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Introduction

The central topic of these lectures is efficient counting of integer points in poly-
hedra. Consequently, various structural results about polyhedra and integer points
are ultimately discussed with an eye on computational complexity and algorithms.
This approach is one of many possible and it suggests some new analogies and
connections. For example, we consider unimodular decompositions of cones as a
higher-dimensional generalization of the classical construction of continued frac-
tions. There is a well recognized difference between the theoretical computational
complexity of an algorithm and the performance of a computational procedure in
practice. Recent computational advances [L+04], [V+04] demonstrate that many
of the theoretical ideas described in these notes indeed work fine in practice. On the
other hand, some other theoretically efficient algorithms look completely “unimple-
mentable”, a good example is given by some algorithms of [BW03]. Moreover,
there are problems for which theoretically efficient algorithms are not available at
the time. In our view, this indicates the current lack of understanding of some
important structural issues in the theory of lattice points and polyhedra. It shows
that the theory is very much alive and open for explorations.

Exercises constitute an important part of these notes. They are assembled at
the end of each lecture and classified as review problems, supplementary problems,
and preview problems.

Review problems ask the reader to complete a proof, to fill some gaps in a
proof, or to establish some necessary technical prerequisites. Problems of this kind
tend to be relatively straightforward. To be able to complete them is essential for
understanding.

Supplementary problems explore various topics in more depth and breadth.
Problems of this kind can be harder. They may use some general concepts which
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4 A. BARVINOK, LATTICE POINTS, POLYHEDRA, AND COMPLEXITY

are not formally introduced in the text, but which, nevertheless, are likely to be
familiar to the reader.

Preview problems address what is going to appear in the following lectures or
after the last lecture. The purpose of these problems is to make the reader prepared,
to the extent possible, for further developments.
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LECTURE 1
Inspirational Examples. Valuations

The theory we are about to describe is inspired by two simple well-known
formulas.

Our first inspiration comes from the formula for the sum of the finite geometric
series.

Example 1.

n
∑

m=0

xm =
1 − xn+1

1 − x
.

We observe that the long polynomial on the left hand side of the equation sums up
to a short rational function on the right hand side.

Geometrically, we do the following: we take the interval [0, n], for every integer
point m in the interval we write the monomial xm, and then take the sum over the
integer points in the interval, see Figure 1.

0

x

m

m

n

Figure 1. Integer points in the interval

We observe that the thus obtained “long” polynomial (it contains n + 1 mono-
mials) can be written as a “short” rational function (it is expressed in terms of only
4 monomials).

Naturally, we ask what happens if we replace the interval by something higher-
dimensional. Let us, for example, draw a big triangle in the plane, for each integer
point m = (m1, m2) in the triangle let us write the bivariate monomial xm =
xm1

1 xm2

2 , and then let us try to write the sum over all integer points in the triangle

5
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as some simple rational function in x1 and x2, see Figure 2.

1(

x

m

1 2m
2x1m

)2m,

Figure 2. Integer points in the triangle

If the triangle is really large, we get a really long polynomial this way. Later,
we will see how to write it as a short rational function.

Our second inspiration comes from the formula for the sum of the infinite
geometric series.

Example 2.
+∞
∑

m=0

xm =
1

1 − x
.

This formula makes sense because the series on the left hand side converges for all
|x| < 1 to the function on the right hand side. Similarly,

0
∑

m=−∞

xm =
1

1 − x−1
=

−x

1 − x

makes sense because the series converges for all |x| > 1.
How do we make sense of

+∞
∑

m=−∞

xm ?

This sum does not converge for any x, so we take the easiest route and say that
the sum is 0. This may look bizarre but there is some consistence in the way we
define the sums: the inclusion-exclusion principle seems to be respected. Indeed,
we get the set of all integers if we take all non-negative integers, add all non-positive
integers, and subtract 0, as it was double-counted:

+∞
∑

m=−∞

xm =

+∞
∑

m=0

xm +

0
∑

m=−∞

xm − x0.

This suspiciously agrees with

0 =
1

1 − x
+

−x

1 − x
− 1.
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Geometrically, the real line R1 is divided into two unbounded rays intersecting
in a point. For every region (the two rays, the line, and the point), we construct
a rational function so that the sum of xm over the lattice points in the region
converges to that rational function, if converges at all, and the inclusion-exclusion
principle is upheld, see Figure 3.

3
x x x x x x x
−3 −2 −1

0

0 1 2

Figure 3. The real line divided into two rays

Naturally, we ask what happens in higher dimensions. Let us draw three lines
in general position in the plane: each line splits the plane into two halfplanes, every
two lines form four angles, and there are various other regions (one triangle, the
whole plane, and some nameless unbounded polygonal regions), see Figure 4.

mx

Figure 4. The plane divided into regions

Among those regions, there are regions R where the sum
∑

m∈R∩Z2 xm con-
verges for some x, and there are regions where such a sum would never converge.
Can we assign a rational function to every region simultaneously so that each se-
ries converges to the corresponding rational function, if converges at all, and the
inclusion-exclusion principle is observed?

Later, we will see that such an assignment is indeed possible.

We need some definitions.

Definition 1. The action takes place in Euclidean space Rd, with coordinates
x = (x1, . . . , xd), the scalar product

〈x, y〉 =

d
∑

i=1

xiyi for x = (x1, . . . , xd) and y = (y1, . . . , yd),

and hence with the integer point lattice Zd ⊂ Rd, consisting of the points x with
integer coordinates. A polyhedron P ⊂ Rd is the set of solutions to finitely many
linear inequalities,

P =
{

x ∈ Rd :

d
∑

i=1

aijxj ≤ bi, i = 1, . . . , m
}

.
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If all aij , bi are integers, the polyhedron is rational. The main object in these notes
is the set P ∩ Zd of integer points in a rational polyhedron P .

What can we do with polyhedra? The intersection of finitely many (rational)
polyhedra is a (rational) polyhedron. The union doesn’t have to be but may happen
to be a polyhedron. To account for all possible relations among polyhedra, we
introduce the algebra of polyhedra.

Definition 2. For a set A ⊂ Rd, let [A] : Rd −→ R be the indicator of A. Thus
[A] is the function on Rd defined by

[A](x) =

{

1 if x ∈ A

0 if x /∈ A.

The algebra of polyhedra P(Rd) is the vector space spanned by the indicators [P ]
for all polyhedra P ⊂ Rd. The coefficient field does not matter much: it can be
Q, R, or C.

The algebra of rational polyhedra P(Qd) ⊂ P(Rd) is defined similarly as the
subspace spanned by the indicators [P ] of rational polyhedra P .

Why do we call P(Rd) and P(Qd) algebras? So far, we defined P(Rd), P(Qd)
as vector spaces. There is one obvious algebra structure on P(Rd) and P(Qd).
Namely, let f, g : Rd −→ R be functions from the algebras. Then we can define
their point-wise product h = fg by h(x) = f(x)g(x). It is immediate to check that
h indeed lies in the corresponding algebra. There is a less obvious though more
interesting algebra structure on P(Rd) and P(Qd), see Supplementary Problem 2
in Lecture 2.

Another observation: as long as d > 0, the indicators [P ] of (rational) polyhedra
P ⊂ Rd do not form a basis of P(Rd), P(Qd), because they are linearly dependent.
This is what makes the theory interesting.

Valuations

Let V be a vector space. A linear transformation P(Rd),P(Qd) −→ V is called
a valuation. Basically, this course is about the existence and properties of one
particular valuation P(Qd) −→ C(x1, . . . , xd), where C(x1, . . . , xd) is the space of
d-variate rational functions. We saw a glimpse of this valuation in Examples 1 and
2.

To warm up, we introduce one of the simplest and most useful valuations.

Theorem 1. There exists a unique valuation χ : P(Rd) −→ R, called the Euler
characteristic, such that χ([P ]) = 1 for any non-empty polyhedron P ⊂ Rd.

Sketch of proof. Uniqueness of χ, if it exists, is clear. Thus we have to establish
existence. We use induction on the dimension d. If d = 0, we define χ(f) = f(0)
and it works.

Suppose that d > 0. First, we prove the existence of χ on the subspace of
P(Rd) spanned by the indicators of bounded polyhedra, also known as polytopes.
Let us slice Rd into copies of Rd−1 by the value of the last coordinate of a point.
That is, we define Ht to be the hyperplane xd = t. Then Ht looks like Rd−1 and by
the induction hypothesis there is the Euler characteristic χt there. Given a function
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f ∈ P(Rd), we define its restriction ft onto Ht. One can easily check that if f is
a linear combination of indicators of bounded polyhedra in Rd then ft is a linear
combination of indicators of bounded polyhedra in Ht. Hence, we can define χt(ft).
Now, the key observation is that the one-sided limit

lim
ε−→+0

χt−ε(ft−ε)

always exists and that for all but finitely many t’s it is equal to χt(ft). In fact, if

f =
∑

i

αi[Pi],

then

lim
ε−→+0

χt−ε(ft−ε) = χt(ft)

unless t is the minimum value of the last coordinate on one of the polyhedra Pi in
the support of f , see Figure 5.

P

t

s

Figure 5. Example: for f = [P ], we have limε−→+0 χt−ε(ft−ε) = χt(ft) = 1
and 0 = limε−→+0 χs−ε(fs−ε) 6= 1 = χs(fs)

This allows us to define

χ(f) =
∑

t∈R

(

χt(ft) − lim
ε−→+0

χt−ε(ft−ε)
)

.

Although the sum is infinite, only finitely many terms are non-zero.
One can check that χ satisfies the required properties.
Now, we extend χ to the whole algebra P(Rd). Let us take Pt to be the cube

|xi| ≤ t for i = 1, . . . , d and let us define

χ(f) = lim
t−→+∞

χ(f · [Pt]) for f ∈ P(Rd).

�
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Problems

Review problems.

1. Let A1, . . . , An ⊂ Rd be sets. Prove the inclusion-exclusion formula

[

n
⋃

i=1

Ai

]

=
∑

I

(−1)|I|−1

[

⋂

i∈I

Ai

]

,

where the sum is taken over all non-empty subsets I ⊂ {1, . . . , n} and |I| is the
cardinality of I.

2. Fill in the gaps in the proof of Theorem 1.

3. Show that the Euler characteristic can be extended to the space spanned
by the indicators [A] of closed convex sets A ⊂ Rd so that χ([A]) = 1 if A is a
non-empty closed convex set (a set A is called convex if, for every pair of points
x, y ∈ A it contains the interval [x, y] = {αx + (1 − α)y : 0 ≤ α ≤ 1}).

A supplementary problem.

1. Let P ⊂ Rd be a bounded polyhedron with a non-empty interior intP .
Show that [int P ] ∈ P(Rd) and that χ([intP ]) = (−1)d. Deduce the Euler-
Poincaré formula: if P is a d-dimensional polytope (bounded polyhedron), then
∑d

k=0
(−1)kfk = 1, where fk is the number of k-dimensional faces of P (including

the polytope itself).

Preview problems.

1. Let P ⊂ Rd be a polyhedron and let T : Rd −→ Rk be a linear transforma-
tion. Prove that T (P ) is a polyhedron.

2. We know that whenever there is an Euler characteristic, there must be an
underlying cohomology theory. What is the underlying cohomology theory for the
Euler characteristic in Theorem 1?

One problem is that the Euler characteristic of Theorem 1 is not a topological
invariant: we have χ([A]) = 1 6= −1 = χ([B]), where A is a line and B is an
open interval. Hence the underlying cohomology theory must somehow distinguish
between bounded and unbounded sets.

Remarks

Theorem 1 and its proof is due to H. Hadwiger, see also Section I.7 of [Ba02] for
more detail.



LECTURE 2
Identities in the Algebra of Polyhedra

What can we do with polyhedra? One important observation is that the image
of a polyhedron under a linear transformation is a polyhedron.

Theorem 1. Let P ⊂ Rd be a polyhedron and let T : Rd −→ Rk be a linear
transformation. Then T (P ) ⊂ Rk is a polyhedron. Furthermore, if P is a rational
polyhedron and T is a rational linear transformation (that is, the matrix of T is
rational), then T (P ) is a rational polyhedron.

The crucial step in the proof. Let us consider the following particular case:
k = d−1 and T is the projection onto the first (d−1) coordinates: (x1, . . . , xd) 7−→
(x1, . . . , xd−1). Suppose that the polyhedron P is defined by a system of linear
inequalities:

d
∑

j=1

aijxj ≤ bi for i = 1, . . . , m.

Let us look at the coefficients of xd.
Let I+ = {i : aid > 0}, I− = {i : aid < 0}, and I0 = {i : aid = 0}. Then a

point y = (x1, . . . , xd−1) belongs to T (P ) if and only if

(1)

d−1
∑

j=1

aijxj ≤ bj for i ∈ I0

and there exists xd such that

(2)

xd ≤ bi

aid
−

d−1
∑

j=1

aij

aid
xj for i ∈ I+

xd ≥ bi

aid
−

d−1
∑

j=1

aij

aid
xj for i ∈ I−

Conditions (1) are some linear inequalities needed to describe T (P ), but not all
of them. We get the complete set of linear inequalities by majorizing every lower
bound by every upper bound in (2), see Figure 6:

bi1

ai1d
−

d−1
∑

j=1

ai1j

ai1d
xj ≥ bi2

ai2d
−

d−1
∑

j=1

ai2j

ai2d
xj for every pair i1 ∈ I+, i2 ∈ I−.

11
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Upper bounds

Lower bounds

dx

Figure 6. The interval for xd is obtained by majorizing every lower bound
by every upper bound

Thus we perform a step of the procedure known as the Fourier-Motzkin elimi-
nation. �

Linear transformations preserve linear relations among indicators of polyhedra.

Theorem 2. Let T : Rd −→ Rk be a linear transformation. Then there exists
a linear transformation T : P(Rd) −→ P(Rk) such that T [P ] = [T (P )] for every
polyhedron P ⊂ Rd.

Proof. Let us define the “kernel” G : Rd × Rk −→ R by

G(x, y) =

{

1 if T (x) = y

0 if T (x) 6= y.

Let us choose f ∈ P(Rd). We must define h ∈ P(Rk) such that T (f) = h. To this
end, for every y ∈ Rk, we define a function gy ∈ P(Rd) by gy(x) = G(x, y)f(x).
One can check that gy ∈ P(Rd). Hence we can apply the Euler characteristic χ to
gy. We let h(y) = χ(gy). Thus we got a function h : Rk −→ R. Next, one should
check that if f = [P ] then h = [T (P )]. It follows that if f ∈ P(Rd) then h ∈ P(Rk).
We conclude that T (f) = h defines the required linear transformation. �

We call G(x, y) the “kernel” to underline a certain similarity between our con-
struction and the standard construction of various integral operators between func-
tional spaces in analysis. In analysis, we often construct a linear transformation
which transforms a function f : X −→ R into a function h : Y −→ R by choosing an
appropriate kernel K(x, y) : X ×Y −→ R and defining h(y) =

∫

K(x, y)f(x) dµ(x)
for some measure µ on X . In polyhedral combinatorics, we can construct some
interesting linear operators A : P(Rd) −→ P(Rk) by choosing an appropriate “ker-
nel” K(x, y) : Rd × Rk −→ R and letting A(f) = h, where h(y) = χ(gy) for
gy(x) = K(x, y)f(x). The similarity is partially explained by the observation that
one can think of the Euler characteristic as a finitely-additive measure on Rd that
is a “combinatorialization” of the Lebesgue measure. In analysis, we want to know
how large is a given set and the Lebesgue measure tells us that. In polyhedral
combinatorics, we just want to know whether a given polyhedron is non-empty,
and the Euler characteristic tells that.
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It follows from Theorem 2 that whenever we have a linear relation
∑m

i=1
αi[Pi] =

0 among the indicator functions of polyhedra, the same relation
∑m

i=1
αi[T (Pi)] = 0

holds for their images under a linear transformation. This is obvious for invertible
transformations T but strarting to look less obvious for projections, see Figure 7
for a simple example.

C

A
D B

T

Figure 7. We have [ABC] = [ACD] + [CBD] − [CD] and [T (ABC)] =
[T (ACD)] + [T (CBD)] − [T (CD)]

Now we need to take a closer look at polyhedra. Some polyhedra have vertices,
some don’t.

Definition 1. Let P ⊂ Rd be a polyhedron. A point v ∈ P is called a vertex of
P if whenever v = (x + y)/2 for some x, y ∈ P , we must have x = y = v. If v is a
point in P , we define the tangent cone of P at v as follows:

co(P, v) =
{

x ∈ Rd : εx + (1 − ε)v ∈ P for all sufficiently small ε > 0
}

.

Figure 8 shows what tangent cones may look like.

C

A

B

C

A

B

Figure 8. A polyhedron and its tangent cones

Not all polyhedra have vertices. In fact, a non-empty polyhedron has a vertex
if and only if it does not contain a line.
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Definition 2. We say that a polyhedron P contains a line if there are points x
and y such that y 6= 0 and x + ty ∈ P for all t ∈ R. Finally, let P0(R

d) ⊂ P(Rd),
P0(Q

d) ⊂ P(Qd) be the subspace spanned by the indicators of (rational) polyhedra
that contain lines.

It turns out that modulo polyhedra with lines, every polyhedron is just the
sum of its tangent cones.

Theorem 3. Let P ⊂ Rd be a polyhedron. Then there is a g ∈ P0(R
d) such that

[P ] = g +
∑

v

[co(P, v)],

where the sum is taken over all vertices v of P . If P is a rational polytope then we
can choose g ∈ P0(Q

d).

A plausible argument. We don’t really prove this important theorem, although
we come very close. We start by showing that the theorem is not obviously false.

We notice that if P is non-empty and does not contain vertices then P contains
a line and hence we can choose g = [P ].

Suppose we have been sloppy and included in the sum not only all vertices v
of P but also some non-vertices v ∈ P . No harm done: if v ∈ P is a non-vertex
then co(P, v) contains a line and so we just have to adjust g. This shows that the
formula is robust enough.

Suppose that the theorem holds for some polyhedron P ⊂ Rd and let T : Rd −→
Rk be a sufficiently generic linear transformation. We claim that the theorem
holds for the image T (P ). Indeed, by Theorem 2 the transformation T gives rise
to the transformation T on the algebra of polyhedra. Let us apply T to both
sides of the identity. We have T [P ] = [T (P )] and T [co(P, v)] = [T (co(P, v))] =
[co(T (P ), T (v))]. We have to be somewhat careful with g: we know that g is a
linear combination of indicators of polyhedra with lines. If we are unlucky, the
kernel of T may “eat up” some of those lines and T (g) will not lie in P0(R

k).
This is the reason why we chose T to be “generic”. Thus if we prove the theorem
for some “model” polyhedra P , we can extend it (with some care) to polyhedra
obtained from P by linear transformations.

Now, we show that the result holds for a simplex, which we define as a compact
polyhedron ∆ ⊂ Rd that is the intersection of d + 1 sufficiently generic halfspaces
H1, . . . , Hd+1. We notice that [H1 ∪ . . . ∪ Hd+1] = [Rd] and expanding [H1 ∪ . . . ∪
Hd+1] by the inclusion-exclusion formula we represent [Rd] as the alternating sum
of the indicators [Hi1∩. . .∩Hik

] of intersections of halfspaces. All such intersections
contain lines except for the simplex ∆ = [H1 ∩ . . . ∩ Hd+1] itself (the intersection
of all d + 1 halfspaces) and the tangent cones [H1 ∩ . . .∩Hi−1 ∩Hi+1 ∩ . . .∩Hd+1]
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(the intersections of all but one halfspace) at the vertices of ∆, see Figure 9.

= + +

−− −

+

Figure 9. A triangle is the sum of the angles at its vertices minus the
halfplanes based on its sides plus the whole plane

It follows now that the result holds for all projections of simplices, that is for
polytopes (bounded polyhedra). To obtain the formula for a general polyhedron,
one needs some structural results about unbounded polyhedra, namely that every
unbounded polyhedron is the Minkowski sum of its recession cone and a polytope,
see Review Problem 11 and Supplementary Problem 3. �

Definition 3. Let A ⊂ Rd be a non-empty set. The set

A◦ =
{

y ∈ Rd : 〈x, y〉 ≤ 1 for all x ∈ A
}

is called the polar of A.

It is easy to see that A◦ is a non-empty closed convex set containing the origin.
The Bipolar Theorem asserts that (A◦)

◦
= A provided A is a closed convex set

containing the origin. One can show that if P is a (rational) polyhedron then P ◦

is a (rational) polyhedron, see Figure 10.

0 0

0 0

Figure 10. Some (bounded and unbounded) polyhedra and their polars

It is somewhat surprising that the polarity correspondence preserves linear
relations among the indicator functions of polyhedra.
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Theorem 4. There exists linear transformations D : P(Rd) −→ P(Rd), D :
P(Qd) −→ P(Qd), such that D[P ] = [P ◦] for every non-empty (rational) poly-
hedron P .

The idea of the proof. We define D as a limit of certain operators Dε. For ε > 0,
let us define the kernel Gε : Rd × Rd −→ R by

Gε(x, y) =

{

1 if 〈x, y〉 < 1 + ε

0 otherwise.

For f ∈ P(Rd), P(Qd) and y ∈ Rd, let gy,ε(x) = f(x)Gε(x, y). One can check
that gy,ε ∈ P(Rd),P(Qd), so we can apply the Euler characteristic χ to gy,ε. Let
us define hε = Dε(f) by hε(y) = χ(gy,ε). Finally, we define h = D(f) by h(y) =
limε−→0+ hε(y). One can check then that D satisfies the desired properties. �

It follows from Theorem 4 that whenever we have a linear identity
∑m

i=1
αi[Pi] =

0 among the indicator functions of polyhedra, we have the same identity
∑m

i=1
αi[P

◦
i ] =

0 for the indicator functions of their polars, see Figure 11.

_+=

_= +

o

o o

o

B DA

A B
D

C

C

0
0 0

0

0
0 0 0

Figure 11. We have [A] = [B] + [C] − [D] and [A◦] = [B◦] + [C◦] − [D◦]

An important feature of the polarity transform is that P ◦ contains a line if and
only if P lies in an affine hyperplane, that is, not full-dimensional. Continuing our
analogy with analysis, we can say that in the Euler characteristic based polyhedral
combinatorics, the polarity transform D plays the role akin to that of the Fourier
transform in the Lebesgue measure based analysis. An observation in support of
this statement can be found in Preview Problem 3.

Problems

Review problems.

1. Complete the proof of Theorem 1.

2. In Theorem 1, suppose that P ⊂ Rd is defined by m linear inequalities.
Estimate the number of inequalities needed to define T (P ).
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3. Check the proof of Theorem 2.

4. Let P ⊂ Rd be a polyhedron defined by m linear inequalities

d
∑

j=1

aijxj ≤ bi for i = 1, . . . , m.

Let x ∈ P be a point. We say that the inequality is active on x if equality holds at
x. Let ai = (ai1, . . . , aid) be the vector of coefficients of the i-th inequality. Prove
that v ∈ P is a vertex of P if and only if there are at least d inequalities active on
v such that their vectors form a basis of Rd.

5. Prove that a polyhedron has finitely many vertices, if any.

6. Let P be a rational polyhedron and let v ∈ P be a vertex. Prove that v has
rational coordinates.

7. Let P be a polyhedron and let v ∈ P be a point. Prove that co(P, v) is the
polyhedron defined by the inequalities of P that are active on v.

8. Prove that a non-empty polyhedron has a vertex if and only if it does not
contain lines.

9. Prove that v is a vertex of P if and only if co(P, v) does not contain lines.

10. Let P ⊂ Rd is a polyhedron, let v ∈ P be a point, let T : Rd −→ Rk be
a linear transformation, let Q = T (P ), and let u = T (v). Prove that co(Q, u) =
T (co(P, v)).

11. Let P ⊂ Rd be a non-empty (rational) polyhedron. Let us define the
recession cone KP by

KP =
{

x ∈ Rd : y + tx ∈ P for all y ∈ P and all t ≥ 0
}

.

Show that KP is a (rational) polyhedron.

12. Prove that a non-empty polyhedron P ⊂ Rd lies in an affine hyperplane if
and only if P ◦ contains a line.

Supplementary problems.

1. For sets A, B ⊂ Rd, we define their Minkowski sum A + B =
{

x + y : x ∈
A, y ∈ B

}

. Prove that the Minkowski sum of polyhedra is a polyhedron and that
the Minkowski sum of rational polyhedra is a rational polyhedron.

2. Prove that there exists a bilinear operation, called convolution, ? : P(Rd)×
P(Rd) −→ P(Rd) such that [P ] ? [Q] = [P + Q] for any two polyhedra P, Q ⊂ Rd.
This gives P(Rd) another (more interesting) commutative algebra structure. Note
that [0] plays the role of the identity, so f ? [0] = [0] ? f = f for all f ∈ P(Rd).

3. Let P ⊂ Rd be a non-empty polyhedron not containing lines and let Q be
the convex hull of the set of vertices of P . Prove that P can be represented as the
Minkowski sum P = Q + KP , where KP is the recession cone of P , cf. Review
Problem 11.

4. Using Problem 3 above, complete the proof of Theorem 3.

5. Suppose that P ⊂ Rd is a bounded polyhedron. Prove that [P ] is invertible
with respect to the convolution operation ? of Problem 2 above : there exists an
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f ∈ P(Rd) such that f ? [P ] = [0]. More precisely, if P is a bounded polyhedron
with a non-empty interior intP , we can choose f = (−1)d[− intP ] (that is, we take
the interior of P , reflect it about the origin, and take the indicator of the set we
got with the appropriate sign).

6. Let P ⊂ Rd be a polyhedron. We say that two points x, y ∈ P are equivalent,
if co(P, x) = co(P, y). An equivalence class of points in P is just an open face F ⊂ P .
For an x ∈ F , we denote co(P, x) by co(P, F ). Prove the following Gram-Brianchon
Theorem

[P ] =
∑

F

(−1)dim F [co(P, F )] ,

where the sum is taken over all non-empty faces F of P , including F = P .

7. Let P ⊂ Rd be a bounded polyhedron (polytope) containing the origin in
its interior. For a face F of P , let PF = conv(F, 0) be the convex hull of the face
F and the origin. Prove that

(−1)d−1[P ] =
∑

F

(−1)dim F [PF ],

where the sum is taken over all faces F 6= P of P , including the empty face (cf.
Supplementary Problem 1 to Lecture 1).

8. Prove that the polar of a (rational) polyhedron is a (rational polyhedron)
and that (A◦)

◦
= A if A is closed, convex, and contains 0.

9. Complete the proof of Theorem 4.

10. Show that if we apply the polarity transform D to both sides of the identity
in Problem 7 above, we get the Gram-Brianchon identity of Problem 6.

Preview problems.

1. A polyhedron K ⊂ Rd is called a (polyhedral) cone if 0 ∈ K and λx ∈ K
for all x ∈ K and all λ ≥ 0 (note that the tangent cone of Definition 1 is not
necessarily a cone in the sense of this definition, since the vertex of the tangent
cone is not necessarily the origin). Prove that if K is a cone then K◦ is a cone and
that (K◦)

◦
= K.

2. Let K1, K2 ⊂ Rd be polyhedral cones. Prove that [K1 ∩ K2]
◦ = [K1 + K2],

where “+” is the Minkowski sum, see Supplementary Problem 1.

3. Let D be the transform of Theorem 4 and let f1, f2 ∈ P(Rd) be linear
combinations of indicator functions of polyhedral cones. Prove that D(f1f2) =
D(f1) ? D(f2), where ? is the convolution operation from Supplementary Problem
2.

Remarks

For the Fourier-Motzkin elimination (Theorem 1), see Sections I.9 of [Ba02]
and Sections 1.2-1.3 of [Zi95]. A nice exposition of the Euler characteristic and the
theory of valuations is given in [KR97]. Much of the material of this lecture can
be found in [Ba02]: Section II.4-5 (vertices of polyhedra), Section IV.1 (polarity),
Section VIII.4 (tangent cones). Analogies between integral operators in the classical
analysis and valuations are drawn, for example, in [KP93].



LECTURE 3
Generating Functions and Cones. Continued Fractions

Now we turn to integer points. For an integer point m = (m1, . . . , md), we
introduce the monomial xm = xm1

1 · · ·xmd

d in d complex variables x = (x1, . . . , xd).

Given a set S ⊂ Rd, we consider the sum

f(S,x) =
∑

m∈S∩Zd

xm.

Our goal is to find a reasonably short expression for this sum as a rational function
in x. Our inspiration is the formula

+∞
∑

m=0

xm =
1

1 − x
for |x| < 1.

Here is an obvious multivariate generalization of the formula.

Example 1. Let Rd
+ be the non-negative orthant, that is the set of points with all

coordinates non-negative. We have

∑

m∈Rd

+
∩Zd

xm =

(

+∞
∑

m1=0

xm1

1

)

· · ·
(

+∞
∑

md=0

xmd

d

)

=

d
∏

i=1

1

1 − xi
provided |xi| < 1 for i = 1, . . . , d.

In general, we say that f(S,x) is defined by a particular rational function if
there is a non-empty open set U ⊂ Cd such that for all x ∈ U the defining series
for f(S,x) converges absolutely to that rational function and the convergence is
uniform on compact subsets of U . In all cases we encounter, only existence of such
an U , but not its precise shape will be of importance.

Our next step is less obvious. What if the orthant gets somewhat “skewed”?

Definition 1. Let u1, . . . , ud ∈ Zd be linearly independent integer vectors. The
simple rational cone generated by u1, . . . , ud is the set

K = K(u1, . . . , ud) =
{

d
∑

i=1

αiui : αi ≥ 0 for i = 1, . . . , d
}

.

19
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The fundamental parallelepiped of u1, . . . , ud is the set

Π = Π(u1, . . . , ud) =
{

d
∑

i=1

αiui : 0 ≤ αi < 1 for i = 1, . . . , d
}

.

Note that the parallelepiped is “semi-open”, see Figure 12.

1

1

u

u0 2

0 u2

u

Figure 12. A simple rational cone and its fundamental parallelepiped

Clearly, if we scale vectors u1, . . . , ud: ui := kiui for some positive integers ki,
the cone K will not change (although the parallelepiped Π will). This is all the
freedom we have in choosing u1, . . . , ud for a given K.

Let u∗
i , i = 1, . . . , d be the vectors defined by 〈ui, u

∗
j〉 = −δij . Then

K =
{

x : 〈x, u∗
i 〉 ≤ 0 for i = 1, . . . , d

}

,

from which it follows that simple rational cones are rational polyhedra.

Theorem 1. For a simple rational cone K = K(u1, . . . , ud), we have

f(K,x) =





∑

m∈Π∩Zd

xm





d
∏

i=1

1

1 − xui

.

Proof. The proof consists of the observation that every point m ∈ K ∩ Zd can be
uniquely written as m = m1 + m2, where m1 ∈ Π ∩ Zd and m2 is a non-negative
integer combination of u1, . . . , ud. Indeed, since u lies in the cone K, it can be
written in the form

m =
d
∑

i=1

αiui for some real numbers αi ≥ 0.

Let bαc denote the largest integer not exceeding α (a.k.a the integer part of α) and
let {α} = α − bαc (the fractional part of α). Then

m1 =

d
∑

i=1

{αi}ui and m2 =

d
∑

i=1

bαicui.
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To prove uniqueness, suppose that we have two decompositions m = m1 + m2 and
m = m′

1 + m′
2, where m1 and m2 are integer points from the parallelepiped Π and

m2 and m′
2 are non-negative integer combinations of u1, . . . , ud. Then we can write

m1 −m′
1 = m′

2 −m2, from which m1 −m′
1 is an integer combination of u1, . . . , ud.

However, since m1, m
′
1 ∈ Π, we should be able to write

m1 − m′
1 =

d
∑

i=1

βiui where − 1 < βi < 1 for i = 1, . . . , d.

Thus we must have βi = 0 and m1 = m′
1, m2 = m′

2.
It remains to show that there is some non-empty open set U ⊂ Cd of x for

which the series

f(K,x) =
∑

m∈K∩Zd

xm

converges absolutely and uniformly on compact subsets of U . Since u1, . . . , ud are
linearly independent, we can find a vector c = (c1, . . . , cd), such that 〈c, ui〉 < 0
for i = 1, . . . , d, where 〈x, y〉 = x1y1 + . . . + xdyd is the standard scalar product in
Rd. Let x0 = (ec1 , . . . , ecd). Then for all x in a sufficiently small neighborhood U

of x0, the series converges as desired. Since the product
∏d

i=1
(1 − xui)−1 encodes

the sum of xm over all m that are non-negative integer combinations of u1, . . . , ud

(cf. Example 1), the proof follows. �

Theorem 1 provides us with a finite formula for an infinite series, but there
is still something unsatisfactory about it. Namely, the sum over integer points in
the fundamental parallelepiped is not very explicit and, although finite, can be
quite large. However, although we can’t predict which integer points lie in the
parallelepiped, we can tell the number of such points exactly.

Theorem 2. The number of integer points in the fundamental parallelepiped is
equal to the volume of the parallelepiped.

Sketch of proof. Let Λ be the set of all integer combinations of u1, . . . , ud:

Λ =
{

d
∑

i=1

αiui : αi ∈ Z for i = 1, . . . , d
}

.

Let us consider all translates Π + u with u ∈ Λ. We claim that the translations
Π + u : u ∈ Λ cover Rd without overlapping. The proof can be extracted from the
proof of Theorem 1. Let us take a sufficiently large, regular looking region X ⊂ Rd

(say, a ball of a large radius), and let us count integer points in X . On one hand, we
can approximate the number of integer points in X by the volume volX of X . One
the other hand, the set is covered by roughly (volX)/(volΠ) translations of the
parallelepiped Π and each translation contains the same number of integer points.
Hence we must have |Π ∩ Zd| = volΠ. �
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For a simple illustration of Theorem 2, see Figure 13.

0

(

)1,3(

2,3)

Figure 13. The number of integer points in a fundamental parallelogram is
equal to the area of the parallelogram

This leads us to the following crucial definition.

Definition 2. Let u1, . . . , ud ∈ Zd be linearly independent vectors and let K be
the simple cone generated by u1, . . . , ud. We say that K is unimodular if the volume
of the fundamental parallelepiped Π is 1. Equivalently, K is unimodular if the origin
is the unique integer point in Π. Equivalently,

f(K,x) =
d
∏

i=1

1

1 − xui

.

One of our goals is to devise an efficient procedure of decomposing a given
simple cone into a certain combination of unimodular cones. The first non-trivial
case is d = 2 (every 1-dimensional cone is unimodular) and there such a procedure
has long been known.

Continued fractions

Let us choose a number a ∈ R. The following procedure produces what is called
the continued fraction expansion [a0; a1, . . . , an, . . . ] of a. First, we write

a = bac + {a} and let a0 = bac.

Now, if {a} = 0, we stop. Otherwise, 0 < {a} < 1, we let b = 1/{a}, so b > 1. We
write

b = bbc + {b} and let a1 = bbc.
If {b} = 0 we stop. Otherwise, we let new b := 1/{old b}, and continue. In the
end, we get the expansion

a = a0 +
1

a1 +
1

a2 +
1

. . .
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The expansion can be finite (if a is rational) or infinite (if a is irrational). We define
the k-th convergent [a0; a1, . . . , ak] by cutting the expansion at ak. For example,
the 4-th convergent [a0; a2, a3, a4] is

a = a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4.

As an example, let us compute the continued fractions expansion of a = 164/31:

164

31
= 5 +

9

31
= 5 +

1

3 +
4

9

= 5 +
1

3 +
1

2 +
1

4.

Hence 164/31 = [5; 3, 2, 4]. Now we compute the convergents:

[5; 3, 2] = 5 +
1

3 +
1

2

=
37

7
, [5; 3] = 5 +

1

3
=

16

3
, [5] =

5

1
.

Computing f(K,x) for 2-dimensional cones

Continued fractions can be applied to obtain short formulas for f(K,x), where
K ⊂ R2 is a simple cone. Instead of developing a comprehensive theory, we give
one computational example.

Let K ⊂ R2 be the cone generated by the vectors (1, 0) and (31, 164). The
volume of the fundamental parallelepiped is 164, so the formula for f(K,x) provided
by Theorem 1 would contain a sum of 164 monomials. We will find a shorter
formula, and, moreover, will compute it by hand.

First, we compute the continued fraction expansion of 164/31 = [5; 3, 2, 4] and
the convergents [5] = 5/1, [5; 3] = 16/3, [5; 3, 2] = 37/7, cf. the above example.

Now, we do some “surgery” on cones. Let us consider the following cones, given
by their generators

K0 generated by (1, 0) and (0, 1);

K1 generated by (1, 0) and (1, 5);

K2 generated by (1, 0) and (3, 16);

K3 generated by (1, 0) and (7, 37); and, finally,

K4 generated by (1, 0) and (31, 164).

We observe that K0 is a unimodular cone with

f(K0,x) =
1

(1 − x1)(1 − x2)
,

while we are trying to compute f(K4,x).
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The crucial observation is that to pass from Ki to Ki+1 we have either to “cut”
from Ki a unimodular cone (if i is even) or to “paste” to Ki a unimodular cone (i
is odd), see Figure 14.

paste

cut

paste

cut

Figure 14. Cutting and pasting unimodular cones

Hence, starting with K0, we

cut the unimodular cone generated by (0, 1) and (1, 5);

paste the unimodular cone generated by (1, 5) and (3, 16);

cut the unimodular cone generated by (3, 16) and (7, 37);

paste the unimodular cone generated by (7, 37) and (31, 164)

to finally get K4. Taking into account “boundary effects” (when we cut and paste,
some points on the boundary get double-counted), which, luckily, cancel each other,
we get:

f(K,x) =
1

(1 − x1)(1 − x2)
− 1

(1 − x2)(1 − x1x5
2)

+
1

1 − x1x5
2

+
1

(1 − x1x5
2)(1 − x3

1x
16
2 )

− 1

1 − x1x5
2

− 1

(1 − x3
1x

16
2 )(1 − x7

1x
37
2 )

+
1

1 − x7
1x

37
2

+
1

(1 − x7
1x

37
2 )(1 − x31

1 x164
2 )

− 1

1 − x7
1x

37
2

,

so finally,

f(K,x) =
1

(1 − x1)(1 − x2)
− 1

(1 − x2)(1 − x1x5
2)

+
1

(1 − x1x5
2)(1 − x3

1x
16
2 )

− 1

(1 − x3
1x

16
2 )(1 − x7

1x
37
2 )

+
1

(1 − x7
1x

37
2 )(1 − x31

1 x164
2 )

.

The formula is reasonably short.
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Given an arbitrary 2-dimensional rational cone generated by u1, u2 ∈ Z2, we can
always change the coordinates by applying a linear transformation which preserves
Z2 so that u2 becomes equal to (1, 0). Suppose that u1 = (q, p) for integers p and
q > 0. To compute the generating function f(K,x), we compute the continued
fraction expansion of p/q and obtain K by cutting and pasting the unimodular
cones computed from the convergents of p/q. If the k-th convergent is pk/qk, we
cut or paste, depending on the parity of k > 1, the cone generated by (qk, pk) and
(qk−1, pk−1), which is always unimodular, see Review Problems 4 and 5.

The computational complexity

Let K ⊂ R2 be the cone generated by u1 = (1, 0) and u2 = (q, p) as above. The
fundamental parallelepiped of K contains |p| points, so if we compute f(K,x) by
the formula of Theorem 1, the resulting rational function will contain |p| terms. If,
instead, we use the continued fractions method, we get an expression for f(K,x)
containing about log(min(|p|, |q|)+O(1) terms. For large |p|, the difference is quite
significant. Looking more closely, we observe that to define the cone K, that is,
to write the coordinates of its generators, we need about log |p| + log |q| + O(1)
bits (or digits) since to write an integer a we need about log |a| + O(1) bits (or
digits). Thus we say that the input size of the problem of computing f(K,x)
is about log |p| + log |q| + O(1). The number of operations required to compute
f(K,x) via continued fractions is about O(log2 |p| + log2 |q| + 1), that is, bounded
by a polynomial in the input size. In contrast, the number operations required to
compute f(K,x) via Theorem 1 (and even to write down the answer) is exponential
in the input size of K. In Lecture 5, for any dimension d (fixed in advance), we
present a polynomial time algorithm, which, given a rational cone K ⊂ Rd as an
input, computes f(K,x) as a rational function.

Problems

Review problems.

1. Check the proof of Theorem 1.

2. Make the proof of Theorem 2 rigorous.

3. Let K be the 2-dimensional simple cone generated by u1 = (1, 0) and
u2 = (1, n) for some positive integer n. Compute f(K,x).

4. Let [a0; a1, . . . , an . . . ] be the continued fraction expansion of a real number
a and let pk/qk = [a0; a1, . . . , ak] be the k-th convergent (we assume that pk and
qk are comprime). Prove that for k ≥ 2

pk = akpk−1 + pk−2 and qk = akqk−1 + qk−2.

Deduce that
pk−1qk − pkqk−1 = (−1)k−1 for k ≥ 0.

5. Justify the procedure of computing f(K,x) for the cone K generated by
(1, 0) and (q, p) via continued fractions.

6. Let K ⊂ Rd be the set defined by

K =
{

x ∈ Rd : 〈ui, x〉 ≤ 0 for i = 1, . . . , d
}
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for some linearly independent vectors u1, . . . , ud ∈ Zd. Prove that K is a simple
rational cone.

7. Let u1, . . . , ud ∈ Zd be linearly independent vectors and let u∗
1, . . . , u∗

d be
defined by 〈ui, uj〉 = −δij . Prove that u∗

1, . . . , u∗
d ∈ Zd if and only if the cone K

generated by u1, . . . , ud is unimodular (we assume that u1, . . . , ud are the minimal
generators of K).

Supplementary problems.

1. Let u1, . . . , ud be linearly independent vectors in Zd. Let K be the cone
generated by u1, . . . , ud and let

intK =
{

d
∑

i=1

αiui : αi > 0 for i = 1, . . . , d
}

be the interior of K. Let

Π =
{

d
∑

i=1

αiui : 0 < αi ≤ 1 for i = 1, . . . , d
}

.

Prove that

f(intK,x) =





∑

m∈Π∩Zd

xm





d
∏

i=1

1

1 − xui

.

Deduce the reciprocity relation f(intK,x−1) = (−1)df(K,x).

2. Deduce from Theorem 2 the following Pick’s Theorem: if P ⊂ R2 is a convex
polygon with integer vertices and non-empty interior, then the number of integer
points in P is equal to the area of P plus half of the number of integer points on
the boundary of P plus 1, see Figure 15.

Figure 15. The number of integer points in the triangle (8) is equal to
the area of the triangle (5) plus half of the number of integer points on the
boundary (2) plus 1

Preview problems.

1. Let K ⊂ Rd be a unimodular cone generated by integer vectors u1, . . . , ud

and let K + v be the translation of K by a rational vector v ∈ Qd. Prove that

f(K + v,x) = xw
d
∏

i=1

1

1 − xui

with w =

d
∑

i=1

d〈v, u∗
i 〉eui,

where u∗
1, . . . , u∗

d are defined by 〈u∗
i , uj〉 = δij .

2. Construct an efficient (polynomial time) algorithm to sample a random
integer point in a given fundamental parallelepiped Π from the uniform distribution
on Π ∩ Zd (the dimension d needs not to be fixed in advance).
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Remarks

For generating functions and rational cones, see Section 4.6 of [St97] and Section
VIII.1 of [Ba02]. A classical reference for continued fractions is [Kh97]. For the
theory of computational complexity, see [Pa94].





LECTURE 4
Rational Polyhedra and Rational Functions

Let P ⊂ Rd be a rational polyhedron. Our goal is to understand the generating
function

f(P,x) =
∑

m∈P∩Zd

xm.

Previously, we discussed what happens if P = K is a simple rational cone. Step by
step, we go to larger and larger classes of polyhedra.

Definition 1. A rational polyhedron K ⊂ Rd is called a rational cone provided
0 ∈ K and λx ∈ K for every x ∈ K and every λ ≥ 0. Equivalently, K is a
rational cone if K can be defined by a system of finitely many homogeneous linear
inequalities with integer coefficients:

K =
{

x :
d
∑

j=1

aijxj ≤ 0 for i = 1, . . . , m
}

.

If 0 is a vertex of K, the cone is called pointed.

The first real difference between the concept of a rational cone and that of a
simple rational cone transpires at d = 3. While simple rational cones in Rd are
defined by exactly d inequalities, non-simple rational cones may require typically
more or sometimes fewer inequalities.

Theorem 1. Let K ⊂ Rd be a pointed rational cone. Then f(K,x) is a rational
function in x of the type

f(K,x) =
n
∑

i=1

pi(x)

(1 − xui1) · · · (1 − xuid)
,

where pi(x) are Laurent polynomials in x and uij ∈ Zd are non-zero vectors.

A plausible argument. Since 0 is a vertex of K, there is a vector c ∈ Rd,
c = (c1, . . . , cd) such that 〈c, x〉 < 0 for all x ∈ K \ {0}. Now, for any x from a
sufficiently small neighborhood U of x0 = (ec1 , . . . , ecd) the series

∑

m∈K∩Zd xm

converges absolutely and uniformly on compact subsets of U . It seems intuitively
obvious and indeed correct that K can be cut into simple rational cones, so we

29
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can deduce the formula for f(K,x) from Theorem 1, Lecture 3, and the inclusion-
exclusion formula. It takes some time though to make the proof rigorous, cf. Figure
16. �

−

0

0 0 0

=

+

Figure 16. Example: The indicator of a cone with a square base can be
written as the sum of the indicators of cones with triangular bases minus the
indicator of a flat cone based on the interval

Next, we consider an arbitrary rational polyhedron with a vertex.

Theorem 2. Let P ⊂ Rd be a rational polyhedron with a vertex (equivalently, a
non-empty rational polyhedron without lines). Then f(P,x) is a rational function
of the type

f(P,x) =

n
∑

i=1

pi(x)

(1 − xui1 ) · · · (1 − xuid)
,

where pi(x) are Laurent polynomials in x and uij ∈ Zd are non-zero vectors.

Sketch of proof. The idea is to consider P as a section of a pointed rational cone
K ⊂ Rd+1. We think of Rd as the affine hyperplane xd+1 = 1 in Rd+1. Given the
inequalities defining P

d
∑

j=1

aijxj ≤ bi for i = 1, . . . , m,

we define K by the inequalities

d
∑

j=1

aijxj − bixd+1 ≤ 0, xd+1 ≥ 0.

Clearly, K is a rational cone and P is the section of K by the flat xd+1 = 1, cf.
Figure 17.

One can also prove that K is pointed via the following chain of implications:
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P contains no lines =⇒ K contains no lines =⇒ K is pointed.

P
K

P

0

Figure 17. Representing a d-dimensional polyhedron P as a hyperplane
section of a (d + 1)-dimensional cone K

Finally, we obtain f(P,x) by differentiating with respect to xd+1:

f(P,x) =
∂

∂xd+1

f(K,x) evaluated at xd+1 = 0.

�

Suppose now that P is a rational polyhedron with lines. In this case, the
series

∑

m∈P∩Zd xm does not converge anywhere. As we hinted in the introductory
examples of Lecture 1, we want to define f(P,x) ≡ 0 in this case. Quite surprisingly,
this naive solution works just fine. The following remarkable result was proved by J.
Lawrence, and, independently, by A. Khovanski and A. Pukhlikov in early 1990’s.

Theorem 3. There exists a map

F : P(Qd) −→ C(x)

from the algebra of rational polyhedra to the ring of rational functions in d variables
x = (x1, . . . , xd) such that

1. The map F is a valuation, that is, a linear transformation,
2. If P ⊂ Rd is a rational polyhedron without lines then F [P ] = f(P,x) is the

rational function such that

f(P,x) =
∑

m∈P∩Zd

xm

provided the series converges absolutely;
3. If P ⊂ Rd is a polyhedron containing a line then F [P ] = 0.

Sketch of proof. We know how to define F on the indicators [P ] of rational
polyhedra P without lines, as in Part (2) of the theorem. Our proof consists of two
steps:

the first step is to show that F can be extended to a valuation on P(Qd);
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the second step is to show that once we extended F to a valuation, we neces-
sarily have F [P ] = 0 for rational polyhedra P with lines.

It is clear how we should extend F onto polyhedra with lines (it is not yet
clear that we can). Any rational polyhedron P can be cut into rational polyhedral
pieces Pi without lines, so we should compute F [P ] from F [Pi] = f(Pi,x) via the
inclusion-exclusion formula. The problem is, of course, to show that this extension
is not self-contradictory. This, in turn, reduces to proving that whenever we have
a linear dependence

(1)

n
∑

i=1

αi[Pi] = 0

of indicators of rational polyhedra Pi without lines, we must have the same linear
dependence

(2)

n
∑

i=1

αif(Pi,x) = 0

of their generating functions. Suppose for a moment that in (1) there exists a non-
empty open set U ⊂ Cd such that for x ∈ U all the series

∑

m∈Pi∩Zd xm converge

absolutely to f(Pi,x). Then (2) follows by a standard argument from analysis.
The problem is that such an U , same for all polyhedra Pi in (1), might not exist.
To handle this difficulty, we break the global identity (1) into small “local” pieces,
prove (2) for every such piece and then “glue” the global identity (2) from the local
pieces.

For a non-empty subset I ⊂ {1, . . . , n}, let

PI =
⋂

i∈I

Pi.

Clearly, PI are rational polyhedra without lines, possibly empty.
From the inclusion-exclusion formula, we have

[

n
⋃

i=1

Pi

]

=
∑

I

(−1)|I|−1 [PI ] .

Multiplying both sides by [Pi], we get the formula

[Pi] =
∑

I

(−1)|I|−1
[

PI∪{i}

]

.

The crucial observation is that Pi is a rational polyhedron without lines and that
PI∪{i} are rational polyhedral pieces of Pi. Therefore, there is a non-empty open

set U ⊂ Cd such that for all x ∈ U all the series defining f(Pi,x) and f(PI∪{i},x)
converge and so we have the identity

(3) f(Pi,x) =
∑

I

(−1)|I|−1f(PI∪{i},x).
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Next, multiplying (1) by [PI ], we get

n
∑

i=1

αi[PI∪{i}] = 0.

Again, all PI∪{i} are rational polyhedral pieces of a rational polyhedron Pi without

lines, and, since we can find a single domain U ⊂ Cd for which all the relevant
series converge, we get

(4)

n
∑

i=1

αif(PI∪{i},x) = 0.

From (4) and (3) we get (2). This completes the first step of the proof.
Thus we are able to extend F to a valuation on P(Qd). It remains to prove

Part (3) of the Theorem. One can show that if P is a rational polyhedron with
lines, then there exists a non-zero m ∈ Zd such that P + m = P (there is a non-
zero integer translation of P which maps P onto itself). On the other hand, from
elementary analysis we deduce that we must have f(P +m,x) = xmf(P,x) for any
rational polyhedron P without lines. By linearity, F [P + m] = xmF [P ] for any
rational polyhedron P . Hence, if P + m = P , we must have F [P ] = xmF [P ], from
which F [P ] = 0. �

Suppose that P ⊂ Rd is a rational polyhedron without lines (maybe even
bounded) and that we want to compute a short formula for the rational generating
function f(P,x). Theorem 3 allows us to employ various identities in the algebra
P(Qd) of rational polyhedra, including those that involve polyhedra with lines. In
particular, we get the following result, first obtained by M. Brion in 1988.

Theorem 4. Let P ⊂ Rd be a rational polyhedron with vertices. Then

f(P,x) =
∑

v

f
(

co(P, v),x
)

,

where the sum is taken over all vertices v of P and co(P, v) is the tangent cone of
P at v.

Proof. The proof follows by Theorem 3 of this lecture and Theorem 3 of Lecture
2. �

Note that the tangent cone co(P, v) is not a rational cone per se, but a rational
translation of a rational cone.

Example 1. Let d = 1 and let P be the interval [0, n] ⊂ R1 for some positive
integer n. Then P is a rational polyhedron with the vertices at 0 and n, see
Figure 18. The tangent cone co(P, 0) at 0 is the ray [0, +∞) and the corresponding
generating function is

+∞
∑

m=0

xm =
1

1 − x
.
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The tangent cone co(P, n) at n is the ray (−∞, n] and the corresponding generating
function is

n
∑

m=−∞

xm =
xn

1 − x−1
=

−xn+1

1 − x
.

Note that there is not a single value of x for which both series converge. Never-
theless, Theorem 4 predicts that the sum of the two functions gives the generating
function for P :

n
∑

m=0

xm =
1

1 − x
− xn+1

1 − x
,

which is indeed the case.

n

0

0 n

Figure 18. An interval and its tangent cones

Problems

Review problems.

1. Complete the proof of Theorem 2.

2. Let P ⊂ Rd be a rational polyhedron with a line. Prove that there exists a
non-zero vector m ∈ Zd such that P + m = P .

3. Complete the proof of Theorem 3.

4. Check Theorem 4 for the triangle in the plane with the vertices (0, 0), (0, 1),
and (1, 0).

A supplementary problem.

1. Let K ⊂ Rd be a pointed rational cone with non-empty interior intK. Prove
the reciprocity relation f(intK,x−1) = (−1)df(K,x).

Preview problems

1. Prove that the polar of a unimodular cone is a unimodular cone.

2. Let K ⊂ R2 be the cone generated by u1 = (1, 0) and u2 = (q, p) some
positive integer p and q. Compare the following two ways of computing f(K,x).
The first way is the continued fractions method of Lecture 3. The second way is as
follows: consider the polar K◦ (check that K◦ is the cone generated by (−p, q) and
(0,−1)). Represent [K◦] as a linear combination of the indicators of unimodular
cones using the continued fractions method. Apply Theorem 4 of Lecture 1 to
obtain a unimodular decomposition of K = (K◦)

◦
. Compute f(K,x) from that

decomposition. What kind of identities do we get for f(K,x)?

This question was asked by one of the attendees.
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Remarks

Theorem 3 is proved in [La91] and, independently, in [KP92]. The first proof
of Theorem 4 [Br88] uses algebraic geometry. For the material of this lecture,
see Sections VIII.3–4 of [Ba02] (Theorems 3 and 4) and Section 4.6 of [St97]
(generating functions for rational cones and the reciprocity relation).





LECTURE 5
Computing Generating Functions Fast

We discuss how to compute the generating function f(P,x) fast, but before we
do that, we discuss why we want to compute it and what fast means.

Why do we need generating functions

Let P ⊂ Rd be a bounded rational polyhedron (rational polytope). For a variety
of reasons, we need to compute the number |P ∩ Zd| of integer points in P (the
counting problem). If we are able to compute the generating function

f(P,x) =
∑

m∈Zd

xm,

which is just a Laurent polynomial in x, we can get the number of integer points
|P ∩Zd| by substituting x = (1, . . . , 1). Our technique allows us to compute f(P,x)
as a reasonably short rational function of the type

f(P,x) =
∑

i

pi(x)

(1 − xui1 ) · · · (1 − xuid)
,

where pi(x) are Laurent polynomials in x. This seems to pose a little problem since
x = (1, . . . , 1) is a pole of every fraction. Nevertheless, the poles cancel each other,
as in the model example

n
∑

m=0

xm =
1

1 − x
− xn+1

1 − x
.

We deal with singularities by approaching the point (1, . . . , 1) via some curve
and computing the appropriate limit. One of the standard choices is the curve
x(t) = (etc1 , . . . , etcd), where c = (c1, . . . , cd) is a sufficiently generic vector: we
need 〈c, uij〉 6= 0 for all i, j. Then x(0) = (1, . . . , 1) and the limit f (P,x(t)) as
t −→ 0 can be computed by using the standard analysis technique.

Generating functions help to solve integer programming problems, that is the
problems of optimizing a given linear function on the set P ∩ Zd of integer points
in a given rational polytope. In short, generating functions f(P,x) encode all the
information about the set of integer points in P in a compact form. One remarkable
fact is that to find a short formula for f(P,x) for a bounded polyhedron, we employ
the full power of the algebraP(Qd) and identities in the algebra involving unbounded
polyhedra and even polyhedra with lines (Theorems 3 and 4 of Lecture 4).

37
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What “fast” and “short” means

We mentioned more than once that we want to compute the generating function
f(P,x) “fast” and that we want it in a “reasonably short” form. The exact meaning
of these words is understood through the theory of computational complexity.

The polyhedron P is defined by a system of linear inequalities

d
∑

j=1

aijxj ≤ bi, i = 1, . . . , n.

The input size of P is the number of bits needed to write down the inequalities,
assuming that aij and bi are integers written in the binary system. For example, to
write an integer a, we need about log |a|+O(1) bits. Thus we say that the algorithm
for computing f(P,x) is reasonably fast and the resulting formula is reasonably
short if the time we need to compute f(P,x) and the space we need to write it
down grows only modestly when the input size of P grows. More precisely, we say
that we have a polynomial time algorithm for a particular class of rational polyhedra
if there is a polynomial poly such that the running time of the algorithm on every
polyhedron P from the class does not exceed poly(input size of P ). One example
of a polynomial time algorithm is provided by the continued fraction method for
computing f(K,x) where K is a 2-dimensional rational cone, see Lecture 3.

It is probably hopeless to search for a polynomial time algorithm in the class
of all rational polyhedra. However, once the dimension d is fixed such algorithms
exist.

Theorem 1. Let us fix d. Then there exists a polynomial time algorithm, which,
given a rational polyhedron P ⊂ Rd, computes the generating function f(P,x) in
the form

f(P,x) =
∑

i

αi
xvi

(1 − xui1) · · · (1 − xuid)
,

where αi ∈ {−1, 1}, vi ∈ Zd, and uij ∈ Zd \ {0} for all i, j.

Since the running time of the algorithm includes the time needed to write down
the output, the space needed to write down f(P,x) is also bounded by a polynomial
in the input size.

There exist several versions of the main algorithm behind Theorem 1. Different
versions have different advantages under different circumstances. Moreover, the
algorithm of Theorem 1 appears to be practical. It has been implemented (in fact,
by at least two independent groups). The main procedure behind Theorem 1 is a
certain unimodular cone decomposition. We sketch it below.

Preliminaries

The main result we need is Minkowski’s Convex Body Theorem. Let A ⊂ Rd be a
set, such that

A is convex, that is, for every two points x, y ∈ A, the interval [x, y] =
{

αx +

(1 − α)y : 0 ≤ α ≤ 1
}

also lies in A;

A is symmetric about the origin, that is, for every x ∈ A, the point −x also
lies in A;
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A has a sufficiently large volume: volA > 2d.

Moreover, if A is compact, we may assume that volA ≥ 2d.

Minkowski’s Convex Body Theorem asserts that A necessarily contains a non–
zero integer point. Here is the idea of the proof: consider X =

{

x/2 : x ∈ A
}

, so

that volX > 1. Consider the set of all integer translates X + u : u ∈ Zd. Argue
that some two different translates must overlap: (X + u1) ∩ (X + u2) 6= ∅. Deduce
that there is a non-zero lattice point in A.

If A is a rational polyhedron, then such a non-zero integer point in A can be
found efficiently, though we don’t discuss how.

The unimodular decomposition of a cone

Let K ⊂ Rd be a simple rational cone generated by linearly independent vectors
u1, . . . , ud ∈ Zd. Our goal is to construct unimodular cones Ki such that

[K] =
∑

i

αi[Ki] + indicators of lower-dimensional cones

and αi ∈ {−1, 1}. The algorithm runs in polynomial time if the dimension d fixed.
Let Π be the fundamental parallelepiped of K. Then volΠ is a positive integer

and volΠ = 1 if and only if K is unimodular. Let us call volΠ the index of K and
denote it indK. Thus indK measures how far is K from being unimodular. We
will iterate a certain procedure which gradually reduces the index of K.

Let

A =
{

d
∑

i=1

αiui : |αi| ≤ (ind K)
−1/d

}

.

Then volA = 2d and by Minkowski’s Convex Body Theorem there is a non-zero
point v ∈ A ∩ Zd, cf. Figure 19.

0

v

u

K

u

2

1
A

Figure 19. Finding the point

As we mentioned, we can find this point efficiently if the dimension d is fixed.
For i = 1, . . . , d, let Ki be the cone generated by u1, . . . , ui−1, v, ui+1, . . . , ud.

Then

indKi ≤ (indK)
d−1

d .
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Let αi = 1 or αi = −1 depending on whether the orientations of the bases
u1, . . . , ui−1, v, ui+1, . . . , ud and u1, . . . , ud are the same or the opposite. Then

[K] =

d
∑

i=1

αi[Ki] + indicators of lower-dimensional cones,

see Figure 20.

− +=

0

v

0 u
1

u
2

v
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1 0

v

u
2

0

2
u

Figure 20. Writing the cone as a linear combination of cones with smaller
indices

Now we iterate the procedure. After k iterations, we get dk cones Ki with

ind Ki ≤ (indK)(
d−1

d )
k

.

In other words, the number of cones grows exponentially in the number k of it-
erations while the indices of the cones decrease doubly exponentially in k. It
follows that when d is fixed, to obtain a unimodular decomposition, we need
k = O(log log(indK)) iterations, which results in a polynomial time algorithm.

There are certain similarities between the described procedure and the unimod-
ular decomposition obtained from the continued fractions method in dimension 2.
There are differences, too. In the method just described, there is a certain flexibility
in choosing vector v, while the continued fractions method is quite rigid. This is, of
course, due to the fact that we know much more about integer points in dimension
2 than in higher dimensions. On the other hand, there is a version of our algorithm
that reduces to the continued fractions method in dimension 2.

Polarity and discarding lower-dimensional cones

When we apply the procedure described above, there is an apparent nuisance
of dealing with lower-dimensional cones. However, there is a certain trick which
allows us simply to forget about them.

Let K ⊂ Rd be a simple rational cone. Let

K◦ =
{

x ∈ Rd : 〈x, y〉 ≤ 0 for all y ∈ K
}

be the polar of K, see Lecture 2. It is not hard to prove that K◦ is a simple rational
cone, that K◦ is unimodular if and only if K is unimodular, and that (K◦)◦ = K.
Thus we modify the above procedure as follows.

Given a simple rational cone K, we compute the polar K◦. Then we apply the
unimodular decomposition and get

[K◦] =
∑

i

αi[Ki] + indicators of lower-dimensional cones,
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where Ki are unimodular cones. Next, we compute K◦
i and observe that

[K] =
∑

i

αi[K
◦
i ] + indicators of cones with lines,

see Theorem 4 and Review Problem 14 of Lecture 1.
By Theorem 3 of Lecture 4,

f(K,x) =
∑

i

αif(K◦
i ,x),

since we can ignore polyhedra with lines.

Problems

Review problems

1. Check that the procedure of computing f(K,x) for a simple rational cone
K ⊂ R2 via continued fractions (see Lecture 3) indeed runs in polynomial time.

2. Prove Minkowski’s Convex Body Theorem.

3. Check that the algorithm for the unimodular decomposition of a cone indeed
works.

4. Let K ⊂ Rd be a unimodular cone. Prove that K◦ is a unimodular cone.

Supplementary problems.

1. Let a1 and a2 be positive coprime integers and let S ⊂ Z be the set of all
non-negative integer combinations of a1 and a2. Prove that

∑

m∈S

xm =
1 − xa1a2

(1 − xa1)(1 − xa2)
.

2. Let a1, a2 and a3 be positive comprime integers and let S ⊂ Z be the set of
all non-negative integer combinations of a1, a2 and a3. Prove that

∑

m∈S

=
1 − xb1 − xb2 − xb3 + xb4 + xb5

(1 − xa1)(1 − xa2 )(1 − xa3)
,

for some, not necessarily distinct, integers bi = bi(a1, a2, a3), i = 1, 2, 3, 4, 5.

3. Let a1, . . . , an ∈ Zd
+ be some integer vectors with non-negative coordinates.

Let S ⊂ Zd
+ be the set of all non-negative integer combinations of a1, . . . , an. Prove

that the series
∑

m∈S

xm where x = (x1, . . . , xd)

converges for |xi| < 1, i = 1, . . . , d, to a rational function of x.
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Concluding remarks

The algorithmic theory of counting lattice points in polyhedra is discussed in
[BP99]; some of the algorithms suggested there are implemented, see [L+04] and
[V+04]. For other algorithmic questions concerning lattice points, see [G+93]. For
Minkowski’s Theorems and other topics in the geometry of numbers, see [GL87].

We conclude these lectures by discussing various related topics and open ques-
tions.

Something curvilinear? Is it possible to extend the developed theory onto
something non-polyhedral, such as Euclidean balls? Probably not, as it appears
to be in the realm of totally different forces, more akin to theta functions than to
rational functions. For example, let

B =
{

(x1, . . . , x4) :
4
∑

i=1

x2
i ≤ n

}

be the standard Euclidean ball of radius
√

n in dimension 4. Suppose for a moment
that we can efficiently enumerate integer points in B. Then we can count integer
points on the sphere x2

1 + x2
2 + x2

3 + x2
4 = n. However, the number of such points,

that is, the number of ways to represent n as a sum of four squares of integers, by
Jacobi’s formula is equal to

8
∑

4-p|n

p

(in words: eight times the sum of the divisors of n that are not divisible by 4). Thus
we gain some insight into divisors of n, and, pushing it a bit further, we can come
up with an efficient algorithm for factoring integers, see [B+86] and [Dy91]. The
existence of such an algorithm is not entirely impossible, but somewhat doubtful.

Irrational polyhedra? How can we enumerate integer points in irrational poly-
hedra? There are some obvious difficulties with generating functions. Consider, for
example, a cone K ⊂ R2 defined by the inequalities x1 ≥ 0 and x2 ≤

√
2x1. Just

as before, we can write the generating function

f(K,x) =
∑

m∈K∩Z2

xm.

The problem is that f(K,x) is no longer a rational function in x. To build an
interesting theory, we would like to extend f(K,x) analytically far beyond the
region of convergence of the defining series, and it is not clear how to do that.

There is a little trick, however, which allows us to incorporate irrational poly-
hedra P to some extent. Let us first change the coordinates and consider the
exponential sum:

F (P ; c) =
∑

m∈P∩Zd

e〈c,m〉,

where c = (c1, . . . , cd) ∈ Cd. We obtain f(P,x) by substituting x = (ec1 , . . . , ecd).
Let ρ : Cd −→ C be a polynomial and let us consider the weighted version

F (P, ρ; c) =
∑

m∈P∩Zd

ρ(m)e〈c,m〉



LECTURE 5. COMPUTING GENERATING FUNCTIONS FAST 43

of the exponential sum. One can think of F (P, ρ; c) as the result of applying the
differential operator

D = ρ

(

∂

∂c1

, . . . ,
∂

∂cd

)

to F (P ; c). If P is an irrational polyhedron, all “bad things” happen along the
boundary ∂P of P , so let us cut them out by choosing ρ such that ρ(x) = 0 for all
x ∈ ∂P (such a ρ can be obtained by multiplying the equations that define the facets
of P ). One can show that in this case F (P, ρ; c) indeed extends to a meromorphic
function on Cd and there is a way to extend our theory, see [Ba93] for details. This
extension, however, is not particularly interesting (it lacks interesting examples so
far).

Let’s add projections! There are interesting sets S ⊂ Zd of integer points,
which are intimately related to sets of integer points in rational polyhedra but have
a more complicated logical structure. Such sets can be quite complicated even in
dimension d = 1. For example, let us fix positive coprime integers a1, . . . , ad and
let S ⊂ Z be the set of all integers that are non-negative integer combinations of
a1, . . . , ad. In other words, S is the semigroup generated by a1, . . . , ad. We can
think of S as a projection of the set of integer points in a rational polyhedron. Let
P = Rd

+ be the non-negative orthant and let T : Rd −→ R be the projection

(x1, . . . , xd) 7−→ a1x1 + . . . + adxd.

Then S = T (P ∩ Zd), the image of the set of integer points in P under the linear
transformation T . In [BW], it is proved that for such sets S (obtained from the
set of integer points P ∩ Zd in a rational polyhedron P ⊂ Rd by a projection) the
generating function

f(S;x) =
∑

m∈S

xm

admits a short representation as a rational function in x, which can be computed
in polynomial time when the dimension d is fixed.

There are some advances towards the general theory of sets of integer points
encoded by short rational generating functions. For example, in [BW] it is proved
that if two sets S1, S2 ⊂ Zd are defined by their short rational generating functions
f(S1,x) and f(S2,x), then the generating function f(S,x) of S = S1 ∩ S2 can be
computed in polynomial time as a short rational function.

However, we are still quite far from having a full-fledged theory for sets S with
short rational generating functions. Suppose, for example, that S is the projection
of the difference X \ Y , where X and Y are the projections of the sets of integer
points P ∩ Zk1 and Q ∩ Zk2 in some rational polyhedra P and Q. We don’t know
how to handle such a set S (our lack of understanding is mitigated by the lack of
interesting examples of such complicated constructions). Also, algorithms of [BW]
seem to be outrageously impractical.

Polytopes of large dimension? The theory we described in these lectures pro-
vides efficient algorithms if the dimension d of the given rational polytope is fixed
in advance. There are certain classes of polytopes of large (that is, allowed to grow)
dimension d for which the algorithms still remain efficient (polynomial time), see
[Ba93] and [BP99]. However, if the dimebsion d is allowed to grow, because of the
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P vs. NP issue, one cannot hope to test efficiently whether a given rational poly-
hedron contains an integer point, let alone to compute the number of such points
efficiently. The problem, however, remains practically important and it seems that
various probabilistic approaches of approximate counting look the most promising
here, cf. [Dy03].

There seems to be a possibility of a “hybrid” algebraic/probabilistic approach
based on the following simple observation. Let K = K(u1, . . . , ud) be a simple
rational cone generated by integer vectors u1, . . . , ud and let Π be its fundamental
parallelepiped. Theorem 1 of Lecture 3 allows us to compute f(K,x) in terms of
the sum

∑

m∈Π∩Zd xm. This sum is potentially very big, but it is very easy to

sample a random integer point m ∈ Π ∩ Zd, cf. Preview Problem 2 in Lecture 3.
Indeed, let Λ ⊂ Zd be the lattice generated by u1, . . . , ud. Then the points Π ∩ Zd

are in one-to-one correspondence with the elements of Zd/Λ: if n ∈ Zd is an integer
point, then the point m ∈ Π ∩ Zd such that m − n ∈ Λ is computed as follows:

we write n =
∑d

i=1
αiui and let m =

∑d
i=1

{αi}ui. Hence the problem of sampling

m ∈ Π ∩ Zd reduces to that of sampling coset representatives n ∈ Zd/Λ, which can
be done efficiently. One can ask what happens if we try to count integer points
in a given polytope P by using Brion’s Theorem (Theorem 4 of Lecture 4) and
computing the generating functions of the supporting cones of P approximately via
random sampling?
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