · · · ,gqi−1

i }, then

H−1H ∩ {gq1
1 , · · · ,gqn

n } �= ∅.
In 1940 O. Perron proposed an idea to reduce Keller’s conjecture into finitely

many cases for each n. In 1986 S. Szabó made this idea more explicit and proved
the following statement.

Lemma 7.1 (Perron [85] and Szabó [104]). If Keller’s conjecture is false in En,
then there exists a counterexample tiling Im +X in some Em with m ≥ n such that
X ⊂ 1

2Zm and X is periodic with a period lattice containing 2Zm.

Later, K. Corrádi and S. Szabó introduced a graph Gn and a graph-theoretic
version of this lemma. The vertices of Gn are vectors of length n with entries from
{0, 1, 2, 3}. Two such vectors u and v are adjacent if and only if ui − vi ≡ 2 (mod
4) for some i and uj �= vj for some j, j �= i.

Lemma 7.1∗ (Corrádi and Szabó [22]). There is a counterexample for Keller’s
conjecture if and only if for some n the graph Gn has a clique of size 2n.

These are very important steps towards the solution for this long-standing conjec-
ture. In 1992, by constructing such graphs, J.C. Lagarias and P.W. Shor disproved
Keller’s conjecture for n ≥ 10. In 2002 J. Mackey improved it to n ≥ 8. Thus we
have the following theorem.

Theorem 7.2 (Lagarias and Shor [66], Mackey [73]). Whenever n ≥ 8, there is a
translative tiling In + X of En which has no twin.

Comparing Theorem 7.2 with Theorem 7.1 one notices that n = 7 is the only
open case for Keller’s conjecture now.

In 1994 J.C. Lagarias and P.W. Shor improved this result by considering the
maximal dimension of the common face of two touching cubes in a translative
tiling. Let ξn denote the largest integer such that every translative tiling In + X
of En contains two cubes which have a common face of dimension ξn. By code
constructions, they proved the following result.

Theorem 7.3 (Lagarias and Shor [67]). For all n,

ξn ≤ n −√
n/3.

In addition, we have ξ8 ≤ 6, ξ9 ≤ 7 and ξ10 ≤ 7. The last case was discovered
by Lagarias and Shor [67], and the other cases were consequences of Mackey [73].
In general we have

ξn+1 ≤ ξn + 1.

This can be easily proved by a “stacking” construction that produces an (n + 1)-
dimensional tiling from an n-dimensional one, consisting of layers of n-dimensional
tilings with successive layers shifted relative to each other to preclude any common
faces between cubes in adjacent layers. However, we do not know the answer to the
following problem.
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Problem 7.1 (Lagarias and Shor [67]). What is the order of ξn as n → ∞? Does
ξn+1 ≥ ξn hold for all n?

It is known (the Venkov-McMullen theorem (see [116])) that every convex transla-
tive tile is a lattice tile. On the other hand, Stein [99] and Szabó [102] discovered
that, when n ≥ 5, there is a star tile which is not a lattice star tile. In fact, by
Theorem 6.1 and Theorem 7.2 one can construct such star tiles easily.

A family of unit cubes In + Y will be called a k-fold tiling of En if every point
x �∈ ∂(In)+Y lies in exactly k cubes. Clearly a tiling is a 1-fold tiling. To generalize
Minkowski’s conjecture to k-fold lattice tilings, Furtwängler [35] made the following
ambitious conjecture in 1936 and proved it for n ≤ 3.

Furtwängler’s conjecture. Every k-fold lattice tiling In + Λ of En has a twin.

When G. Hajós did prove Minkowski’s conjecture, unaware of Furtwängler’s
work, he studied this generalization again and restated it in the following version.

Furtwängler’s conjecture in algebraic version. If each element g of a fi-
nite abelian group G is expressible in exact k distinct ways as a product of ele-
ments coming from the cyclic subsets A1, A2, · · · , An respectively, where Ai =
{1,gi, · · ·gqi−1

i }, then gqi

i = 1 for some i, 1 ≤ i ≤ n.

In the same paper, besides showing the n ≤ 3 cases, Hajós disproved this state-
ment for n ≥ 4. In fact he did construct a 9-fold lattice tiling I4 + Λ of E4 which
has no twin. Thus we have the following theorem about Furtwängler’s conjecture.

Theorem 7.4 (Furtwängler [35] and Hajós [46]). When n ≤ 3, every k-fold lattice
tiling In + Λ of En has a twin; When n ≥ 4, for some positive integer k there is a
k-fold lattice tiling In + Λ of En which has no twin.

By a comprehensive study of the algebraic version, in 1979 R.M. Robinson was
able to determine all the integer pairs {n, k} such that Furtwängler’s conjecture is
false. Thus Furtwängler’s conjecture has been completely solved.

Theorem 7.5 (Robinson [90]). There is a k-fold lattice tiling In + Λ of En which
has no twin if and only if

1. n = 4 and k is a multiple of a square of an odd prime.
2. n = 5 and k = 3 or k ≥ 5.
3. n ≥ 6 and k ≥ 2.

Both Theorem 7.4 and Theorem 7.5 were proved by studying equations in the
group ring �(G). For example, the condition of Furtwängler’s conjecture can be
rewritten as

Ã1Ã2 · · · Ãn = kG̃,

where
X̃ =

∑
g∈X

g.

Remark 7.1. It was proved by Robinson [90] that every multiple translative tiling
I2 + X of E2 has a twin and there is a 25-fold translative tiling I3 + X of E3 that
has no twin. In 1982 Szabó [103] discovered that there is a 2-fold translative tiling
In + X of En that has no twin whenever n ≥ 3.



WHAT IS KNOWN ABOUT UNIT CUBES 205

Remark 7.2. The algebraic method is the key not only to solve Minkowski’s conjec-
ture, Keller’s conjecture and Furtwängler’s conjecture but also to deal with several
other geometric problems about tiling. We refer the interested readers to Stein
[100], Szabó [105] and Stein and Szabó [101].

8. Miscellaneous

In this section we will discuss some characterizations for parallelotopes, the clos-
est relatives of the unit cubes. Since the topics of this section are not much related,
we divide this section into three subsections.

8.1. A conjecture of Erdős and a problem of Klee. For convenience we will
say that a subset X of En has property E if all the angles determined by the triples
of points of X are less than or equal to π/2 and will say that it has property K if,
for any pair of points {x,y} of X, there are two parallel hyperplanes H1 and H2

such that X is between H1 and H2. Clearly the E property implies the K property.
In 1948 P. Erdös made a conjecture that

card{X} ≤ 2n

holds for all n-dimensional sets with the E property. Similarly, in 1960 V. Klee raised
a problem to determine the value of max{card{X}}, where the maximum is over
all n-dimensional sets with the K property. In 1962 L. Danzer and B. Grünbaum
proved the following result which solves both Erdös’ conjecture and Klee’s problem.

Theorem 8.1 (Danzer and Grünbaum [25]). For all n-dimensional sets X with
the K property we have

card{X} ≤ 2n,

where the equality holds if and only if X is the vertex set of a parallelotope; for all
n-dimensional sets Y with the E property we have

card{Y } ≤ 2n,

where the equality holds if and only if Y is the vertex set of a rectangular parallelo-
tope.

It is routine to show that X is an n-dimensional set with the K property is
equivalent to conv{X} − X is a finite packing. On the other hand, it was known
even to Minkowski that, for any convex body K, K + Y is a packing if and only if
1
2 (K−K)+Y is a packing. Of course K−K is always centrally symmetric. There-
fore Klee’s problem can be restated as, for an n-dimensional centrally symmetric
convex body C, how many nonoverlapping translates of C can have one common
point? For convenience, we write the maximal number of such translates as t(C).
It is easy to see that all these translates are contained in 2C + p, where p is the
common point. Thus by volume estimation one can deduce that

t(C) ≤ 2n

and the equality holds if and only if C is a parallelotope. In this way the theorem
can be proved (see Aigner and Ziegler [4]).
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8.2. Inscribed and circumscribed ellipsoids. Let C be a fixed n-dimensional
centrally symmetric convex body centered at o. For each ellipsoid E centered at o
there are a largest number r(E) and a smallest number r′(E) such that

r(E) · E ⊆ C ⊆ r′(E) · E.

Then we define

λ(C) = min
r′(E)
r(E)

,

where the minimum is over all ellipsoids. Clearly we have λ(C) ≥ 1, and the
equality holds if and only if C itself is an ellipsoid. As a counterpart, we have the
following characterization for a parallelotope.

Theorem 8.2 (John [58] and Leichtweiß [71]). For all n-dimensional centrally
symmetric convex bodies C we have

λ(C) ≤ √
n,

where the equality holds if and only if C is a parallelotope.

Leichtweiß’ key idea to prove this result is the following lemma, which can be
verified easily.

Lemma 8.1 (Leichtweiß [71]). If α and β are fixed numbers satisfying |α| ≤ 1 and
|β| ≤ 1, then among all the ellipsoids

Eλ :
n∑

i=1

x2
i + λ(x1 − α)(x1 + β) ≤ 1

for 0 ≤ λ < ∞ the unit ball has the smallest volume if and only if αβ ≥ 1/n.

Without loss of generality, we assume that the unit ball is the smallest circum-
scribed ellipsoid for C. Let H1 = {x : x1 = α} and H2 = {x : x2 = β} be two
supporting hyperplanes for C. It is easy to see that |α| ≤ 1, |β| ≤ 1 and for any
λ ≥ 0, the ellipsoid

n∑
i=1

x2
i + λ(x1 − α)(x1 + β) ≤ 1

contains C. Based on this observation the inequality part of the theorem follows
easily. Of course the characteristic part needs a more complicated argument.

Restricted to the ball and the cube, we have another simple sounding problem.
Let P be an n-dimensional polytope with 2n facets and circumscribing the unit
ball. We define

σ(P ) = max{‖x‖ : x ∈ P}.
In 1994 C. Zong proposed the following problem.

Problem 8.1. Is it true that σ(P ) ≥ √
n and the equality holds if and only if P is

a cube?

By Euler’s equation and the Dehn-Sommerville equations, Dalla, Larman, Mani-
Levitska and Zong [24] were able to prove the cases n ≤ 4. So far the higher-
dimensional cases are still open.
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8.3. A conjecture of Hadwiger. To end this section and the whole article, we
introduce a conjecture of Hadwiger. Let K be an n-dimensional convex body and
let h(K) denote the smallest number of translates of int(K) such that their union
can cover K. In 1957 H. Hadwiger made the following conjecture.

Conjecture 8.1 (Hadwiger [43]). For every n-dimensional convex body K we have

h(K) ≤ 2n,

where the equality holds if and only if K is a parallelotope.

If K is an n-dimensional parallelotope, then any translate of int(K) cannot cover
two of the 2n vertices of K. Thus one can deduce h(K) = 2n for this particular
case. There are a great number of papers on this problem. However, so far this
conjecture is open for n ≥ 3. Since the known partial results are irrelevant to the
characterization case, we will not list them here.
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Shephard. II. Math. Ann. 184 (1970), 79–105. MR0256266 (41:922)
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Quadern, Dissertation, Kiel, 1909.

58. F. John, Extremum problems with inequalities as subsidiary conditions, Courant Anniv.
Vol. (1948), 187–204. MR0030135 (10:719b)
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85. O. Perron, Über lückenlose Ausfüllung des n-dimensionalen Raumes durch kongruente
Würfel I; II, Math. Z. (1940), 1–26; 161–180. MR0003041 (2:153e); MR0002185 (2:11d)
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88. A. Prékopa, On logarithmically concave measures and functions, Acta Sci. Math. (Szeged)
34 (1973), 335–343. MR0404557 (53:8357)
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Würfeln, Schr. Math. Semin. U. Institut angew. Math. Univ. Berlin 1 (1933), 186–212.
96. G.C. Shephard, Combinatorial properties of associated zonotopes, Canad. J. Math. 26

(1974), 302–321. MR0362054 (50:14496)
97. N.J.A. Sloane, Error-correcting codes and invariant theory: new applications of a

nineteenth-century technique, Amer. Math. Monthly 84 (1977), 82–107. MR0424398
(54:12361)

98. W.D. Smith, A lower bound for the simplexity of the n-cube via hyperbolic volumes, Eu-
ropean J. Combin. 21 (2000), 131–137. MR1737333 (2001c:52004)

99. S.K. Stein, A symmetric star body that tiles but not as a lattice, Proc. Amer. Math. Soc.
36 (1972), 543–548. MR0319058 (47:7604)

100. S.K. Stein, Algebraic tiling, Amer. Math. Monthly 81 (1974), 445–462. MR0340063
(49:4819)
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