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On metric Ramsey-type phenomena

By Yair Bartal, Nathan Linial, Manor Mendel, and Assaf Naor

Abstract

The main question studied in this article may be viewed as a nonlinear
analogue of Dvoretzky’s theorem in Banach space theory or as part of Ramsey
theory in combinatorics. Given a finite metric space on n points, we seek its
subspace of largest cardinality which can be embedded with a given distortion
in Hilbert space. We provide nearly tight upper and lower bounds on the
cardinality of this subspace in terms of n and the desired distortion. Our main
theorem states that for any ε > 0, every n point metric space contains a subset
of size at least n1−ε which is embeddable in Hilbert space with O

(
log(1/ε)

ε

)
distortion. The bound on the distortion is tight up to the log(1/ε) factor. We
further include a comprehensive study of various other aspects of this problem.
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1. Introduction

The philosophy of modern Ramsey theory states that large systems neces-
sarily contain large, highly structured sub-systems. The classical Ramsey col-
oring theorem [49], [29] is a prime example of this principle: Here “large” refers
to the cardinality of a set, and “highly structured” means being monochro-
matic.

Another classical theorem, which can be viewed as a Ramsey-type phe-
nomenon, is Dvoretzky’s theorem on almost spherical sections of convex bod-
ies. This theorem, a cornerstone of modern Banach space theory and convex
geometry, states that for all ε > 0, every n-dimensional normed space X con-
tains a k-dimensional subspace Y with d(Y, �k

2) ≤ 1 + ε, where k ≥ c(ε) log n.
Here d(·, ·) is the Banach-Mazur distance, which is defined for two isomorphic
normed spaces Z1, Z2 as:

d(Z1, Z2) = inf{‖T‖ · ‖T−1‖;T ∈ GL(Z1, Z2)}.

Dvoretzky’s theorem is indeed a Ramsey-type theorem, in which “large” is
interpreted as high-dimensional, and “highly structured” means close to Eu-
clidean space in the Banach-Mazur distance.

Dvoretzky’s theorem was proved in [24], and the estimate k ≥ c(ε) log n,
which is optimal as a function of n, is due to Milman [44]. The dimension
of almost spherical sections of convex bodies has been studied in depth by
Figiel, Lindenstrauss and Milman in [27], where it was shown that under some
additional geometric assumptions, the logarithmic lower bound for dim(Y ) in
Dvoretzky’s theorem can be improved significantly. We refer to the books
[46], [48] for good expositions of Dvoretzky’s theorem, and to [47], [45] for an
“isomorphic” version of Dvoretzky’s theorem.

The purpose of this paper is to study nonlinear versions of Dvoretzky’s
theorem, or viewed from the combinatorial perspective, metric Ramsey-type
problems. In spite of the similarity of these problems, the results in the metric
setting differ markedly from those for the linear setting.

Finite metric spaces and their embeddings in other metric spaces have
been intensively investigated in recent years. See for example the surveys [30],
[36], and the book [42] for an exposition of some of the results.

Let f : X → Y be an embedding of the metric spaces (X, dX) into (Y, dY ).
We define the distortion of f by

dist(f) = sup
x,y∈X
x�=y

dY (f(x), f(y))
dX(x, y)

· sup
x,y∈X
x �=y

dX(x, y)
dY (f(x), f(y))

.

We denote by cY (X) the least distortion with which X may be embedded in Y .
When cY (X) ≤ α we say that X α-embeds into Y and denote X

α
↪→ Y . When

there is a bijection f between two metric spaces X and Y with dist(f) ≤ α we
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say that X and Y are α-equivalent. For a class of metric spaces M, cM(X)
is the minimum α such that X α-embeds into some metric space in M. For
p ≥ 1 we denote c�p

(X) by cp(X). The parameter c2(X) is known as the
Euclidean distortion of X. A fundamental result of Bourgain [15] states that
c2(X) = O(log n) for every n-point metric space (X, d).

A metric Ramsey-type theorem states that a given metric space contains
a large subspace which can be embedded with small distortion in some “well-
structured” family of metric spaces (e.g., Euclidean). This can be formulated
using the following notion:

Definition 1.1 (Metric Ramsey functions). Let M be some class of met-
ric spaces. For a metric space X, and α ≥ 1, RM(X;α) denotes the largest
size of a subspace Y of X such that cM(Y ) ≤ α.

Denote by RM(α, n) the largest integer m such that any n-point metric
space has a subspace of size m that α-embeds into a member of M. In other
words, it is the infimum over X, |X| = n, of RM(X;α).

It is also useful to have the following conventions: For α = 1 we allow
omitting α from the notation. When M = {X}, we write X instead of M.
Moreover when M = {�p}, we use Rp rather than R�p

.
In the most general form, let N be a class of metric spaces and denote by

RM(N ;α, n) the largest integer m such that any n-point metric space in N
has a subspace of size m that α-embeds into a member of M. In other words,
it is the infimum over X ∈ N , |X| = n, of RM(X;α).

1.1. Results for arbitrary metric spaces. This paper provides several re-
sults concerning metric Ramsey functions. One of our main objectives is to
provide bounds on the Euclidean Ramsey Function, R2(α, n).

The first result on this problem, well-known as a nonlinear version of
Dvoretzky’s theorem, is due to Bourgain, Figiel and Milman [17]:

Theorem 1.2 ([17]). For any α > 1 there exists C(α) > 0 such that
R2(α, n) ≥ C(α) log n. Furthermore, there exists α0 > 1 such that R2(α0, n) =
O(log n).

While Theorem 1.2 provides a tight characterization of R2(α, n) = Θ(log n)
for values of α ≤ α0 (close to 1), this bound turns out to be very far from the
truth for larger values of α (in fact, a careful analysis of the arguments in [17]
gives α0 ≈ 1.023, but as we later discuss, this is not the right threshold).

Motivated by problems in the field of Computer Science, more researchers
[32], [14], [5] have investigated metric Ramsey problems. A close look (see
[5]) at the results of [32], [14] as well as [17] reveals that all of these can be
viewed as based on Ramsey-type theorems where the target class is the class
of ultrametrics (see §3.1 for the definition).
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The usefulness of such results for embeddings in �2 stems from the well-
known fact [34] that ultrametrics are isometrically embeddable in �2. Thus,
denoting the class of ultrametrics by UM, we have that R2(α, n) ≥ RUM(α, n).

The recent result of Bartal, Bollobás and Mendel [5] shows that for large
distortions the metric Ramsey function behaves quite differently from the be-
havior expressed by Theorem 1.2. Specifically, they prove that R2(α, n) ≥
RUM(α, n) ≥ exp

(
(log n)1−O(1/α)

)
(in fact, it was already implicit in [14] that

a similar bound holds for a particular α). The main theorem in this paper is:

Theorem 1.3 (Metric Ramsey-type theorem). For every ε > 0, any
n-point metric space has a subset of size n1−ε which embeds in Hilbert space
with distortion O

(
log(1/ε)

ε

)
. Stated in terms of the metric Ramsey function,

there exists an absolute constant C > 0 such that for every α > 1 and every
integer n:

R2(α, n) ≥ RUM(α, n) ≥ n1−C log(2α)
α .

We remark that the lower bound above for RUM(α, n) is meaningful only
for large enough α. Small distortions are dealt with in Theorem 1.6 (see also
Theorem 3.26).

The fact that the subspaces obtained in this Ramsey-type theorem are
ultrametrics in not just an artifact of our proof. More substantially, it is
a reflection of new embedding techniques that we introduce. Indeed, most
of the previous results on embedding into �p have used what may be called
Fréchet-type embeddings: forming coordinates by taking the distance from a
fixed subset of the points. This is the way an arbitrary finite metric space is
embedded in �∞ (attributed to Fréchet). Bourgain’s embedding [15] and its
generalizations [41] also fall in this category of embeddings. However, it is
possible to show that Fréchet-type embeddings are not useful in the context
of metric Ramsey-type problems. More specifically, we show in [6] that such
embeddings cannot achieve bounds similar to those of Theorem 1.3.

Ultrametrics have a useful representation as hierarchically well-separated
trees (HST’s). A k-HST is an ulrametric where vertices in the rooted tree are
labelled by real numbers. The labels decrease by a factor ≥ k as you go down
the levels away from the root. The distance between two leaves is the label of
their lowest common ancestor. These decomposable metrics were introduced by
Bartal [3]. Subsequently, it was shown (see [3], [4], [28]) that any n-point metric
can be O(log n)-probabilistically embedded1 in ultrametrics. This theorem has
found many unexpected algorithmic applications in recent years, mostly in

1A metric space can be α-probabilistically embedded in a class of metric spaces if it is
α-equivalent to a convex combination of metric spaces in the class, via a noncontractive
Lipschitz embedding [4].



ON METRIC RAMSEY-TYPE PHENOMENA 647

providing computationally efficient approximate solutions for several NP-hard
problems (see the survey [30] for more details).

The basic idea in the proof of Theorem 1.3 is to iteratively find large sub-
spaces that are hierarchically structured, gradually improving the distortion
between these subspaces and a hierarchically well-separated tree. These hierar-
chical structures are naturally modelled via a notion (which is a generalization
of the notion of k-HST) we call metric composition closure. Given a class of
metric spaces M, we obtain a metric space in the class compk(M) by taking
a metric space M ∈ M and replacing its points with copies of metric spaces
from compk(M) dilated so that there is a factor k gap between distances in
M and distances within these copies.

Metric compositions are also used to obtain the following bounds on the
metric Ramsey function in its more general form:

Theorem 1.4 (Generic bounds on the metric Ramsey function). Let C
be a proper class of finite metric spaces that is closed under : (i) Isometry ,
(ii) Passing to a subspace, (iii) Dilation. Then there exists δ < 1 such that
RC(n) ≤ nδ for infinitely many values of n.

In particular we can apply Theorem 1.4 to the class C = {X; cM(X) ≤ α}
where M is some class of metric spaces. If there exists a metric space Y with
cM(Y ) > α, then there exists δ < 1 such that RM(α, n) < nδ for infinitely
many n’s.

In the case of �2 or ultrametrics much better bounds are possible, showing
that the bound in Theorem 1.3 is almost tight. For ultrametrics this is a rather
simple fact [5]. For embedding into �2 this follows from bounds for expander
graphs, described later in more detail.

Theorem 1.5 (near tightness). There exist absolute constants c, C > 0
such that for every α > 2 and every integer n:

RUM(α, n) ≤ R2(α, n) ≤ Cn1− c

α .

The behavior of RUM(α, n) and R2(α, n) exhibited by the bounds in The-
orems 1.2 and 1.3 is very different. Somewhat surprisingly, we discover the
following phase transition:

Theorem 1.6 (phase transition). For every α > 1 there exist constants
c, C, c′, C ′, K > 0 depending only on α such that 0 < c′ < C ′ < 1 and for every
integer n:

a) If 1 < α < 2 then c log n ≤ RUM(α, n) ≤ R2(α, n) ≤ 2 log2 n + C.

b) If α > 2 then nc′ ≤ RUM(α, n) ≤ R2(α, n) ≤ K nC′
.
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Using bounds on the dimension with which any n point ultrametric is
embeddable with constant distortion in �p [7] we obtain the following corollary:

Corollary 1.7 (Ramsey-type theorems with low dimension). There ex-
ists 0 < C(α) < 1 such that for every p ≥ 1, α > 2, and every integer n,

R�d
p
(α, n) ≥ nC(α),

where C(α) ≥ 1 − c log α
α , d =

⌈
� c′

(α−2)2 �C(α) log n
⌉
, and c, c′ > 0 are universal

constants.

This result is meaningful since, although �2 isometrically embeds
into Lp for every 1 ≤ p ≤ ∞, there is no known �p analogue of the Johnson-
Lindenstrauss dimension reduction lemma [31] (in fact, the Johnson-
Lindenstrauss lemma is known to fail in �1 [19], [33]). These bounds are almost
best possible.

Theorem 1.8 (The Ramsey problem for finite dimensional normed spaces).
There exist absolute constants C, c > 0 such that for any α > 2, every integer
n and every finite dimensional normed space X,

RX(α, n) ≤ Cn1− c

α (dimX) log α.

For completeness, we comment that a natural question, in our context, is
to bound the size of the largest subspace of an arbitrary finite metric space
that is isometrically embedded in �p. In [8] we show that Rp(n) = 3 for every
1 < p < ∞ and n ≥ 3.

Finally, we note that one important motivation for this work is the appli-
cability of metric embeddings to the theory of algorithms. In many practical
situations, one encounters a large body of data, the successful analysis of which
depends on the way it is represented. If, for example, the data have a natural
metric structure (such as in the case of distances in graphs), a low distortion
embedding into some normed space helps us draw on geometric intuition in
order to analyze it efficiently. We refer to the papers [4], [26], [37] and the sur-
veys [30], [36] for some of the applications of metric embeddings in Computer
Science. More about the relevance of Theorem 1.3 to Computer Science can
be found in [9] (see also [5], [10]).

1.2. Results for special classes of metric spaces. We provide nearly tight
bounds for concrete families of metric spaces: expander graphs, the discrete
cube, and high girth graphs. In all cases the difficulty is in providing upper
bounds on the Euclidean Ramsey function.

Let G = (V, E) be a d-regular graph, d ≥ 3, with absolute multiplica-
tive spectral gap γ (i.e. the second largest eigenvalue, in absolute value, of
the adjacency matrix of G is less than γd). For such expander graphs it is
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known [37], [41] that c2(G) = Ωγ,d(log |V |) (here, and in what follows, the
notation an = Ω(bn) means that there exists a constant c > 0 such that for
all n, |an| ≥ c|bn|. When c is allowed to depend on, say, γ and d we use the
notation Ωγ,d). In Section 5 we prove the following:

Theorem 1.9 (The metric Ramsey problem for expanders). Let G =
(V, E) be a d-regular graph, d ≥ 3 with absolute multiplicative spectral gap
γ < 1. Then for every p ∈ [1,∞), and every α ≥ 1,

|V |1−
C

α logd(1/γ) ≤ R2(G;α) ≤ Rp(G;α) ≤ Cd|V |1−
c logd(1/γ)

pα ,

where C, c > 0 are absolute constants.

The proof of the upper bound in Theorem 1.9 involves proving certain
Poincaré inequalities for power graphs of G.

Let Ωd = {0, 1}d be the discrete cube equipped with the Hamming metric.
It was proved by Enflo, [25], that c2(Ωd) =

√
d. Both Enflo’s argument, and

subsequent work of Bourgain, Milman and Wolfson [18], rely on nonlinear
notions of type. These proofs strongly use the structure of the whole cube,
and therefore seem not applicable for subsets of the cube. In Section 6.2 we
prove the following strengthening of Enflo’s bound:

Theorem 1.10 (The metric Ramsey problem for the discrete cube).
There exist absolute constants C, c such that for every α > 1:

2d(1− log(Cα)
α2 ) ≤ R2(Ωd;α) ≤ C2d(1− c

α2 ).

The lower bounds on the Euclidean Ramsey function mentioned above are
based on the existence of large subsets of the graphs which are within distortion
α from forming an equilateral space. In particular for the discrete cube this
corresponds to a code of large relative distance. Essentially, our upper bounds
on the Euclidean Ramsey function show that for a fixed size, no other subset
achieves significantly better distortions.

In [38] it was proved that if G = (V, E) is a d-regular graph, d ≥ 3,
with girth g, then c2(G) ≥ cd−2

d

√
g. In Section 6.1 we prove the following

strengthening of this result:

Theorem 1.11 (The metric Ramsey problem for large girth graphs).
Let G = (V, E) be a d-regular graph, d ≥ 3, with girth g. Then for every
1 ≤ α <

√
g

6 ,

R2(G;α) ≤ C(d − 1)−
cg

α2 |V |,

where C, c > 0 are absolute constants.
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The proofs of Theorem 1.10 and Theorem 1.11 use the notion of Markov
type, due to K. Ball [2]. In addition, we need to understand the algebraic
properties of the graphs involved (Krawtchouk polynomials for the discrete
cube and Geronimus polynomials in the case of graphs with large girth).

2. Metric composition

In this section we introduce the notion of metric composition, which plays
a basic role in proving both upper and lower bounds on the metric Ramsey
problem. Here we introduce this construction and use it to derive some non-
trivial upper bounds. The bounds achievable by this method are generally
not tight. For the Ramsey problem on �p, better upper bounds are given in
Sections 4 and 5. In Section 3 we use metric composition in the derivation of
lower bounds.

2.1. The basic definitions.

Definition 2.1 (Metric composition). Let M be a finite metric space. Sup-
pose that there is a collection of disjoint finite metric spaces Nx associated with
the elements x of M . Let N = {Nx}x∈M . For β ≥ 1/2, the β-composition
of M and N , denoted by C = Mβ[N ], is a metric space on the disjoint union
∪̇xNx. Distances in C are defined as follows. Let x, y ∈ M and u ∈ Nx, v ∈ Ny;
then:

dC(u, v) =

{
dNx

(u, v) x = y

βγdM (x, y) x �= y,

where γ = maxz∈M diam(Nz)
minx�=y∈M dM (x,y) . It is easily checked that the choice of the factor

βγ guarantees that dC is indeed a metric. If all the spaces Nx over x ∈ M

are isometric copies of the same space N , we use the simplified notation C =
Mβ[N ].

Informally stated, a metric composition is created by first multiplying the
distances in M by βγ, and then replacing each point x of M by an isometric
copy of Nx.

A related notion is the following:

Definition 2.2 (Composition closure). Given a class M of finite metric
spaces, we consider compβ(M), its closure under ≥ β-compositions. Namely,
this is the smallest class C of metric spaces that contains all spaces in M, and
satisfies the following condition: Let M ∈ M, and associate with every x ∈ M

a metric space Nx that is isometric to a space in C. Also, let β′ ≥ β. Then
Mβ′ [N ] is also in C.
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2.2. Generic upper bounds via metric composition. We need one more
definition:

Definition 2.3. A class C of finite metric spaces is called a metric class if
it is closed under isometries. C is said to be hereditary, if M ∈ C and N ⊂ M

imply N ∈ C. The class is said to be dilation invariant if (M, d) ∈ C implies
that (M, λd) ∈ C for every λ > 0.

Let M
α←↩ = {X; cM(X) ≤ α} denote the class of all metric spaces that

α-embed into some metric space in M. Clearly, M
α←↩ is a hereditary, dilation-

invariant metric class.
We recall that RC(X) is the largest cardinality of a subspace of X that is

isometric to some metric space in the class C.

Proposition 2.4. Let C be a hereditary, dilation invariant metric class
of finite metric spaces. Then, for every finite metric space M and a class
N = {Nx}x∈M , and every β ≥ 1/2,

RC(Mβ[N ]) ≤ RC(M) · max
x∈M

RC(Nx).

In particular, for every finite metric space N ,

RC(Mβ[N ]) ≤ RC(M)RC(N).

Proof. Let m = RC(M) and k = maxx∈M RC(Nx). Fix any X ⊆ ∪̇xNx

with |X| > mk. For every z ∈ M let Xz = X ∩Nz. Set Z = {z ∈ M ;Xz �= ∅}.
Note that |X| =

∑
z∈Z |Xz| so that if |Z| ≤ m then there is some y ∈ M with

|Xy| > k. In this case, the set Xy consists of more than k elements in X, the
metric on which is isometric to a subspace of Ny, and therefore is not in C.
Since C is hereditary this implies that X /∈ C. Otherwise, |Z| > m. Fix for
each z ∈ Z some arbitrary point uz ∈ Xz and set Z ′ = {uz; z ∈ Z}. Now, Z ′

consists of more than m elements in X, the metric on which is a βγ-dilation of
a subspace of M , hence not in C. Again, the fact that C is hereditary implies
that X /∈ C.

In what follows let RC(A, n) = RC(A; 1, n). Recall that RC(A; 1, n) ≥ t

if and only if for every X ∈ A with |X| = n, there is a subspace of X with t

elements that is isometric to some metric space in the class C.

Lemma 2.5. Let C be a hereditary, dilation invariant metric class of finite
metric spaces. Let A be a class of metric spaces, and let δ ∈ (0, 1). If there
exists an integer m > 1 such that RC(A, m) ≤ mδ, then for any β ≥ 1/2, and
infinitely many integers n:

RC(compβ(A), n) ≤ nδ.
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Proof. Fix some β ≥ 1/2. Let A ∈ A be such that |A| = m > 1 and
RC(A) ≤ mδ. Define inductively a sequence of metric spaces in compβ(A)
by: A1 = A and Ai+1 = Aβ[Ai]. Proposition 2.4 implies that RC(Ai+1) ≤
RC(Ai)RC(A) ≤ RC(Ai)mδ. It follows that RC(Ai) ≤ miδ = |Ai|δ.

Lemma 2.6. Let C be a nonempty hereditary, dilation invariant metric
class of finite metric spaces. Let A be a class of finite metric spaces, such that
RC(A, m) < m for some integer m (i.e., there is some space A ∈ A with no
isometric copy in C). Then there exists δ ∈ (0, 1), such that for any β ≥ 1/2,
and infinitely many integers n:

RC(compβ(A), n) ≤ nδ.

Proof. Let m be the least cardinality of a space A ∈ A of with no isometric
copy in C. Since C is nonempty and hereditary, m ≥ 2. Define δ by m−1 = mδ.
Now apply Lemma 2.5.

Lemma 2.6 can be applied to obtain nontrivial bounds on various metric
Ramsey functions.

Corollary 2.7. Let C be a hereditary, dilation invariant metric class
which contains some, but not all finite metric spaces. Then there exists a
δ ∈ (0, 1), such that RC(n) ≤ nδ for infinitely many integers n.

Proof. We use Lemma 2.6 with A = compβ(A) = the class of all metric
spaces.

Let M be a fixed class of metric spaces and α ≥ 1. The following corollary
follows when we apply Corollary 2.7 with C = M

α←↩ as defined above.

Corollary 2.8. Let M be a metric class of finite metric spaces and
α ≥ 1. The following assertions are equivalent :

a) There exists an integer n, such that RM(α, n) < n.

b) There exists δ ∈ (0, 1), such that RM(α, n) ≤ nδ for infinitely many
integers n.

For our next result, recall that a normed space X is said to have cotype
q if there is a positive constant C such that for every finite sequence x1, . . .

. . . , xm ∈ X, E

∥∥∥∥∥
m∑

i=1

εixi

∥∥∥∥∥
2
1/2

≥ C

(
m∑

i=1

‖xi‖q

)1/q

,
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where ε1, . . . , εm are i.i.d. ±1 Bernoulli random variables. It is well known
(see [46]) that for 2 ≤ q < ∞, �q has cotype q (and it does not have cotype q′

for any q′ < q).

Corollary 2.9. Let X be a normed space. Then the following assertions
are equivalent :

a) X has finite cotype.

b) For any α > 1, there exists δ ∈ (0, 1) such that for infinitely many
integers n, RX(α, n) ≤ nδ.

c) There exists α > 1 and an integer n such that RX(α, n) < n.

Proof. To prove the implication a) =⇒ b), fix α > 1. Now, since X

has finite cotype, there is an integer h such that d(�h
∞, Z) > α for every

h-dimensional subspace Z of X, where d(·, ·) is the Banach-Mazur distance.
This implies that for some ε > 0, an ε-net E in the unit ball of �h

∞ does not
α-embed into X. This follows from a standard argument in nonlinear Banach
space theory. Indeed, a compactness argument would imply that otherwise
Bh

∞, the unit ball of �h
∞, α-embeds into X. By Rademacher’s theorem (see for

example [12]) such an embedding must be differentiable in an interior point
of Bh

∞. The derivative, T , is a linear mapping which is easily seen to satisfy
‖T‖ · ‖T−1‖ ≤ α, so that d(�h

∞, Z) ≤ α for the subspace Z = T (�h
∞). Apply

Corollary 2.8 with M = X, and n = |E| to conclude that b) holds.
The implication b) =⇒ c) is obvious, so we turn to prove that c) =⇒ a).

Assume that X does not have finite co-type, and fix some 0 < ε < α − 1. By
the Maurey-Pisier theorem (see [43] or Theorem 14.1 in [23]), it follows that
for every n, �n

∞ (α− ε)-embeds into X. Since �n
∞ contains an isometric copy of

every n-point metric space, we deduce that for each n, RX(α, n) = n, contrary
to our assumption c).

We now need the following variation on the theme of metric composition.

Definition 2.10. A family of metric spaces N is called nearly closed under
composition, if for every λ > 1, there exists some β ≥ 1/2 such that cN (X) ≤ λ

for every X ∈ compβ(N ). In other words,

compβ(N ) ⊆ N
λ←↩.

We have the following variant of Corollary 2.8:

Lemma 2.11. Let M be a metric class of finite metric spaces and let N
be some class of finite metric spaces which is nearly closed under composi-
tion. Assume that there is some space in N which does not α-embed into any
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space in M. Then there exists δ ∈ (0, 1), such that for every 1 ≤ α′ < α,
RM(N ;α′, n) ≤ nδ for infinitely many integers n.

Proof. Fix some α′ < α and let λ = α/α′. As N is nearly closed under

composition there exists β ≥ 1/2 such that compβ(N ) ⊆ N
λ←↩. This means

that for every Z ∈ compβ(N ) there exists some N ∈ N that is λ-equivalent
to Z.

For every integer p let k(p) = RM(N ;α′, p). If |Z| = |N | = n, then there
is X ⊆ N such that cM(X) ≤ α′ and |X| ≥ k(n). Let Y ⊆ Z be the set
corresponding to X under the λ-equivalence between Z and N . Then, |Y | =
|X| ≥ k(n) and by composition of maps, cM(Y ) ≤ λα′ = α. That is, every
n-set Z in compβ(N ) contains a k(n) subset Y that α-embeds into a space

in M; i.e. Y ∈ M
α←↩. In our notation, this means that k(n) ≤ RC(compβ(N ), n),

where C = M
α←↩.

The assumption made in the lemma about N means that RC(N , m) < m

for some integer m. By Lemma 2.6 there exists δ ∈ (0, 1) such that for infinitely
many integers n,

RM(N ;α′, n) = k(n) ≤ RC(compβ(N ), n) < nδ,

as claimed.

Next, we give a several results that demonstrate the applicability of
Lemma 2.11.

Proposition 2.12. Let (X, ‖ · ‖) be a normed space. The class M of
finite subsets of X is nearly closed under composition.

Proof. Fix some λ > 1. Let Z ∈ compβ(M) for some β > 1/2 to be
determined later. We prove that Z can be λ-embedded in X. The proof is by
induction on the number of steps taken in composing Z from spaces in M. If
Z ∈ M there is nothing to prove. Otherwise, it is possible to express Z as
Z = Mβ[N ], where M ∈ M and N = {Nz}z∈M such that each of the spaces Nz

is in compβ(M) and can be created by a shorter sequence of composition steps.
By induction we assume that there exists β for which Nz can be λ-embedded
in X. Fix for every z ∈ M , φz : Nz → X satisfying:

∀u, v ∈ Nz, dNz
(u, v) ≤ ‖φz(u) − φz(v)‖ ≤ λdNz

(u, v),

and for all u ∈ Nz, ‖φz(u)‖ ≤ λ diam(Nz) (this can be assumed by an appro-
priate translation).

Define φ : Z → X as follows: for every u ∈ Z, let z ∈ M be such that
u ∈ Nz, then φ(u) = βγ · z + φz(u), where γ = maxz diam(Nz)

minx�=y∈M ‖x−y‖ .
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We now bound the distortion of φ. Assume β > 2λ. Consider first u, v ∈
Nz for some z ∈ M .

dZ(u, v) = dNz
(u, v) ≤ ‖φz(u) − φz(v)‖ ≤ λdNz

(u, v) = λdZ(u, v).

Now, let u ∈ Nx, v ∈ Ny, for x �= y ∈ M ,

‖φ(u) − φ(v)‖ ≤ βγ‖x − y‖ + ‖φx(u) − φy(v)‖
≤ βγ‖x − y‖ + λ(diam(Nx) + diam(Ny))

≤ γ(β + 2λ)‖x − y‖ =
β + 2λ

β
dZ(u, v).

Similarly,

‖φ(u) − φ(v)‖ ≥ βγ‖x − y‖ − ‖φx(u) − φy(v)‖
≥ βγ‖x − y‖ − λ(diam(Nx) + diam(Ny))

≤ γ(β − 2λ)‖x − y‖ =
β − 2λ

β
dZ(u, v).

Hence if β ≥ 2λλ+1
λ−1 , we have,

dist(φ) ≤ max
{

λ,
β + 2λ

β − 2λ

}
= λ.

Recall that a normed space X is said to be λ finitely representable in a
normed space Y if for any finite dimensional linear subspace Z ⊂ X and every
η > 0 there is a subspace W of Y such that d(Z, W ) ≤ λ + η.

Corollary 2.13. Let X and Y be normed spaces and α > 1. The fol-
lowing are equivalent :

1) X is not α-finitely representable in Y .

2) There are η > 0 and δ ∈ (0, 1) such that RY (X;α + η, n) < nδ for
infinitely many integers n.

3) There is some η > 0 and an integer n such that RY (X;α + η, n) < n.

Proof. If X is not α-finitely representable in Y then there is a finite
dimensional linear subspace Z of X whose Banach-Mazur distance from any
subspace of Y is greater than α. As in the proof of Corollary 2.9, a combination
of a compactness argument and a differentiation argument imply that there is a
finite subset S of X which does not (α+2η) embed in Y for some η > 0. Since
the subsets of X are nearly closed under composition, by applying Lemma 2.11,
we deduce the implication 1) =⇒ 2).
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The implication 2) =⇒ 3) is obvious, so we turn to show 3) =⇒ 1). Let
A ⊂ X be a finite subset that does not α + η embed in Y , and let Z be A’s
linear span. Clearly d(Z, W ) > α+η for any linear subspace W of Y . It follows
that X is not α-finitely representable in Y .

Recall that a graph H is called a minor of a graph G if H is obtained from
G by a sequence of steps, each of which is either a contraction or a deletion of
an edge. We say that a family F of graphs is minor-closed if it is closed under
taking minors. The Wagner conjecture famously proved by Robertson and
Seymour [51], states that for any nontrivial minor-closed family of graphs F ,
there is a finite set of graphs, H, such that G ∈ F if and only if no member
of H is a minor of G. We say then that F is characterized by the list H of
forbidden minors. For example, planar graphs are precisely the graphs which
do not have K3,3 or K5 as minors, and the set of all trees is precisely the set
of all connected graphs with no K3 minor.

There is a graph-theoretic counterpart to composition. Namely, let G =
(V, E) be a graph, and suppose that to every vertex x ∈ V corresponds a graph
Hx = (Vx, Ex) with a marked vertex rx ∈ Vx, where the Hx are disjoint. The
corresponding graph composition, denoted G[{Hx}x∈V ], is a graph with vertex
set ∪̇x∈V Vx, and edge set:

E = {[u, v]; x ∈ V, [u, v] ∈ Ex} ∪ {[rx, ry]; [x, y] ∈ E}.

The composition closure of a family of graphs F can be defined similarly to
Definition 2.2, and family F is said to be closed under composition if it equals
its closure.

Recall that a connected graph G is called bi-connected if it stays connected
after we delete any single vertex from G (and erase all the edges incident with
it). The maximal bi-connected subgraphs of G are called its blocks.

We make the following elementary graph-theoretic observation:

Proposition 2.14. Let H be a bi-connected graph (with ≥ 3 vertices)
that is a minor of a graph G. Then H is a minor of a block of G.

Proof. Consider a sequence of steps in which edges in G are being shrunk
to form H. If there are two distinct blocks B1, B2 in G that are not shrunk to
a single vertex, then the resulting graph is not bi-connected. Indeed, there is
a cut-vertex a in G that separates B1 from B2, and the vertex into which a is
shrunk still separates the shrunk versions of B1, B2. This observation means
that in shrinking G to H, only a single block B of G retains more than one
vertex. But then H is a minor of B, as claimed.

In the graph composition described above, each vertex rx ∈ Vx is a cut
vertex. Consequently, each block of the composition is either a block of G (the
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subgraph induced by the vertices {rx;x ∈ V } is isomorphic with G) or of one
of the Hx (that is isomorphic with the subgraph induced on Vx). We conclude:

Proposition 2.15. Let F be a minor -closed family of graphs character-
ized by a list of bi -connected forbidden minors. Then F is closed under graph
composition.

Let F again be a family of undirected graphs. A metric space M is said
to be supported on F if there exist a graph G ∈ F and positive weights on the
edges of G such that M is the geodetic, or shortest path metric on a subset of
the vertices of the weighted G.

Here is the metric counterpart of Proposition 2.15:

Proposition 2.16. Let F be a minor -closed family of graphs character-
ized by a list of bi -connected forbidden minors. Then the class of metrics
supported on F is nearly closed under composition.

Proof. Fix some λ > 1. Let F ′ be the class of metrics supported on F .
Let X ∈ compβ(F ′) for some β > 1/2 to be determined later. We prove that
X can be λ-embedded in F ′. The proof is by induction on the number of steps
taken in composing X from spaces in F ′. If X ∈ F ′ there is nothing to prove.

Otherwise, there exists a weighted graph G = (V, E, w) in F . For sim-
plicity, we identify G with a metric space in F ′, equipped with the geodetic
metric defined by its weights. It is possible to express X as X = Gβ[H′], where
H′ = {H ′

z}z∈V such that each of the metric spaces H ′
z is in compβ(F ′). By in-

duction we assume that there exists β for which each H ′
z can be

λ-embedded in F ′. Therefore there exists a family of disjoint weighted graphs
{Hz = (Vz, Ez, wz)}z∈V , such that for every z ∈ V , there is a noncontractive
Lipschitz bijection, φz : H ′

z → Vz, satisfying for any u, v ∈ H ′
z, dH′

z
(u, v) ≤

dHz
(φz(u), φz(v)) ≤ λdH′

z
(u, v).

Let Y = G[{Hz}z∈V ] be the graph composition of the above graphs. De-
fine weights w′ on the edges of Y as follows: For any z ∈ V , [u, v] ∈ Ez,
let w′([u, v]) = wz([u, v]). For [x, y] ∈ E, let w′([rx, ry]) = βγw([x, y]), where
γ = maxz∈V diam(H′

z)
minx�=y∈V dG(x,y) (as in the definition of metric composition). For simplicity,

we identify Y with the weighted graph defined above as well as the geodetic
metric defined by this graph. The proof shows that if β is large enough,
then the geodetic metric on the graph composition Y is λ-equivalent (and thus
arbitrarily close) to the metric β-composition X. Proposition 2.15 implies that
Y belongs to F ′, which proves the claim.

Indeed, define the bijection φ : X → ∪̇u∈V Vu as follows: for z ∈ V , if
u ∈ H ′

z, then φ(u) = φz(u). The geodetic path between any two vertices
u′, v′ ∈ Vz is exactly the same path as in Hz, since the cost of every step
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outside of Vz exceeds diam(Hz) (by definition of γ). This implies that

dX(u, v) = dH′
z
(u, v)≤ dHz

(φz(u), φz(v))

= dY (φ(u), φ(v)) ≤ λdH′
z
(u, v) = λdX(u, v).

Also, the distance in the graph composition between u′ ∈ Vx and v′ ∈ Vy

with x �= y ∈ V , is at most βγdG(x, y)+2λ maxz diam(Hz) ≤ γ(β+2λ)dG(x, y).
It follows that for u ∈ H ′

x and v ∈ H ′
y,

dX(u, v) = βγdG(x, y)≤ dY (φ(u), φ(v))

≤ γ(β + 2λ)dG(x, y) =
(

β + 2λ

β

)
dX(u, v).

Hence if β ≥ 2λ
λ−1 , we have, dist(φ) ≤ max

{
λ, β+2λ

β

}
= λ.

Recall that a Banach space X is called super-reflexive if it admits an
equivalent uniformly convex norm. A finite-metric characterization of such
spaces was found by Bourgain [16]. Namely, X is superreflexive if and only if
for every α > 0 there is an integer h such that the complete binary tree of depth
h doesn’t α-embed into X. Let TREE denote the set of metrics supported on
trees. Since any weighted tree is almost isometric to a subset of a deep enough
complete binary tree, we conclude using Lemma 2.11.

Corollary 2.17. Let X be a Banach space. Then the following asser-
tions are equivalent :

a) X is super-reflexive.

b) For any α > 1 there exists δ < 1 such that for infinitely many integers n,

RX(TREE;α, n) ≤ nδ.

c) For any α > 1 there exists an integer n such that

RX(TREE;α, n) < n.

3. Metric Ramsey-type theorems

In this section we prove Theorem 1.3; i.e., we give an nΩ(1) lower bound
on R2(α, n) for α > 2.

The proof actually establishes a lower bound on RUM(α, n). The bound
on R2 follows since ultrametrics embed isometrically in �2. The lower bound
for embedding into ultrametrics utilizes their representation as hierarchically
well-separated trees. We begin with some preliminary background on ultramet-
rics and hierarchically well-separated trees in Section 3.1. We also note that
our proof of the lower bound makes substantial use of the notions of metric
composition and composition closure which were introduced in Section 2.
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We begin with a description of the lemmas on which the proof of the lower
bound is based and the way they are put together to prove the main theorem.
This is done in Section 3.2. Detailed proofs of the main lemmas appear in
Sections 3.3–3.6. Most of the proof is devoted to the case where α is a fixed,
large enough constant. In Section 3.7, we extend the proof to apply for every
α > 2.

3.1. Ultrametrics and hierarchically well-separated trees. Recall that an
ultrametric is a metric space (X, d) such that for every x, y, z ∈ X,

d(x, z) ≤ max{d(x, y), d(y, z)}.

A more restricted class of metrics with an inherently hierarchical structure
plays a key role in the sequel. Such spaces have already figured prominently
in earlier work on embedding into ultrametric spaces [3], [5].

Definition 3.1 ([3]). For k ≥ 1, a k-hierarchically well-separated tree
(k-HST) is a metric space whose elements are the leaves of a rooted tree T .
To each vertex u ∈ T there is associated a label ∆(u) ≥ 0 such that ∆(u) = 0
if and only if u is a leaf of T . It is required that if a vertex u is a child of a
vertex v then ∆(u) ≤ ∆(v)/k . The distance between two leaves x, y ∈ T is
defined as ∆(lca(x, y)), where lca(x, y) is the least common ancestor of x and
y in T .

A k-HST is said to be exact if ∆(u) = ∆(v)/k for every two internal
vertices where u is a child of v.

First, note that an ultrametric on a finite set and a (finite) 1-HST are
identical concepts. Any k-HST is also a 1-HST, i.e., an ultrametric. However,
when k > 1, a k-HST is a stronger notion which has a hierarchically clustered
structure. More precisely, a k-HST with diameter D decomposes into subspaces
of diameter at most D/k and any two points at distinct subspaces are at
distance exactly D. Recursively, each subspace is itself a k-HST. It is this
hierarchical decomposition that makes k-HST’s useful.

When we discuss k-HST’s, we freely use the tree T as in Definition 3.1,
the tree defining the HST. An internal vertex in T with out-degree 1 is said
to be degenerate. If u is nondegenerate, then ∆(u) is the diameter of the sub-
space induced on the subtree rooted by u. Degenerate nodes do not influence
the metric on T ’s leaves; hence we may assume that all internal nodes are
nondegenerate (note that this assumption need not hold for exact k-HST’s).

We need some more notation:

Notation 3.2. Let UM denote the class of ultrametrics, and k-HST denote
the class of k-HST’s. Also let EQ denote the class of equilateral spaces.
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The following simple observation is not required for the proof, but may
help direct the reader’s intuition. More complex connections between these
concepts do play an important role in the proof.

Proposition 3.3. The class of k-HST’s is the k-composition closure of
the class of equilateral spaces; i.e., k-HST = compk(EQ).

In particular, the class of ultrametrics is the 1-composition closure of the
class of equilateral spaces; i.e., UM = comp1(EQ).

We recall the following well known fact (e.g. [34]), that allows us to reduce
the Euclidean Ramsey problem to the problem of embedding into ultrametrics:

Proposition 3.4. Any ultrametric is isometrically embeddable in �2. In
particular,

R2(α, n) ≥ RUM(α, n).

This proposition can be proved by induction on the structure of the tree
defining the ultrametric. It is shown inductively that each rooted subtree
embeds isometrically into a sphere with radius proportional to the subtree’s
diameter, and that any two subtrees rooted at an internal vertex are mapped
into orthogonal subspaces.

When considering Lipschitz embeddings, the k-HST representation of an
ultrametric comes naturally into play. This is expressed by the following vari-
ant on a proposition from [4]:

Lemma 3.5. For any k > 1, any ultrametric is k-equivalent to an exact
k-HST.

Lemma 3.5 is proved via a simple transformation of the tree defining the
ultrametric. This is done by coalescing consecutive internal vertices, whose
labels differ by a factor which is less than k. The complete proof of Lemma 3.5
appears in Section 3.5

We end this section with a proposition on embeddings into ultrametrics,
which is implicit in [3]. Although this proposition is not used in the proofs, it
is useful for obtaining efficient algorithms from these theorems.

Lemma 3.6. Every n-point metric space is n-equivalent to an ultrametric.

Proof. Let M be an n-point metric space. We inductively construct an
n-point HST X with diam(X) = diam(M) and a noncontracting n-Lipschitz
bijection between M and X.

Define a graph with vertex set M in which [u, v] is an edge if and only
if dM (u, v) < diam(M)

n . Clearly, this graph is disconnected. Let A1, . . . , Am

be the vertex sets of the connected components. By induction there are
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HST’s X1, . . . , Xm with diam(Xi) = diam((Ai, dM )) < diam(M) and bijec-
tions fi : Ai → Xi such that for every u, v ∈ Ai, dM (u, v) ≤ dXi

(fi(u), fi(v)) ≤
|Ai|dM (u, v) < ndM (u, v). Let Ti be the tree defining Xi. We now con-
struct the HST X whose defining labelled tree T is rooted at z. The root’s
label is ∆(z) = diam(M) and it has m children, where the ith child, ui,
is a root of a labelled tree isomorphic to Ti. Since ∆(ui) = diam(Xi) <

diam(M) = diam(X) = ∆(z), the resulting tree T indeed defines an HST.
Finally, if u ∈ Ai and v ∈ Aj for i �= j then dM (u, v) ≥ diam(M)/n. Since
diam(X) = ∆(z) = diam(M), the inductive hypothesis implies the existence
of the required bijection.

3.2. An overview of the proof of Theorem 1.3. In this section we describe
the proof of the following theorem:

Theorem 3.7. There exists an absolute constant C > 0 such that for
every α > 2,

RUM(α, n) ≥ n1−C log α

α .

By Proposition 3.4, the same bound holds true for R2(α, n).
We begin with an informal description and motivation. The main lemmas

needed for the proof are stated, and it is shown how they imply the theorem.
Detailed proofs for most of these lemmas appear in subsequent subsections.

Our goal is to show that for any α > 2, every n point metric space X

contains a subspace which is α-equivalent to an ultrametric of cardinality ≥
nψ(α), where ψ(α) is independent of n. In much of the proof we pursue an even
more illusive goal. We seek large subsets that embed even into k-HST’s (recall
that this is a restricted class of ultrametrics). A conceptual advantage of this
is that it directs us towards seeking hierarchical substructures within the given
metric space. Such structures can be described as the composition closure of
some class of metric spaces M. A metric space in compβ(M) is composed of a
hierarchy of dilated copies of metric spaces from M, and the proof iteratively
finds such large structures. The class M varies from iteration to iteration,
gradually becoming more restricted, and getting closer to the class EQ. When
M is approximately EQ this procedure amounts to finding a k-HST (due to
Proposition 3.3). It is therefore worthwhile to consider a special case of the
general problem, where X ∈ compβ(M), and we seek a subspace of X that is
α-equivalent to a k-HST.

It stands to reason that if spaces in M have large Ramsey numbers, then
something similar should hold true also for spaces in compβ(M). After all, if
β is large, then the copies of dilated metric spaces from M are hierarchically
well-separated. This would have reduced the problem of estimating Ramsey
numbers for spaces in compβ(M) to the same problem for the class M.
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While this argument is not quite true, a slight modification of it does
indeed work. For the purpose of this intuitive discussion, it is convenient to
think of β as large, in particular with respect to k and α. Consider that X is
the β-composition of M ∈ M and a set of |M | disjoint metric spaces {Ni}i∈M ,
Ni ∈ compβ(M). Assume (inductively) that each Ni contains a subspace N ′

i

that is α-equivalent to a k-HST Hi of size |Ni|ψ. Find a subspace M ′ of M

that is also α-equivalent to a k-HST K and attach the roots of the appropriate
Hi’s to the corresponding leaves of K (with an appropriate dilation). This
yields a k-HST H, and by the separation property of compositions with large
β, we obtain a subspace X ′ of X which is α-equivalent to H. However, the size
of the final subspace X ′ = ∪̇i∈M ′N ′

i depends not only on the size of M ′, the
subspace we find in M , but also on how large the chosen N ′

is are. Therefore,
the correct requirement is that M ′ satisfies:

∑
i∈M ′

|Ni|ψ ≥
(∑

i∈M

|Ni|
)ψ

.

This gives rise to the following definition:

Definition 3.8 (The weighted Ramsey function). Let M,N be classes of
metric spaces. Denote by ψM(N , α) the largest 0 ≤ ψ ≤ 1 such that for every
metric space X ∈ N and any weight function w : X → R+, there is a subspace
Y of X that α-embeds in M and satisfies:∑

x∈Y

w(x)ψ ≥
(∑

x∈X

w(x)

)ψ

.(∗)

When N is the class of all metric spaces, it is omitted from the notation.

In what follows the notion of a weighted metric space refers to a pair
(X, w), where X is a metric space and w : X → R+ is a weight function.

The following is an immediate consequence of Definition 3.8 (by using the
constant weight function w(x) ≡ 1).

Proposition 3.9.

RM(N ;α, n) ≥ nψM(N ,α).

In particular,
RM(α, n) ≥ nψM(α).

We note that it is possible to show, via the results of Section 2, that in
the setting of embedding into composition classes, and in particular in our case
of k-HST’s or ultrametrics, the last inequality in Proposition 3.9 holds with
equality for infinitely many n’s.
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The entire proof is thus dedicated to bounding the weighted Ramsey func-
tion when the target metric class is the class of ultrametrics. The proofs in
the sequel produce embeddings into k-HST’s and ultrametrics. In this context,
the following conventions for ψM(N , α) are useful:

• ψk(N , α) = ψk-HST(N , α). In particular, ψk(α) = ψk-HST(α).

• ψ(N , α) = ψ1(N , α) = ψUM(N , α). In particular, ψ(α) = ψUM(α).

The following strengthening of Theorem 3.7 is the main result proved in
this section.

Theorem 3.7′. There exists an absolute constant C > 0 such that for
every α > 2,

ψ(α) ≥ 1 − C
log α

α
.

Our goal can now be rephrased as follows: given an arbitrary weighted
metric space (X, w), find a subspace of X, satisfying the weighted Ramsey con-
dition (∗) with ψ(α) as in Theorem 3.7′, that is α-equivalent to an ultrametric.

Before continuing with the outline of the proof, we state a useful property
of the weighted Ramsey function. When working with the regular Ramsey
question it is natural to perform a procedure of the following form: first find a
subspace which is α1-embedded in some “nice” class of metric spaces, then find
a smaller subspace of this subspace which is α2 equivalent to our target class
of metric spaces, thus obtaining overall α1α2 distortion. If the first subspace
has size n′ ≥ nψ1 and the second is of size n′′ ≥ n′ψ2 then n′′ ≥ nψ1ψ2 .

The weighted Ramsey problem has the same super-multiplicativity prop-
erty:

Lemma 3.10. Let M,N ,P be classes of metric spaces and α1, α2 ≥ 1.
Then

ψM(P, α1α2) ≥ ψM(N , α1) · ψN (P, α2).

The interpretation of this lemma (proved in §3.3) is as follows: Suppose
that we are given a metric space in P and we seek a subspace that embeds
with low distortion in M, and satisfies condition (∗). We can first find a
subspace which α1-embeds in N and then a subspace which α2-embeds in M.
In the course of this procedure we multiply the distortions and the ψ’s of the
corresponding classes.

The discussion in the paragraph preceding Definition 3.8 on how Ramsey-
type properties of class M carry over to compβ(M), leads to the following
proposition: If for every X ∈ M and every w : X → R+ there is a subspace
Y ⊂ X, satisfying the weighted Ramsey condition (∗) with parameter ψ, which



664 YAIR BARTAL, NATHAN LINIAL, MANOR MENDEL, AND ASSAF NAOR

is α-equivalent to a k-HST, then the same holds true for every M ∈ compβ(M).
In our notation, we have the following lemma (proved in §3.3):

Lemma 3.11. Let M be a class of metric spaces. Let k ≥ 1 and α ≥ 1.
Then for any β ≥ αk,

ψk(compβ(M), α) = ψk(M, α).

In particular for β ≥ α,

ψ(compβ(M), α) = ψ(M, α).

The following simple notion is used extensively in the sequel.

Definition 3.12. The aspect ratio of a finite metric space M , is defined as:

Φ(M) =
diam(M)

minx�=y dM (x, y)
.

When |M | = 1 we use the convention Φ(M) = 1. We note that Φ(M) can
be viewed as M ’s normalized diameter, or as its Lipschitz distance from an
equilateral metric space.

Again, it is helpful to consider the k-HST representation of an ultramet-
ric Y . In particular, notice that in this hierarchical representation, the number
of levels is O(logk Φ(Y )). In view of this fact, it seems reasonable to expect
that when Φ(X) is small it would be easier to find a large subspace of X that
is close to an ultrametric. This is, indeed, shown in Section 3.4.

Definition 3.13. The class of all metric spaces M with aspect ratio Φ(M)
≤ Φ, for some given parameter Φ, is denoted by N (Φ). Two more conventions
that we use are: For every real Φ ≥ 1,

• ψ(Φ, α) = ψ(N (Φ), α). Similarly ψk(Φ, α) = ψk(N (Φ), α), and in gen-
eral where M is a class of metric spaces, ψM(Φ, α) = ψM(N (Φ), α).

• compβ(Φ) = compβ(N (Φ)).

The main idea in bounding ψ(Φ, α) is that the metric space can be decom-
posed into a small number of subspaces, the number of which can be bounded
by a function of Φ, such that we can find among these, subspaces that are
far enough from each other and contain enough weight to satisfy the weighted
Ramsey condition (∗). Such a decomposition of the space yields the recursive
construction of a hierarchically well-separated tree, or an ultrametric. This is
done in the proof of the following lemma. A more detailed description of the
ideas involved in this decomposition and the proof of the lemma can be found
in Section 3.4.
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Lemma 3.14. There exists an absolute constant C ′ > 0 such that for every
α > 2 and Φ ≥ 1:

ψ(Φ, α) ≥ 1 − C ′ log α + log log(4Φ)
α

.

Note that for the class of metric spaces with aspect ratio Φ ≤ exp(O(α)),
Lemma 3.14 yields the bound stated in Theorem 3.7′.

Combining Lemma 3.14 with Lemma 3.11 gives an immediate consequence
on β-composition classes: for β ≥ α,

ψ(compβ(Φ), α) = ψ(Φ, α) ≥ 1 − C ′ log α + log log(4Φ)
α

.(1)

We now pass to a more detailed description of the proof of Theorem 3.7′.
Let X be a metric space and assume that for some specific value of α we can
prove the bound in the theorem (e.g., this trivially holds for α = Φ(X) where
we have ψ(X, α) = 1).

Let X̂ be an arbitrary metric space and let X be a subspace of X̂ that is
α-equivalent to an ultrametric, satisfying the weighted Ramsey condition (∗)
with ψ = ψ(X̂, α). We will apply the following “distortion refinement” pro-
cedure: find a subspace of X that is (α/2)-equivalent to an ultrametric, sat-
isfying condition (∗) with ψ′ ≥ (1 − C ′′ log α

α ). This implies that ψ(X̂, α/2) ≥
(1−C ′′ log α

α )ψ(X̂, α). Theorem 3.7′ now follows: we start with α = Φ(X̂) and
then apply the above distortion refinement procedure iteratively until we reach
a distortion below our target. It is easy to verify that this implies the bound
stated in the theorem.

The distortion refinement uses the bound in (1) on ψ(compβ(Φ), α′′), in
the particular case α′′ < α/2 and Φ ≤ exp(O(α)). This is useful due the
following claim: if X is α-equivalent to an ultrametric then it contains a sub-
space X ′ which is (1 + 2/β)-equivalent to a metric space Z in compβ(Φ), for
Φ ≤ exp(O(α)), and which satisfies condition (∗) with ψ′′ ≥ (1 − 2 log α

α )ψ. By
(1) we obtain a subspace Z ′ of Z which is α′′-equivalent to an ultrametric. By
appropriately choosing all the parameters, we see from Lemma 3.10 that there
is a subspace X ′′ of X ′ which is (α/2)-equivalent to an ultrametric, and the
desired bound on ψ(X̂, α/2) is achieved.

The proof of the above claim is based on two lemmas relating ultrametrics,
k-HST’s and metric compositions. Let X be α-equivalent to an ultrametric Y .
The subspace X ′ is produced via a Ramsey-type result for ultrametrics which
states that every ultrametric Y contains a subspace Y ′ which is α′-equivalent
to a k-HST with k > α′. (Lemma 3.5 can be viewed as a non-Ramsey result of
this type when k = α′.) Moreover, we can ensure that condition (∗) is satisfied
for the pair Y ′ ⊂ Y with the bound stated below.
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Lemma 3.15. For every k ≥ α > 1,

ψk(UM, α) ≥ 1 − log(k/α)
log α

.

The proof of this lemma involves an argument on general tree structures
described in Section 3.5.

Now, by Lemma 3.10 we obtain a subspace X ′ that is α′α-equivalent to a
k-HST for k > α′. If k is large enough then the subtrees of the k-HST impose
a clustering of X ′. That is, each subtree corresponds to a subspace of X ′ of
very small diameter, whereas the α distortion implies that the aspect ratio of
the metric reflected by inter-cluster distances is bounded by α. By a recursive
application of this procedure we obtain a metric space in compβ(α), with the
exact relation between k,α, and β stated in the lemma below. The details of
this construction are given in Section 3.6.

Lemma 3.16. For any α, β ≥ 1, if a metric space M is α-equivalent to
an αβ-HST then M is (1 + 2/β)-equivalent to a metric space in compβ(α).

The distortion refinement process described above is formally stated in
the following lemma:

Lemma 3.17. There exists an absolute constant C ′′ > 0 such that for
every metric space X̂ and any α > 8,

ψ
(
X̂,

α

2

)
≥ ψ(X̂, α)

(
1 − C ′′ log α

α

)
.

Proof. Fix a weight function w : X̂ → R+, let X be a subspace of X̂

that is α equivalent to an ultrametric Y , and satisfies the weighted Ramsey
condition (∗) with ψ(X̂, α). Fix two numbers α′, β ≥ 1 which will be de-
termined later, and set k = αα′β. Lemma 3.15 implies that Y contains a
subspace Y ′ which is α′-equivalent to a k-HST, and Y ′ satisfies condition (∗)
with ψk(UM, α′) ≥ 1 − log(k/α′)

log α′ . By mapping X into an ultrametric Y , and
then mapping the image of X in Y into a k-HST, we apply Lemma 3.10, obtain-
ing a subspace X ′ of X that is α′α-equivalent to a k-HST W , which satisfies
condition (∗) with exponent ψk(UM, α′) · ψ(X̂, α) ≥

(
1 − log(k/α′)

log α′

)
ψ(X̂, α).

Denote Φ = α′α. We have that X ′ is Φ-equivalent to a Φβ-HST and therefore
by Lemma 3.16, X ′ is (1 + 2/β) equivalent to a metric space Z in compβ(Φ).
Now, we can use the bound in (1) to find a subspace Z ′ of Z that is β-equivalent
to an ultrametric, and satisfies condition (∗) with exponent ψ(compβ(Φ), β).
By mapping X ′ into Z ∈ compβ(Φ) and finally to an ultrametric, we apply
Lemma 3.10 again, obtaining a subspace X ′′ of X̂ that is β(1 + 2/β) = β + 2
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equivalent to an ultrametric U , satisfying condition (∗) with exponent(
1 − C ′ log β + log log(4Φ)

β

) (
1 − log(αβ)

log α′

)
ψ(X̂, α).

Finally, if we choose β = α/2 − 2 and let Φ = 22α (which determines α′),
we get that

ψ
(
X̂,

α

2

)
≥

(
1 − 9C ′ log α

α

) (
1 − 2

log α

α

)
ψ(X̂, α) ≥

(
1 − C ′′ log α

α

)
ψ(X̂, α),

for an appropriate choice of C ′′

Theorem 3.7′ is a straightforward consequence of Lemma 3.17:

Proof of Theorem 3.7′. By an appropriate choice of C we may assume that
α > 8. Let X be a metric space and set Φ = Φ(X). Recall that ψ(X, Φ) = 1.
Let m = �log α� and M = �log Φ�. Lemma 3.17 implies that ψ(X, α/2) ≥
ψ(X, α) − C ′′ log α

α , and so by an iterative application of this lemma we get

ψ(X, α)≥ψ(X, 2m) ≥ ψ(X, 2M ) − C ′′
M∑

i=m+1

i

2i

≥ 1 − C ′′
∞∑

i=m+1

i

2i
= 1 − C ′′m + 2

2m
≥ 1 − 6C ′′ log α

α
.

This completes the overview of the proof of Theorem 3.7′. Sections 3.3–3.6
contain the proofs of the lemmas described above.

Additionally, in Section 3.7 we describe in detail how to achieve Ramsey-
type theorems for arbitrary values of α > 2. The main ideas that make this
possible are first, replacing Lemma 3.14 with another lemma that can handle
distortions 2 + ε and second, providing a more delicate application of our
Lemmas, using the fact that we can find k-HST’s with large k (≈ 1/ε) rather
than just ultrametrics, to ensure that accumulated losses in the distortion are
small.

We end with a discussion on the algorithmic aspects of the metric Ramsey
problem. Given a metric space X on n points, it is natural to ask wether we
can find in polynomial time a subspace Y of X with nψ points which is α-
equivalent to an ultrametric, for ψ as in Theorem 3.7. It is easily checked
that the proofs of our lemmas yield polynomial time algorithms to find the
corresponding subspaces. Thus, the only obstacle in achieving a polynomial
time algorithm, is the fact, that the proof of Theorem 3.7′ involves O(log Φ)
iterations of an application of Lemma 3.17. We seek, however, a polynomial
dependence only on n. This is remedied as follows: It is easily seen that using
Lemma 3.6 we can start from ψ(X, |X|) = 1 rather than ψ(X, Φ(X)) = 1.
Thus we replace the bound of Φ with n, and end up with at most O(log n)



668 YAIR BARTAL, NATHAN LINIAL, MANOR MENDEL, AND ASSAF NAOR

iterations of Lemma 3.17. This implies a polynomial time algorithm to solve
the metric Ramsey problem.

3.3. The weighted metric Ramsey problem and its relation to metric com-
position. In this section we prove Lemmas 3.11 and 3.10. We begin with
Lemma 3.10, which allows us to move between different classes of metric spaces
while working with the weighted Ramsey problem.

Lemma 3.10. Let M,N ,P be classes of metric spaces and α1, α2 ≥ 1.
Then

ψM(P, α1α2) ≥ ψM(N , α1) · ψN (P, α2).

Proof. Let ψ1 = ψM(N , α1) and ψ2 = ψN (P, α2). Take P ∈ P and
a weight function w : P → R+. There are a subspace P ′ of P and an α2-
embedding f : P ′ → N , where N ∈ N , and

∑
x∈P ′

w(x)ψ2 ≥
(∑

x∈P

w(x)

)ψ2

.

Similarly, for every weight function w′ : N → R+ there exists a subspace
N ′ of N and an α1-embedding g : N ′ → M , where M ∈ M, and

∑
y∈N ′

w′(y)ψ1 ≥

∑
y∈N

w′(y)

ψ1

.

By letting P ′′ = f−1(N ′), and for y ∈ N , w′(y) = w(f−1(y))ψ2 , we get that

∑
x∈P ′′

w(x)ψ1ψ2 ≥
( ∑

x∈P ′

w(x)ψ2

)ψ1

≥
(∑

x∈P

w(x)

)ψ1ψ2

.

Define h : P ′′ → M by h(x) = g(f(x)); then h is an α1α2-embedding.

Lemma 3.11 shows that the weighted Ramsey function stays unchanged
as we pass from a class M of metric spaces to its composition closure. To
repeat:

Lemma 3.11. Let M be a class of metric spaces. Let k ≥ 1 and α ≥ 1.
Then for any β ≥ αk,

ψk(compβ(M), α) = ψk(M, α).

Proof. Since M ⊆ compβ(M), clearly ψk(compβ(M), α) ≤ ψk(M, α). In
what follows we prove the reverse inequality.
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Let ψ=ψk(M, α). Let X∈compβ(M). We prove that for any w :X→R+

there exists a subspace Y of X and a k-HST H such that Y is α-equivalent to
H via a noncontractive α-Lipschitz embedding, and:

∑
x∈Y

w(x)ψ ≥
(∑

x∈X

w(x)

)ψ

.

The proof is by structural induction on the metric composition. If X ∈ M
then this holds by definition of ψ. Otherwise, let M ∈ M and N = {Nz}z∈M

be such that X = Mβ[N ].
By induction, for each z ∈ M , there is a subspace Yz of Nz that is

α-equivalent to a k-HST Hz, defined by the tree Tz, via a noncontractive
α-Lipschitz embedding, and

∑
u∈Yz

w(u)ψ ≥
( ∑

u∈Nz

w(u)

)ψ

.

For a point z ∈ M let w′(z) =
∑

u∈Nz
w(u). There exists a subspace YM

of M that is α-equivalent to a k-HST HM , defined by TM , via a noncontractive
α-Lipschitz embedding, and

∑
z∈YM

w′(z)ψ ≥
(∑

z∈M

w′(z)

)ψ

=

(∑
x∈X

w(x)

)ψ

.

Let Y = ∪z∈YM
Yz. It follows that

∑
u∈Y

w(x)ψ =
∑

z∈YM

∑
u∈Yz

w(u)ψ ≥
∑

z∈YM

( ∑
u∈Nz

w(u)

)ψ

≥
(∑

x∈X

w(x)

)ψ

.

We now construct a k-HST H that is defined by a tree T , as follows. Start
with a tree T ′ that is isomorphic to TM and has labels ∆(u) = βγ · ∆TM

(u)
(where γ = maxz∈M diam(Nz)

minx�=y∈M dM (x,y) , as in Definition 2.1). At each leaf of the tree
corresponding to a point z ∈ M , create a labelled subtree rooted at z that is
isomorphic to Tz with labels as in Tz. Denote the resulting tree by T . Since
we have a noncontractive α-embedding of Yz in Hz, it follows that ∆(z) =
diam(Hz) ≤ α diam(Yz) ≤ α diam(Nz). Let p be a parent of z in TM . Since we
have a noncontractive α-embedding of YM into HM , it follows that ∆TM

(p) ≥
dM (x, y) for some x, y ∈ YM . Therefore ∆(p) ≥ βγ ·min{dM (x, y);x �= y ∈ M}.
Consequently, ∆(p)/∆(z) ≥ β/α ≥ k. Since HM and Hz are k-HST’s, it follows
that T also defines a k-HST.

It is left to show that Y is α-equivalent to H. Recall that for each z ∈ M

there is a noncontractive Lipschitz bijection fz : Yz → Hz that satisfies for
every u, v ∈ Yz, dYz

(u, v) ≤ dHz
(fz(u), fz(v)) ≤ αdYz

(u, v). Define f : Y → H



670 YAIR BARTAL, NATHAN LINIAL, MANOR MENDEL, AND ASSAF NAOR

as follows. If z ∈ M and u ∈ Nz, set f(u) = fz(u). Then for u, v ∈ M such
that u, v ∈ Nz we have

dY (u, v) = dYz
(u, v) ≤ dHz

(fz(u), fz(v))

= dH(f(u), f(v)) ≤ αdYz
(u, v) = αdY (u, v).

Additionally, we have a noncontractive Lipschitz bijection fM : YM →
HM that satisfies for every x, y ∈ YM , dYM

(x, y) ≤ dHM
(fM (x), fM (y)) ≤

αdYM
(x, y). Hence for x �= y ∈ M , and u ∈ Nx, y ∈ Ny,

dY (u, v) =βγdYM
(x, y) ≤ βγdHM

(fM (u), fM (v))

= dH(f(u), f(v)) ≤ αβγdYM
(x, y) = αdY (u, v).

3.4. Exploiting metrics with bounded aspect ratio. In this section we prove
Lemma 3.14 (§3.2). That is, we give lower bounds on ψ = ψ(Φ, α) which
depend on the aspect ratio of the metric space, Φ.

The proof of the lemma starts by obtaining lower bounds for a restricted
class of weight functions w. These bounds are then extended to general weights.
The class of “nice” weight functions is itself divided into two classes. In one
class we have a lower bound on the minimal weight relative to the total overall
weight, and the other is the constant weight function. This is formally defined
as follows:

Definition 3.18. Fix some q ≥ 1. A sequence x = {xi}∞i=1 of nonnegative
real numbers will be called q-decomposable if there exists ω > 0 such that:

{i ∈ N; xi > 0} =

i ∈ N; xi ≥
1
q

∞∑
j=1

xj

⋃
{i ∈ N; xi = ω}.

We will prove the following lemma:

Lemma 3.19. Let q ≥ 2, and t ≥ 8 be an integer. Let (M, d) be an n-point
metric space and let w : M → R+, be a weight function such that {w(x)}x∈M

is q-decomposable. Then there exists a subspace N ⊆ M that is 4t-equivalent
to an ultrametric and satisfies:∑

x∈N

w(x)ψ ≥
(∑

x∈M

w(x)

)ψ

,

where ψ = [t log(4qΦ(M))]−2/t.

The proof of Lemma 3.19 uses a decomposition of the metric space M

into a small number of subspaces. This type of strategy has been used in
several earlier papers in combinatorics and theoretical computer science, but
the argument closest in spirit to ours is in [5]. The idea is to consider two
diametrical points, split the space into shells according to the distance from one
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of these two points, and discard the points in one of the shells. Intuitively, we
would like to discard a shell with small weight. The exact choice is somewhat
more sophisticated, tailored to ensure the weighted Ramsey condition (∗). The
other shells form two subsets of the space that are substantially separated. By
an appropriate choice of the parameters, we can guarantee that the union of
the inner layers has diameter smaller than a constant factor of the diameter of
the whole space, and hence a smaller aspect ratio. The role of q-decomposable
weights is as follows: This argument works fairly well for uniform weights,
and a slight modification of it yields bounds as a function of q (in addition
to Φ) when in the weighted case only a few points carry each at least 1

q of the
total weight. Here the argument splits according to the diameter of the set
of ”heavy” points. If the diameter is small, the previous argument is started
from a point that resides far away from the heavy points. This guarantees that
none of the ”heavyweights” get eliminated in the above-described process. If
their diameter is proportional to that of the whole space, it is possible to argue
similarly to the uniform-weight case, except that we now obtain better bounds,
since we can make estimates in terms of q (rather than the cardinality of the
space n).

The extension of Lemma 3.19 to arbitrary weight functions requires a
lemma on numerical sequences. This lemma allows us to reduce the case of
general sequences of weights to q-decomposable ones.

Lemma 3.20. Fix q ≥ 16 and let x = {xi}∞i=1 be a sequence of nonnegative
real numbers. Denote p = 1 − log2 log2 q

log2 q . There exists a sequence y = {yi}∞i=1

such that yi ≤ xi for all i ≥ 1,
∑

i≥1 yp
i ≥

(∑
i≥1 xi

)p
, and the sequence

{yp
i }∞i=1 is q-decomposable.

Together these lemmas imply our main lemma:

Lemma 3.14. For every α > 2 and every Φ ≥ 1:

ψ(Φ, α) ≥ 1 − C
log α + log log 4Φ

α
,

where C is a universal constant.

Proof. Clearly we may assume that α ≥ 32. Let X be a metric space with
Φ(X) ≤ Φ, and w : X → R+ a weight function. Set t = �α/4�. By applying
Lemma 3.20 to the sequence {w(x)}x∈X with q = 2t, we obtain a weight
function w′ such that w′(x) ≤ w(x) for all x ∈ X, the sequence {w′(x)p}x∈X

is q-decomposable, and ∑
x∈X

w′(x)p ≥
(∑

x∈X

w(x)

)p

,

where p = 1 − log2 t
t .
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Let β = [t log(4qΦ(X))]−2/t and apply Lemma 3.19 to the space X and
weights w′′ = w′p. We obtain a subspace Y which is 4t-equivalent to an
ultrametric, such that∑

x∈Y

w(x)pβ ≥
∑
x∈Y

w′(x)pβ ≥
(∑

x∈X

w′(x)p

)β

≥
(∑

x∈X

w(x)

)pβ

.

Therefore,

ψ(Φ, α)≥ pβ ≥
(

1 − log2 t

t

) (
1 − 4 log t

t
− 2 log log(4Φ)

t

)
≥ 1 − C

log α + log log(4Φ)
α

,

for an appropriate choice of C.

We now pass to the proof of Lemma 3.20. Let x = {xi}∞i=1 be a sequence
of nonnegative real numbers which isn’t identically zero. Let p ≥ 0. Recall
that the (p,∞) norm of x is defined by ‖x‖p,∞ = supi≥1 i1/px∗

i , where {x∗
i }∞i=1

is the nonincreasing rearrangement of the sequence (|xi|)∞i=1. We will require
the following numerical fact:

Lemma 3.21. For every x ∈ �1 as above and every 0 < p < 1:

‖x‖p,∞ ≥
(

1 − p

2 − p

)1/p

· ‖x‖1/p
1

‖x‖(1−p)/p
∞

.

Proof. We can assume without loss of generality that ‖x‖1 = 1 and
‖x‖∞ = x1 ≥ x2 ≥ · · · ≥ 0. Obviously ‖x‖p,∞ ≥ x1 so that if x1 ≥
[(1 − p)/(2 − p)]1/px

−(1−p)/p
1 we are done. Assume therefore that the reverse

inequality holds, i.e., x1 < 1−p
2−p . Set α = ‖x‖p

p,∞ and denote j = �α/xp
1� + 1.

Note that for every i ≥ 1, xi ≤ (α/i)1/p. Therefore,
j−1∑
i=1

xi ≤ (j − 1)x1 ≤
⌈

α

xp
1

⌉
x1 ≤ x1

(
α

xp
1

+ 1
)

= αx1−p
1 + x1,

and
∞∑
i=j

xi ≤
∞∑
i=j

α1/p

i1/p
≤ α1/p

∫ ∞

j−1
z−1/pdz

≤α1/p p

1 − p
·
⌈

α

xp
1

⌉− 1−p

p

≤ α1/p p

1 − p

(
xp

1

α

) 1−p

p

=
p

1 − p
αx1−p

1 .

By summing both inequalities and using the bound on x1 we get
1

1 − p
αx1−p

1 +
1 − p

2 − p
≥ 1,

which simplifies to give the required result.
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Proof of Lemma 3.20. We may assume that x is a nonincreasing sequence
of nonnegative real numbers and that ‖x‖1 = 1.

We will prove below that there exist indexes 0 ≤ l ≤ b such that xp
l ≥ 2

q

and:

S =
l∑

i=1

xp
i + (b − l)xp

b ≥ 1.(2)

If b = l assume that l is the minimal index for which (2) holds. It follows
that in this case S =

∑l
i=1 xp

i < 1 + xp
l ≤ 2. Similarly if b > l, fix l and

assume that b is the minimal index for which (2) holds. It follows that S =∑l
i=1 xp

i + (b − l)xp
b ≤

∑l
i=1 xp

i + (b − 1 − l)xp
b−1 + xp

b < 1 + xp
b ≤ 2.

Define the sequence {yi}∞i=1 so that yi = xi for i ≤ l, yi = xb for l < i ≤ b

and yi = 0 for i > b. It follows that yi ≤ xi for all i ≥ 1 and
∑

i≥1 yp
i = S ≥

1 = (
∑

i≥1 xi)p. Since for j ≤ l yp
j = xp

j ≥ 2
q ≥ S

q = 1
q

∑
i≥1 yp

i , for l < j ≤ b,
yp

i = xp
b and for j > b, yp

i = 0, we get that {yp
i }∞i=1 is q-decomposable.

It remains to prove (2). Let l ≥ 0 be the largest integer for which
xp

l ≥ 2
q . If

∑l
i=1 xp

i ≥ 1 we are done. Otherwise, consider the sequence
z = (xl+1, xl+2, . . . ). By the choice of l, for i > l, xi < (2/q)1/p, and thus

‖z‖∞ ≤ (2/q)1/p. Moreover, 1−p
(2−p)‖z‖1−p

∞
≥ log2 log2 q

2 ·
(

log2 q
2

)(1−p)/p
≥ 1, so by

applying Lemma 3.21 to z we get that ‖z‖p
p,∞/‖z‖1 ≥ 1; i.e., there is an integer

b > l such that:

(b − l)xp
b ≥ ‖z‖1 = 1 −

l∑
i=1

xi ≥ 1 −
l∑

i=1

xp
i .

We are now in position to prove the main technical lemma.

Proof of Lemma 3.19. For simplicity denote β(Φ) = [t log2(4qΦ)]−2/t. We
will prove by induction on n that any n point weighted metric space (M, d, w)
contains a subspace N ⊂ M such that:∑

x∈N

w(x)β(Φ(M)) ≥
(∑

x∈M

w(x)

)β(Φ(M))

,

and for which there is a noncontractive, 4t-Lipschitz embedding of N into an
ultrametric H with diam(H) = diam(M).

In what follows for every S ⊂ M we denote w(S) =
∑

x∈S w(x).
Let (M, d, w) be a weighted n-point metric space such that w is q-de-

composable. Without loss of generality we may assume that w(M) = 1 and
minx �=y∈M d(x, y) = 1. Denote Φ = Φ(M). The latter assumption implies that
Φ = diam(M). In what follows we denote for r > 0 and x ∈ M , B(x, r) =
{y ∈ M ; d(y, x) < r}. The proof proceeds by proving the following claim:
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Claim 3.22. There exist i ∈ {1, . . . , t} and x0 ∈ M such that if A =
{x0} ∪ B

(
x0,

(i−1)Φ
4t

)
and B = M \ B

(
x0,

iΦ
4t

)
then:

max

{
w(A)β(Φ/2)

[maxy∈A w(y)]β(Φ/2)−β(Φ)
, w(A)(log2 q)−1/(t−1)

}
+ w(B) ≥ 1.(3)

Before proving Claim 3.22 we will show how it implies the required result.
Let i, A, B be as in Claim 3.22. Note that A �= ∅ and diam(A) < Φ

2 < diam(M).
In particular it follows that, |A|, |B| < n so that by the induction hypothesis
there are subspaces A′ ⊂ A and B′ ⊂ B such that∑

x∈A′

w(x)β(Φ(A)) ≥w(A)β(Φ(A))

and ∑
x∈B′

w(B)β(Φ(B)) ≥w(B)β(Φ(B)) ≥ w(B),

HST’s X and Y with diam(X) = diam(A), diam(Y ) = diam(B), and noncon-
tractive embeddings f : A′ → X, g : B′ → Y which are 4t-Lipschitz. Let T

be the tree defining X and u be its root. Let S be the tree defining Y and v

be its root. Define a tree R as follows: its root is r and the only two subtrees
emerging from it are isomorphic to T and S. Label the root of R by setting
∆(r) = diam(M), and leave the labels of T and S unchanged. Note that

∆(r) = diam(M)≥max{diam(A),diam(B)}
= max{diam(X),diam(Y )} = max{∆(u),∆(v)},

so that with these definitions the leaves of R, X ∪ Y , form an HST with
diam(X ∪ Y ) = Φ = diam(M). Define h : A′ ∪ B′ → X ∪ Y by h|A′ = f and
h|B′ = g. If a ∈ A′ and b ∈ B′ then d(h(a), h(b)) = Φ ≥ d(a, b). Hence h is
noncontracting. Additionally:

d(a, b) ≥ d(b, x0) − d(a, x0) ≥
Φi

4t
− Φ(i − 1)

4t
=

Φ
4t

=
dR(h(a), h(b))

4t
,

so that h is 4t-Lipschitz.
Observe that since β(Φ) ≤ β(Φ(A)) ≤ (log2 q)−1/(t−1) and w(x) ≤ 1

(point-wise),

∑
x∈A′

w(x)β(Φ) ≥
∑
x∈A′

w(x)β(Φ(A)) ≥ w(A)β(Φ(A)) ≥ w(A)(log2 q)−1/(t−1)
.
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Moreover, since Φ(A) ≤ Φ/2:∑
x∈A′

w(x)β(Φ) ≥ 1
[maxy∈A w(y)]β(Φ(A))−β(Φ)

∑
x∈A′

w(x)β(Φ(A))

≥ [max
y∈A

w(y)]β(Φ)

[
w(A)

maxy∈A w(y)

]β(Φ(A))

≥ [max
y∈A

w(y)]β(Φ)

[
w(A)

maxy∈A w(y)

]β(Φ/2)

.

We deduce that:∑
x∈A′

w(x)β(Φ) ≥ max

{
w(A)β(Φ/2)

[maxy∈A w(y)]β(Φ/2)−β(Φ)
, w(A)(log2 q)−1/(t−1)

}
,

so that by (3), ∑
x∈A′∪B′

w(x)β(Φ) ≥
∑
x∈A′

w(x)β(Φ) + w(B) ≥ 1,

as required.

Proof of Claim 3.22. The fact that w is q-decomposable implies that we
can split M = N1∪̇N2, so that w(x) ≥ 1

q for every x ∈ N1 and there is ω > 0
such that w(x) = ω for every x ∈ N2. We distinguish between two cases:

Case 1. diamM (N1) > Φ
2 . In this case there are x0, x

′
0 ∈ N1 such that

d(x0, x
′
0) > Φ

2 . It follows in particular that B(x0,Φ/4) ∩ B(x′
0,Φ/4) = ∅ so

that by interchanging the roles of x0 and x′
0, if necessary, we may assume that

w(B(x0,Φ/4)) ≤ w(M)
2 = 1

2 . Since x0 ∈ N1, w(x0) ≥ 1
q . This implies that

there exist i ∈ {1, . . . , t} such that

w

(
{x0} ∪ B

(
x0,

(i − 1)Φ
4t

))(log2 q)−1/(t−1)

≥ w

(
B

(
x0,

iΦ
4t

))
,

since otherwise:

1
2
≥w

(
B

(
x0,

Φ
4

))
> w

(
{x0} ∪ B

(
x0,

(t − 1)Φ
4t

))(log2 q)−1/(t−1)

> · · · > w

(
B

(
x0,

Φ
4t

))(log2 q)−1

≥w(x0)(log2 q)−1 ≥ 1
q(log2 q)−1 =

1
2
,
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which is a contradiction. Fixing such an index i and defining A, B as in the
statement of Claim 3.22 we get that:

w(A)(log2 q)−1/(t−1)
+ w(B) =w

(
{x0} ∪ B

(
x0,

(i − 1)Φ
4t

))(log2 q)−1/(t−1)

+
[
1 − w

(
B

(
x0,

iΦ
4t

))]
≥ 1,

which proves (3).

Case 2. diamM (N1) ≤ Φ
2 . In this case take x0 ∈ M such that d(x0, N1) =

maxx∈M d(x, N1). We claim that this implies that N1∩B(x0,Φ/4) = ∅. Indeed,
otherwise it will follow that d(x0, N1) < Φ/4 so that by the choice of x0, for
every x, y ∈ M ,

d(x, y) ≤ d(x, N1) + d(y, N1) + diam(N1) < 2d(x0, N1) +
Φ
2

< Φ,

which is a contradiction.
Set m = |N2| and denote for i ∈ {0, . . . , t}:

εi =

∣∣({x0} ∪ B
(
x0,

iΦ
4t

))
∩ N2

∣∣
m

.

Note that since x0 ∈ N2, m−1 = ε0 ≤ εt ≤ 1. We claim that this implies that
there is some i ∈ {1, . . . , t} such that:

ε
β(Φ/2)
i−1 mβ(Φ/2)−β(Φ) ≥ εi.(4)

Indeed, if we set a = log2(2qΦ) ≥ 1, then if there is no such i we have for every
i ∈ {1, . . . , t}:

εi−1 <

(
εi

m
1

(ta)2/t − 1
[t(a+1)]2/t

)(ta)2/t

.

Denote b = m
1

(ta)2/t − 1
[t(a+1)]2/t and c = (ta)2/t. The above inequality then

becomes εi−1 < (εi/b)c. Iterating this t times we get:

1
m

= ε0 <
εct

t

bc+c2+···+ct =
εct

t

b
c

c−1
(ct−1)

≤ 1
bct−1

.

Thus,

m
(t2a2−1)

[
1

(ta)2/t − 1
[t(a+1)]2/t

]
< m,

but an application of the mean value theorem gives a contradiction, since:

(t2a2 − 1)
[

1
(ta)2/t

− 1
[t(a + 1)]2/t

]
≥ t2a2

2
2

t1+2/t(a + 1)1+2/t

≥ t1−2/t

(
a

a + 1

)2

≥ 83/4 · 1
4
≥ 1.
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Choose an index i ∈ {1, . . . , t} satisfying (4) and let A, B be as in the
statement of Claim 3.22 for this particular i. Observe that:

B = M \ B

(
x0,

iΦ
4t

)
⊃ M \ B

(
x0,

Φ
4

)
⊃ N1,

so that:
w(A)β(Φ/2)

[maxy∈A w(y)]β(Φ/2)−β(Φ)
+ w(B) =

(ωεi−1m)β(Φ/2)

ωβ(Φ/2)−β(Φ)
+ w(N1) + (1 − εi)mω

=ωβ(Φ)(εi−1m)β(Φ/2) + w(N1) + (1 − εi)mω

≥ (mω)β(Φ)εi + w(N1) + (1 − εi)mω

≥mωεi + w(N1) + (1 − εi)mω = w(M) = 1.

This concludes the proof of Claim 3.22.

3.5. Passing from an ultrametric to a k-HST. In what follows we show
that every ultrametric contains large subsets which are embeddable in a k-HST
with distortion α < k.

An unweighted version of the following result was proved in [5]. The
bound for the weighted Ramsey function is a straightforward modification of
the proof in [5]:

Lemma 3.23 ([5]). For every k > α > 1,

ψk(UM, α) ≥ 1
�logα k� .

If k is large with respect to α then the bound of [5] provides a good
approximation for ψk(UM, α). In fact, this is how Lemma 3.23 is used in
Section 3.7.

However, when k is close to α the bound in Lemma 3.23 is not good enough
for proving our main theorem. We obtain bounds for this range of parameters
in the following lemma (stated in §3.2 in slightly weaker form).

Lemma 3.15. For every k > α > 1,

ψk(UM, α) ≥ 1 − 1
�logk/α α� .

Before proving Lemma 3.15 we require some lemmas concerning unweighted
trees.

Definition 3.24. Let h > 1 be an integer and i ∈ {0, . . . , h − 1}. We say
that a rooted tree T is (i, h)-periodically sparse if for every l ≡ i ( mod h),
every vertex at depth l in T is degenerate. T is called h periodically sparse if
there exists i ∈ {0, . . . , h − 1} for which T is (i, h)-periodically sparse.
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In what follows we always use the convention that a subtree T ′ of a rooted
tree T is rooted at the root of T and that the leaves of T ′ are also leaves of T .
We denote by lvs(T ) the leaves of T .

Lemma 3.25. Fix an integer h > 1. Let T be a finite rooted tree. Then
for any w : lvs(T ) → R+ there exists a subtree of T , T ′, which is h periodically
sparse and : ∑

v∈lvs(T ′)

w(v)
h−1

h ≥

 ∑
v∈lvs(T )

w(v)

h−1
h

.

The techniques we use in the proof of Lemma 3.25 are similar to those
used in the proof of Lemma 3.23 in [5]. It can also be derived from a result
in [11] concerning influences in multi-stage games. These facts are also closely
related to an isoperimetric inequality of Loomis and Whitney [39].

Proof. For every i ∈ {0, 1, . . . , h − 1} let fi(T ) be the maximum of∑
v∈lvs(T ′) w(v)

h−1
h over all the (i, h)-periodically sparse subtrees, T ′, of T . We

will prove by induction on the maximal depth of T that:

h−1∏
i=0

fi(T ) ≥

 ∑
v∈lvs(T )

w(v)

h−1

,

from which it will follow that max0≤i≤h−1 fi(T ) ≥
(∑

v∈lvs(T ) w(v)
)h−1

h , as
required.

For a tree T of depth 0, consisting of a single node v, we have that fi(T ) =
w(v)

h−1
h and therefore

h−1∏
i=0

fi(T ) ≥
(
w(v)

h−1
h

)h
= w(v)h−1.

Assume that the maximal depth of T is at least 1, let r be the root of T and
denote by v1, . . . , vl its children. Denote by Tj the subtree of T rooted at vj .
Observe that:

f0(T ) ≥ max
1≤j≤l

fh−1(Tj),

and for i ∈ {1, . . . , h − 1}:

fi(T ) =
l∑

j=1

fi−1(Tj),

By repeated application of Hölder’s inequality:

l∑
j=1

h−2∏
i=0

[fi(Tj)]
1

h−1 ≤

h−2∏
i=0

l∑
j=1

fi(Tj)

 1
h−1

.
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Therefore, by the induction hypothesis:
h−1∏
i=0

fi(T )≥ max
1≤j≤l

fh−1(Tj) ·
h−1∏
i=1

l∑
j=1

fi−1(Tj)

≥ max
1≤j≤l

fh−1(Tj) ·

 l∑
j=1

(
h−2∏
i=0

fi(Tj)

) 1
h−1

h−1

≥

 l∑
j=1

(
h−1∏
i=0

fi(Tj)

) 1
h−1

h−1

≥

 l∑
j=1

∑
v∈lvs(Tj)

w(v)

h−1

=

 ∑
v∈lvs(T )

w(v)

h−1

.

Before proving Lemma 3.15, we prove the following variant of a proposition
from [4]:

Lemma 3.5. For any k > 1, any ultrametric is k-equivalent to an exact
k-HST.

Proof. Let T be a labelled tree rooted at r. Define a new labelled tree
T ′ as follows. Let u be a minimal depth vertex in T that has a child v for
which ∆(u) �= k∆(v). Let 0 ≤ i ∈ N be defined via ki ≤ ∆(u)

∆(v) < ki+1. Relabel
v by setting ∆′(v) = ∆(u)

ki ≥ ∆(v), and replace the edge [u, v] by a path of
length i whose labels decrease by a factor k at each step. Denote the tree
thus obtained by T ′. If we start out with an HST X with defining tree T ,
then the tree T ′ produced in this procedure defines a new HST. Iterating this
construction as long as possible, we arrive at a tree T̃ which defines an exact
k-HST. To prove that we have distorted the metric by a factor of at most k

observe that by construction, for any x, y ∈ X, lcaT (x, y) = lcaT̃ (x, y) and that
for any v ∈ T ∩ T̃ , ∆T (v) ≤ ∆T̃ (v) ≤ k∆T (v).

Proof of Lemma 3.15. Let h = �logk/α α� and let s = k1/h. By Lemma
3.5, X is s-equivalent to some exact s-HST Y via a noncontractive s-Lipschitz
embedding. Let T be the tree defining Y . Lemma 3.25 yields a subtree S of
T which is (i, h)-periodically sparse for some i ∈ {0, . . . , h − 1}, such that

∑
v∈S

w(g−1(v))
h−1

h ≥
(∑

x∈X

w(x)

)h−1
h

.

By attaching a path of length h − 1 − i to the root of S we may assume that
S is (h − 1, h)-periodically sparse. Similarly, by adding appropriate paths to
the leaves of S we may assume that there is an integer m such that all the
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leaves of S are at depth mh. Denote by r the root of S. We change the
tree S as follows. For every integer 0 ≤ j < m delete all the vertices of S

whose depth is in the interval [jh + 1, (j + 1)h − 1] and connect every vertex
of depth jh directly to all its descendants of depth (j + 1)h. Denote the tree
thus obtained by S′ and denote by Y ′ the metric space induced by S′ on Y .
It is evident that Y ′ is an exact sh-HST. We claim that Y ′ is sh−1 equivalent
to a subspace of X via a noncontractive sh−1 Lipschitz embedding. Indeed,
fix u, v ∈ Y ′ and let w be their least common ancestor in S. If we denote by
q the depth of w in S then the key observation is that since S is (h − 1, h)-
periodically sparse, q �≡ (h − 1) (mod h). We can therefore write q = i + jh

for some i ∈ {0, . . . , h − 2} and j ≥ 0. If we denote by w′ the least common
ancestor of u, v in S′ then by the construction, w′ is in depth jh in S. Hence
dY (u, v) = ∆(r)

si+jh and dY ′(u, v) = ∆(r)
sjh , so that:

dY (u, v) ≤ dY ′(u, v) ≤ sidY (u, v) ≤ sh−2dY (u, v).

This shows that Y ′ is sh−2 equivalent to Y via a noncontractive sh−2 Lipschitz
embedding. Since Y is s equivalent to a subspace of X via a noncontractive s

Lipschitz bijection we have that Y ′ is sh−1 equivalent to a subspace of X.
Recall that sh = k, and it remains to show that sh−1 ≤ α. Indeed by our

choice of h, h− 1 ≤ logk/α α, or 1
h−1 ≥ logα(k/α). Therefore α

h

h−1 ≥ k, and so

sh−1 = k
h−1

h ≤ α.

3.6. Passing from a k-HST to metric composition. In this section we prove
that if a metric space is close to a k-HST then it is very close to a metric space
in the composition closure of a class of metric spaces with low aspect ratio.

Lemma 3.16. For any α, β ≥ 1, if a metric space L is α-equivalent to a
βα-HST then L is (1 + 2/β)-equivalent to a metric space in compβ(α).

Proof. Let L be a metric space. Let k = βα. Let X be a k-HST such that
there is an α Lipschitz noncontractive bijection f : L → X. Namely, for every
x, y ∈ L, dL(x, y) ≤ dX(f(x), f(y)) ≤ αdL(x, y).

Let T be the tree defining X. For a vertex u ∈ T , let Tu be the subtree of
T rooted at u. Let Xu (a subspace of X) denote the HST defined by Tu and
Lu = f−1(Xu). Then diam(Lu) ≤ diam(Xu) = ∆(u).

Our goal is to build a metric space Z ∈ compβ(α) along with a non-
contractive Lipschitz bijection g : L → Z which satisfies for every x, y ∈ L,
dL(x, y) ≤ dZ(g(x), g(y)) ≤

(
1 + 2

β

)
dL(x, y). We prove this by induction on

the size of L. The inductive hypothesis needs to be further strengthened with
the requirement that diam(Z) ≤ diam(L) = ∆.

Let r be the root of T , with ∆(r) = ∆. Let C denote the set of chil-
dren of r. By induction, there exists for each child u ∈ C a metric space
Nu ∈ compβ(α) and a noncontractive Lipschitz bijection gu : Lu → Nu which
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satisfies for every x, y ∈ Lu, dLu
(x, y) ≤ dNu

(gu(x), gu(y)) ≤
(
1 + 2

β

)
dLu

(x, y).
Also diam(Nu) ≤ diam(Lu) = ∆(u).

Define a metric space M = (C, dM ) by setting for every u �= v ∈ C,

dM (u, v) = max{dL(x, y); x ∈ Lu, y ∈ Lv}.

Fix u �= v ∈ C and x ∈ Lu, y ∈ Lv. Since dX(f(x), f(y)) = ∆, we have that
∆/α ≤ dL(x, y) ≤ ∆. It follows that for every u �= v ∈ C and x ∈ Lu, y ∈ Lv,

∆
α

≤ dL(x, y) ≤ dM (u, v) ≤ diam(L) = ∆.

Therefore Φ(M) ≤ α and diam(M) ≤ ∆. Also for every u, v, x, y as above,

dL(x, y) ≤ dM (u, v)≤ dL(x, y) + diam(Lu) + diam(Lv)

= dL(x, y) + ∆(u) + ∆(v) ≤ dL(x, y) + 2
∆
k

≤ dL(x, y) + 2
αdL(x, y)

βα
≤

(
1 +

2
β

)
dL(x, y).

Now, we let

γ =
maxu∈C diam(Nu)
minu,v∈C dM (u, v)

, and β′ =
1
γ
≥ ∆/α

∆/k
= β.

Define Z ∈ compβ(α), by letting Z = Mβ′ [N ], where N = {Nu}u∈C . Also
define for every u ∈ C and x ∈ Xu, g(x) = gu(x).

Let u, v ∈ C and x ∈ Lu, y ∈ Lv. When u = v the bound on the distor-
tion of g follows from our induction hypothesis. For u �= v, dZ(g(x), g(y)) =
β′γdM (u, v) = dM (u, v), which implies the required bound on the distortion
of g, and the requirement diam(Z) ≤ ∆.

3.7. Distortions arbitrarily close to 2. Our goal in this section is to prove
the following theorem:

Theorem 3.26. There is an absolute constant c > 0 such that for any
k ≥ 1 and 0 < ε < 1, for any integer n:

Rk-HST(2 + ε, n) ≥ n
cε

log(2k/ε) .

In particular,
RUM(2 + ε, n) ≥ n

cε

log(2/ε) .

By Proposition 3.4 the same bound holds for R2(2 + ε, n).
As in the case of large α, we derive Theorem 3.26 from the following

stronger claim.



682 YAIR BARTAL, NATHAN LINIAL, MANOR MENDEL, AND ASSAF NAOR

Theorem 3.26′. There is an absolute constant c > 0 such that for any
k ≥ 1 and 0 < ε < 1:

ψk(2 + ε) ≥ cε

log(2k/ε)
.

The proof of Theorem 3.26′ uses most of the techniques developed for the
case of large α. The basic idea is first to apply Theorem 3.7′ to obtain some
constant α′ for which there is a constant bound on ψ(α′), e.g. 1/2. So, our
goal is to find another subspace for which we can improve the distortion from
α′ to 2 + ε. Again, we would like to exploit metric spaces with low aspect
ratio Φ. For large α we could do this with Φ bounded with respect to α.
Since we started with some constant α′ we can expect Φ to be constant as
well. However, the bound of Lemma 3.14 does not apply for small values of α.
Thus, our first step is to obtain meaningful lower bounds on ψk(Φ, 2 + ε) for
every ε > 0. This is done by giving a lower bound on ψEQ(Φ, 2 + ε), that is by
finding a large equilateral subspace, which is a special case of a k-HST. We can
now apply Lemma 3.11 to get lower bounds on ψk(compβ(Φ), 2 + ε). For large
α we were able to extend such bounds by finding a subspace close to a k-HST,
and therefore very close to a metric space in compβ(Φ) via Lemma 3.16. In the
present case, ”very close” means distortion ≈ 1+ε, which implies that k and β

must be in the range of 1/ε. This is achieved by initially applying Lemma 3.23
to get a bound on ψk(α′).

We begin with a proof of the bound on ψk(Φ, 2 + ε), which is based on
bounds on embedding into an equilateral space. We start with the following
result:

Lemma 3.27. Let α > 2, s ≥ 2 be real numbers and t ≥ 1 be an integer.
Let M be an n point metric space. Then at least one of the following two
conditions holds:

(1) M contains a subspace N of size at least s that is α-equivalent to an
equilateral space.

(2) M contains a subspace N of size at least n/st, such that diam(N) <

(α/2)−t diam(M).

Proof. By induction on t. Suppose that M has no subspace of size s that
is α equivalent to an equilateral space. For t = 1 let N0 = M . For t > 1 we
get by the induction hypothesis there is a subspace Nt−1 ⊆ M which contains
at least n/st−1 points and diam(Nt−1) ≤ (α/2)−t+1 diam(M).

Let {c1, . . . , cr} be a maximal subset of Nt−1 such that

d(ci, cj) ≥ diam(Nt−1)/α

for i �= j. Since {c1, . . . cr} is α equivalent to an equilateral space, our as-
sumption implies that r ≤ s. Let Ci = Nt−1 ∩ B(ci,diam(Nt−1)/α). By the
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maximality of r, ∪r
i=1Ci = Nt−1, and so if we set Nt to be the largest Ci, we

have that its cardinality is at least |Nt−1|/r ≥ n/st. Now:

diam(Nt) ≤ diam(B(ci,diam(Nt−1)/α)) < 2
α diam(Nt−1) ≤

(
2
α

)t diam(M).

This implies a bound on the cardinality of a subspace that is α-equivalent
to an equilateral space.

Corollary 3.28. Fix α > 2 and an integer n ≥ 4. Let M be a metric
space of size n. Then,

REQ(M ;α, n) ≥
(n

2

)�logα/2 Φ(M)�−1

≥ n
1
2�logα/2 Φ(M)�−1

.

Proof. Apply Lemma 3.27 with t =
⌈
logα/2 Φ(M)

⌉
and s = (n/2)1/t.

We obtain a subspace N of M . All we have to do is verify that with these
parameters the second condition in Lemma 3.27 cannot hold. Indeed, otherwise
|N | ≥ n/st = 2 so that diam(N) ≥ minx �=y dM (x, y), and it follows that
(α/2)t < Φ, which contradicts the choice of t.

We show next that Corollary 3.28 implies bounds for the weighted Ramsey
problem, and so we can bound ψEQ(Φ, α) for any α > 2. Since an equilateral is
in particular a k-HST, we get a bound on ψk(Φ, α). To obtain this we need to
extend the bound in Corollary 3.28 to hold for the weighted Ramsey problem.
To achieve this we make use of another lemma from [5], which is similar in
flavor to Lemma 3.20:

Lemma 3.29 ([5]). Let x = {xi}∞i=1 be a sequence of nonnegative real
numbers. Then there exists a sequence y = {yi}∞i=1 such that yi ≤ xi for all
i ≥ 1 and : ∑

i≥1

y
1/2
i ≥

∑
i≥1

xi

1/2

.

Moreover, one of the following two cases holds true:

(1) For all i > 2, yi = 0.

(2) There exists ω > 0 such that for all i ≥ 1 either yi = ω or yi = 0.

Corollary 3.30. For any k ≥ 1, α > 2 and Φ > 1,

ψk(Φ, α) ≥ ψEQ(Φ, α) ≥ 1
4

⌈
logα/2 Φ

⌉−1
.
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Proof. Let M be an n-point metric space with aspect ratio Φ(M) ≤ Φ. Let
w : M → R+ be a weight function normalized so that

∑
x∈M w(x) = 1. Apply

Lemma 3.29 to the sequence {w(x)}x∈M to obtain a sequence {w′(x)}x∈M such
that for all x ∈ M , w′(x) ≤ w(x). In addition, either (i) There are u, v ∈ M

such that w(u)1/2 + w(v)1/2 ≥ w′(u)1/2 + w′(v)1/2 ≥ 1, or there is a subset
N ⊆ M such that for all x ∈ N , w(x) ≥ w′(x) = ω > 0, and |N |ω1/2 ≥ 1. In
the first case the subset {u, v} is isometric to an equilateral space and we are
done. In the second case, if |N | ≤ 4 then ω ≥ 1/16. Hence, we can choose two
points u′, v′ ∈ N such that w(u′)1/4 + w(v′)1/4 ≥ 2ω1/4 ≥ 1. Again, {u′, v′} is
isometric to an equilateral space. Otherwise, |N | > 4 and by Corollary 3.28
there is a subspace N ′ ⊆ N which is α-equivalent to an equilateral space and
|N ′| ≥ |N | 12�logα/2 Φ�−1

. Hence:∑
x∈N ′

w(x)
1
4�logα/2 Φ�−1

≥ |N | 12�logα/2 Φ�−1

ω
1
4�logα/2 Φ�−1

= (|N |ω1/2)
1
2�logα/2 Φ�−1

≥ 1.

Proof of Theorem 3.26′. Theorem 3.7′ implies in particular that there is
a constant θ for which ψ(θ/2) ≥ 1/2. In other words, given a metric space X,
there exists a subspace X ′ of X which is (θ/2)-equivalent to an ultrametric Y

and satisfies the weighted Ramsey condition (∗) with ψ = 1/2.
Let β = 8k/ε and k′ = θβ. It follows from Lemma 3.23 that Y contains a

subspace Y ′ which is 2-equivalent to a k′-HST and satisfies condition (∗) with
ψk′(UM, 2) ≥ �log k′�−1. By mapping X into an ultrametric Y and its image
in Y into a k′-HST, we can apply Lemma 3.10 to obtain a subspace X ′′ of X

that is (θ/2) · 2 = θ-equivalent to a k′-HST, and satisfies condition (∗) with

ψk′(θ) ≥ ψk′(UM, 2) · ψ(θ/2) ≥ 1
2�log k′� .

Now, X ′′ is θ-equivalent to a θβ-HST and so Lemma 3.16 implies that it is
(1 + 2/β)-equivalent to a metric space Z in compβ(θ). Therefore

ψcompβ(θ)(1 + 2/β) ≥ ψk′(θ) ≥ 1
2�log k′� .

Additionally, using Lemma 3.11 and the bound of Corollary 3.30, we have that
there is a constant c′ such that

ψk

(
compβ(θ), 2 +

ε

4

)
= ψk

(
θ, 2 +

ε

4

)
≥ c′ε

log θ
.

It follows that Z contains a subspace Z ′ which is (2 + ε/4)-equivalent to a
k-HST.

By mapping X into Z ∈ compβ(θ), and then its image in Z into a
k-HST, we can apply Lemma 3.10 to obtain a subspace of X which is
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(2 + ε/4)(1 + 2/β) ≤ (2 + ε)-equivalent to a k-HST and which satisfies the
weighted Ramsey condition (∗) with

ψk(2 + ε) ≥ ψk

(
compβ(θ), 2 +

ε

4

)
· ψcompβ(θ)

(
1 +

2
β

)
≥ c′ε

2 log θ�log(8θk/ε)� ,

which implies the theorem by an appropriate choice of c.

4. Dimensionality based upper bounds

In this section we prove some upper bounds on the Ramsey function of
low dimensional spaces. In particular, these imply bounds on the Euclidean
Ramsey function R2(α, n). In addition, these bounds show that the lower
bounds for low dimensional �p spaces from Corollary 1.7 in the introduction
are nearly tight. Our upper bounds on R2(α, n) for α < 2 improve the results
of [17] by showing that for any α < 2, R2(α, n) ≤ 2 log2 n+C(α). The bounds
obtained on R2(α, n) for 2 < α ≤ log n/ log log n, are also possibly tight.

The proof technique we employ here originates from a counting argument
by Bourgain [15] and later variants (see [42]). A different argument, based
on geometric considerations, uses expander graphs. Expander graphs, in fact
yield the best upper bound we have on Rp(α, n) for α ≥ 2 and all p ≥ 1. This
is shown in Section 5.

In this section we prove the following bounds:

Theorem 4.1. Let X be an h-dimensional normed space and n be an
integer. Then

• For any 1 < α < 2, RX(α, n) ≤ 2 log2 n + 2h log2

(
C

2−α

)
.

• For any α ≥ 2, RX(α, n) ≤ Cn1−c/αh log α

where c, C > 0 are some absolute constants.

Using the Johnson-Lindenstrauss dimension reduction Lemma [31] we
derive the following bounds for the Euclidean Ramsey function R2(α, n).

Corollary 4.2. There are absolute constants c, C > 0 such that for
every integer n,

• For any 0 < ε ≤ 1, R2(2 − ε, n) ≤ 2 log2 n + C log2(2/ε)
ε2 .

• For any 2 ≤ α ≤ log n
log log n , R2(α, n) ≤ Cn1−c/α.

The counting argument presented below is based on the existence of dense
graphs for which all metrics defined on subgraphs are very far from each other.
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Let A be a set of vertices in the graph G = (V, E). We denote by EA the
set of edges in G with both vertices in A, and the cardinality of EA by eA.
The density of A is eA

(|A|
2 ) .

We first explain the relevance of large girth and high density to our prob-
lem. Let G = (V, E) be a large graph of girth g with no large sparse sub-
graphs. With every H ⊆ E we associate a metric on V defined by ρH(u, v) =
min {g − 1, dH(u, v)} , where dH is the shortest path metric in the subgraph of
G with edge set H. Below we show that among these ρH are metrics that can-
not be embedded with small distortion in any low-dimensional normed space.

Lemma 4.3. If there exists a graph G = (V, E) of size n with girth at
least g, in which every set of ≥ s vertices has density at least q, then for every
h-dimensional normed space X and every real 1 ≤ α < g − 1,

RX(α, n) ≤ max
{

s,
1 + 2

q

[
h log2

(
14αg

g − α − 1

)
+ log2

(n

s

)]}
.

Proof. To prove the theorem, we may certainly assume that RX(α, n) ≥ s.
Let k = RX(α, n); namely, every n point metric space contains a subset of size
k that α-embeds in X. In particular, for every H ⊆ E there is a set of k vertices
AH ⊆ V such that (AH , ρH) α-embeds into X. Therefore there is a certain set
A of k vertices, that is suitable for many sets H ⊆ E. That is, there is a class
H of at least 2|E|/

(
n
k

)
subsets H ⊆ E for which A = AH , and therefore (A, ρH)

α-embeds into X. Consider H1, H2 ∈ H equivalent if H1 ∩ EA = H2 ∩ EA.
There are at most 2|E|−eA members in H that are equivalent to a given set H.
Consequently, there are at least 2eA/

(
n
k

)
subsets H ⊆ E which are mutually

inequivalent and for which (A, ρH) α-embeds into X. Let fH : A → X be such
an embedding, i.e., for every u, v ∈ A:

1
α

ρH(u, v) ≤ ‖fH(u) − fH(v)‖X ≤ ρH(u, v).

Since ρH takes values in {0, 1, . . . , g−1}, by applying an appropriate translation
we may assume that fH(A) ⊆ BX(0, g). We now “round” the images fH(A)
to the points of a δ-net in BX(0, g), where δ will be determined soon. Let N
be a δ-net of BX(0, g), and define φH(v) to be the closest point in N to fH(v).
We claim that if H1, H2 ⊆ E are inequivalent, i.e., H1 ∩ EA �= H2 ∩ EA, then
φH1 �= φH2 . Indeed, we may assume that there are u, v ∈ A such that (u, v) ∈
H1 \H2. Since the girth of G is at least g, this implies that ρH2(u, v) = g − 1,
whereas ρH1(u, v) = 1. Now, if φH1(u) = φH2(u) and φH1(v) = φH2(v) then:

g − 1
α

=
ρH2(u, v)

α
≤‖fH2(u) − fH2(v)‖X ≤ 2δ + ‖φH2(u) − φH2(v)‖X

= 2δ + ‖φH1(u) − φH1(v)‖X ≤ 4δ + ‖fH1(u) − fH1(v)‖X

≤ 4δ + ρH1(u, v) = 4δ + 1.
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We select δ = g−α−1
5α so that this becomes a contradiction. It follows that each

of the aforementioned 2eA/
(
n
k

)
inequivalent sets H ∈ H gives rise to a distinct

function φH : A → N .
By standard volume estimates, |N | ≤ (2g

δ )h. Hence there are at most
|N |k ≤ (2g

δ )kh distinct functions from A to N . Consequently,(
2g

δ

)kh

≥ 2eA(
n
k

) ≥ 2q
(
k
2

)
(
n
k

) .

By estimating
(
n
k

)
≤ (ne

k )k ≤ (ne
s )k we have that

h log2

(
2g

δ

)
≥ (k − 1)q

2
− log2

(en

s

)
,

which yields the claimed bound on k.

Such graphs do exist as we now show:

Lemma 4.4. For every integer g ≥ 4, there exist graphs G = (V, E) of
arbitrarily large order n and girth at least g in which every set A ⊆ V of
cardinality at least n1− 1

8g has density at least n−1+ 1
2g .

Proof. This is a standard construction from random graph theory. Let
N ≥ Cg be an arbitrarily large integer, where C is an appropriately chosen
constant. Let η = 1

4g . Pick a random graph in G(N, p) where p = 2 · N−1+2η.
We claim: (i) With probability ≥ 1

2 this graph has fewer than N
2 cycles of

length < g, and (ii) With almost certainty, every set of cardinality ≥ (N
2 )1−

η

2

has density ≥ (N
2 )−1+2η. The theorem now follows by taking a graph with

these two properties and removing N
2 vertices, including at least one vertex

from each cycle of length < g. The resulting graph has N
2 vertices, it has no

short cycles, and satisfies the density condition.
The expected number of cycles of length < g is

g−1∑
i=3

1
2i

piN(N−1) . . . (N−i+1) ≤ 1
6

g−1∑
i=3

(pN)i ≤ (pN)g−1 =
(
2 · N

1
2g

)g−1
≤ N

4
.

In the last inequalities we use the facts that pN ≥ 2, N ≥ Cg, and C ≥ 4. It
follows that with probability ≥ 1

2 , there are no more than N/2 cycles shorter
than g.

The expected density in every set of vertices is, of course, p. To estimate
the deviation, we use the Chernoff bound:

Pr[eA ≤ 1
2

(|A|
2

)
p] ≤ e−

(|A|
2

)
p

8 .

Thus, the probability that there exists a set of cardinality ≥ k and density
≤ p/2 does not exceed 2N exp(−

(
k
2

)
p/8). For k = (N

2 )1−
η

2 , p = 2 ·N−1+2η, and
the assumption N ≥ Cg, this is easily seen to be o(1). The claim follows.
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Theorem 4.1 now follows easily:

Proof of Theorem 4.1. The claim for α ≥ 2 is obtained combining
Lemma 4.3 and Lemma 4.4 with g = �α + 2�. As 1/q ≤ s ≤ n1− 1

8α , we obtain
that for an appropriate choice of constant C,

RX(α, n) ≤ Cn1− 1
8α (h log α + log(n

1
8α )).

We choose c = 1/16, so that n1−c/α = n1− 1
16α ≥ n1− 1

8α log(n
1
8α ). The claim for

α ≥ 2 now follows.
For the case α < 2 we use, instead of Lemma 4.4, the (trivial) analogous

statement for the complete graph Kn. That is, we apply Lemma 4.3 with
g = 3, s = 2, and q = 1.

We are now ready to prove the promised upper bounds on R2(α, n).

Proof of Corollary 4.2. The result follows from the Johnson-Lindenstrauss
dimension reduction lemma [31] for �2. Let α ≥ 1, and let k = R2(α, n); i.e.,
every n-point metric space M contains a k-point subspace that α-embeds into
�2. By [31], for any 0 < δ ≤ 1, this subspace α(1 + δ)-embeds into �h

2 with
h ≤ C log k

δ2 . Hence, R2(α, n) ≤ R�h
2
(α(1 + δ), n). Now apply Theorem 4.1. The

claim for α ≥ 2 follows by taking δ = 1. For α = 2 − ε we set δ = ε/4. Then

k = R2(2 − ε, n) ≤ R�h
2

(
2 − ε

2
, n

)
≤ 2 log2 n +

C log k log
(

2
ε

)
ε2

,

which implies the bound in the proposition.

Another interesting consequence of Theorem 4.1 are upper bounds for
metrics defined by planar graphs. This may be interesting in view of the fact
that the target metrics in our lower bounds in Section 3 are ultrametrics (and
thus planar).

Theorem 4.5. Let F be a family of graphs, none of which contains a
fixed minor H on r vertices. Then for every integer n and every α ≥ 1:

RF (α, n) ≤ Cr3n1−c/α log2 n log α,

where c, C > 0 are universal constants.

Proof. It is implicit in [50] that the Euclidean embedding that Rao con-
structed is also a good low dimensional embedding into �∞. More precisely, if
F ∈ F is a graph on n points then it embeds with distortion C into �h

∞, with
h ≤ Cr3 log2 n. Thus RF (α, n) ≤ R�h

∞
(Cα, n). The result now follows from

Theorem 4.1.
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5. Expanders and Poincaré inequalities

In this section we prove lower bounds for the metric Ramsey function
in the case of expanders. The proof is based on generalizations of Poincaré
inequalities used by Matousék to prove lower bounds on the Euclidean distor-
tion of expander graphs. To obtain these inequalities we pass to a power of
the graph and delete vertices with small degree. The argument shows that
large subsets of expanders contain large sub-subsets which satisfy an appro-
priate Poincaré inequality (see Lemma 5.4 below). First, we recall some basic
concepts on graphs.

Let G = (V, E) be a d-regular graph, and let A be its adjacency matrix,
i.e. Auv = 1 if [u, v] ∈ E and Auv = 0 otherwise. Let λ1 ≥ λ2 ≥ · · · ≥ λn be
the eigenvalues of A. It is easy to observe that λ1 = d. Also, trace(A) = 0, so
that λn < 0. We occasionally write λi(G) to specify that G is the graph under
consideration. We define G’s multiplicative spectral gap as:

γ(G) =
λ2(G)

d
.

We also define the absolute multiplicative spectral gap of G as:

γ+(G) =
maxi≥2 |λi(G)|

d
=

max{λ2(G),−λn(G)}
d

.

In what follows we will use the following standard estimate: γ+(G) ≥ 1/d.
To verify it observe that nd = trace(A2) =

∑n
i=1 λi(G)2 ≤ d2+(n−1)[dγ+(G)]2

and use the fact that 1 ≤ d ≤ n − 1. We remark that this elementary bound
is weaker than the Alon-Boppana bound [1], but it is sufficient for our pur-
poses, and holds for all d (while the Alon-Boppana bound only holds for small
enough d).

The main statement of this section is:

Theorem 5.1. Let G = (V, E) be a d-regular graph, d ≥ 3. Let γ =
γ+(G). Then for every p, α ≥ 1:

Rp(G;α) ≤ Cd|V |1−c
logd(1/γ)

pα ,

where C, c are absolute constants.

Given S, T ⊆ V , we denote by E(S, T ) the set of directed edges between
vertices in S and T ; i.e,

E(S, T ) = {(u, v) ∈ S × T ; [u, v] ∈ E}.
We also denote by E(S) the set of edges in the subgraph induced by G on S;
i.e.,

E(S) = {{u, v}; u, v ∈ S, [u, v] ∈ E} .

With this notation, |E(S)| = |E(S,S)|
2 .
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The “Expander Mixing Lemma” [1] states:

Lemma 5.2 (Expander mixing lemma). Let G = (V, E) be a d-regular
graph (which may have loops and/or parallel edges). Then for every S, T ⊆ V ,∣∣∣∣|E(S, T )| − d|S||T |

|V |

∣∣∣∣ ≤ γ+(G)d
√
|S||T |.

In particular, ∣∣∣∣2|E(S)|
|S| − |S|

|V |d
∣∣∣∣ ≤ γ+(G)d.

Lemma 5.3. Let G = (V, E) be a d-regular graph, d ≥ 3. Let γ = γ+(G).
Then for any B ⊂ V satisfying |B| ≥ 8γ|V |, there exists C ⊂ B such that
|C| ≥ |B|/3, and for any u ∈ C,

d
|B|
8|V | ≤ degC(u) ≤ d

4|B|
|V | .

Proof. Denote k = |B|. By the expander mixing lemma,

|E(B)| ≤ dk2

2n

(
1 +

1
8

)
≤ dk2

n
.

Set B′ = {v ∈ B; degB(v) ≤ (4dk)/n}. Since the graph induced by G on B

contains k − |B′| vertices of degree greater than (4dk)/n, it follows that:

dk2

n
≥ |E(B)| ≥ k − |B′|

2
· 4dk

n
,

so that |B′| ≥ k/2. Again, by the expander mixing lemma,

2|E(B′)|
k

≥ 2|E(B′)|
2|B′| ≥ dk

4n
.

We now apply an iterative procedure which produces a sequence B′ =
B0 ⊃ B1 ⊃ B2 ⊃ . . . as follows: if minv∈Bi

degBi
(v) ≤ dk

8n then Bi+1 is obtained
from Bi by throwing away a vertex u ∈ Bi with degBi

(u) = minv∈Bi
degBi

(v).
Otherwise Bi+1 = Bi. This procedure eventually ends, and we are left with
a subset C ⊆ B′. Since at each step we delete at most dk

8n edges from B′, we
have that:

|E(C)| ≥ |E(B′)| − dk2

8n
≥ dk2

4n
− dk2

8n
=

dk2

8n
.

Note that the graph induced on C by G has minimal degree at least dk
8n .

To estimate |C| we apply the expander mixing lemma to get that:

2|E(C)|
|C| ≤ d

( |C|
n

+ γ

)
.
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Thus
d|C|2
2n

+
γd|C|

2
≥ |E(C)| ≥ dk2

8n
.

Since k ≥ 8γn, γd|C|
2 ≤ dk2

16n . Hence:

d|C|2
2n

≥ dk2

16n
,

so that |C| ≥ k
3 .

The following is the Poincaré inequality used in the proof of Theorem 5.1.

Lemma 5.4. Let G = (V, E) be a d-regular graph, d ≥ 3. Let γ = γ+(G).
Then for any B ⊂ V satisfying |B| ≥ 8γ|V |, there exists C ⊂ B such that
|C|≥|B|/3 and the following holds true: For any p≥1 and for every f :C→�p:∑

u,v∈C

‖f(u) − f(v)‖p
p ≤ (32p)p|V |

d

∑
[u,v]∈E(C)

‖f(u) − f(v)‖p
p.

The proof of Lemma 5.4 proceeds by first proving a slightly stronger ver-
sion of it for p = 2 and then extrapolating to the general case via the following
lemma based on an extrapolation argument which was used in [41]. Its proof
is delayed to the end of the section.

Lemma 5.5 (Extrapolation lemma for Poincaré inequalities). Let G =
(V, E) be a graph with maximal degree at most ∆. Fix p ≥ 1 and let A > 0 be
a constant such that for every f : V → R,∑

u,v∈V

|f(u) − f(v)|p ≤ (Ap)p |V |
∆

∑
[u,v]∈E

|f(u) − f(v)|p.(5)

Then for every 0 < q ≤ p and for every f : V → �q,∑
u,v∈V

‖f(u) − f(v)‖q
q ≤ (Ap)p |V |

∆

∑
[u,v]∈E

‖f(u) − f(v)‖q
q.

Additionally, for every p < q < ∞ and every f : V → �q:∑
u,v∈V

‖f(u) − f(v)‖q
q ≤ (4Aq)q |V |

∆

∑
[u,v]∈E

‖f(u) − f(v)‖q
q.

Proof of Lemma 5.4. Denote n = |V | and k = |B|. By Lemma 5.3, there
exists C ⊂ B with |C| ≥ k/3, such that the induced subgraph of G on C, has
minimal degree at least kd/8n and maximal degree at most ∆ = 4kd/n.
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We first prove that the following inequality hold true for every f : V → �2:∑
u,v∈C

‖f(u) − f(v)‖2
2 ≤

32n

d

∑
[u,v]∈E(C)

‖f(u) − f(v)‖2
2(6)

=
32 · 4k

∆

∑
[u,v]∈E(C)

‖f(u) − f(v)‖2
2.

By summation we may clearly assume that f : C → R. By translation
we may assume that

∑
v∈C f(v) = 0. Extend f to V by letting f(u) = 0 for

u /∈ C. Now,∑
u,v∈C

[f(u) − f(v)]2 = 2(|C| + 1)
∑
v∈C

f(v)2 − 2
∑

u,v∈C

f(u)f(v)

= 2(|C| + 1)
∑
v∈V

f(v)2 −
(∑

v∈C

f(v)
)2

= 2(|C| + 1)
∑
v∈V

f(v)2 ≤ 4k
∑
v∈V

f(v)2.

Since
∑

v∈V f(v) = 0 we can use the spectral gap of H to get that:∑
[u,v]∈E(C)

[f(u) − f(v)]2 = 2
∑
v∈C

degE(C)(v)f(v)2 − 2
∑

[u,v]∈E(C)

f(u)f(v)

≥ 2
∑
v∈V

dk

8n
f(v)2 − 2

∑
[u,v]∈E

f(u)f(v)

=
dk

4n

∑
v∈V

f(v)2 − 〈Atf, f〉

≥ dk

4n

∑
v∈V

f(v)2 − γd
∑
v∈V

f(v)2

≥
(

k

4n
− γ

)
d

∑
v∈V

f(v)2 ≥ k

8n
d

∑
v∈V

f(v)2,

which implies inequality (6). The Poincaré inequalities for p ≥ 1 now follow
immediately from inequality (6) via Lemma 5.5, and by substituting the value
of ∆.

Proof of Theorem 5.1. The proof proceeds by showing that for every
B ⊆ V satisfying cp(B) ≤ α,

|B| ≤ 100d|V |1−
logd(1/γ)
2561pα .

Set k = |B| and n = |V |. Define:

t =

 log(8n)

2560pα log d + log
(

1
γ

)
 .
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Note that t ≤ diam(G) since it is well known that diam(G) ≥ logd(n). We
may also assume that t ≥ 1, since otherwise, using the fact that 1/γ ≤ d, we
get that n < e2561pα log d, in which case the required result holds vacuously.

Denote by A the adjacency matrix of G. Let H be the multi-graph with
adjacency matrix At. In other words, the number of H-edges between two
vertices in V is the number of distinct paths of length t joining them (and
it is 0 if no such path exists). The multi-graph H is dt regular and by the
spectral theorem, γ+(H) = γt. We may assume that k ≥ 8γtn (otherwise the
conclusion of the theorem in trivial).

It follows from Lemma 5.4 that there exists C ⊂ B such that |C| ≥ k/3,
and for every f : C → �p:∑

u,v∈C

‖f(u) − f(v)‖p
p ≤ (32p)pn

dt

∑
[u,v]∈EH(C)

‖f(u) − f(v)‖p
p.

Let f : B → �p be an embedding such that for all u, v ∈ B, dG(u,v)
α ≤

‖f(u) − f(v)‖p ≤ dG(u, v). Then:∑
[u,v]∈EH(C)

‖f(u) − f(v)‖p
p ≤

∑
[u,v]∈EH(B)

dG(u, v)p ≤ |EH(B)|tp ≤ dtk2tp

n
,

where the last inequality follows from an application of the expander mixing
lemma:

|EH(B)| ≤ dtk2

2n

(
1 +

1
8

)
≤ dtk2

n
.

Let s =
⌊
logd

(
k
12

)⌋
. We may clearly assume that s > 1. The number of

vertices of distance at most s from a given vertex v0 ∈ G is bounded by:

1 + d + · · · + ds ≤ 2ds ≤ k

6
≤ |C|

2
.

Hence: ∑
u,v∈C

‖f(u) − f(v)‖p
p ≥

1
αp

∑
u,v∈C

dG(u, v)p ≥ |C|2sp

2αp
(7)

≥ k2sp

18αp
≥ k2

80αp

[
logd

(
k

12

)]p

.

Plugging this into the Poincaré inequality we get that:

k2

80αp

[
logd

(
k

12

)]p

≤ (32p)pn

dt
· dtk2tp

n
,

which gives

logd

(
k

12

)
≤ 2560pαt =⇒ k ≤ 12d2560pαt.
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Since t ≤ log(8n)

2560pα log d+log
(

1
γ

) , it follows that:

k≤ 12 exp

 log(8n) · 2560pα log d

2560pα log d + log
(

1
γ

)


≤ 100n
1− log(1/γ)

2560pα log d+log(1/γ) ≤ 100n1− logd(1/γ)
2561pα ,

where we have used once more the estimate log(1/γ) ≤ log d.

It remains to prove Lemma 5.5.

Proof of Lemma 5.5. The case 0 < q ≤ p is simple. Coordinate-wise
summation of (5) shows that for every f : V → �p:

∑
u,v∈V

‖f(u) − f(v)‖p
p ≤ (Ap)p |V |

∆

∑
[u,v]∈E

‖f(u) − f(v)‖p
p.

Since �2 is isometric to a subspace of Lp, it follows that for every f : V → �2,

∑
u,v∈V

‖f(u) − f(v)‖p
2 ≤ (Ap)p |V |

∆

∑
[u,v]∈E

‖f(u) − f(v)‖p
2.

Since (R, |x − y|q/p) is isometric to a subset of �2 ([52], [22]), the required
inequality follows.

We now pass to the case p < q. In this case the following standard
numerical inequality holds true for every a, b ∈ R (see Lemma 4 in [41]):

∣∣|a|q/psign(a) − |b|q/psign(b)
∣∣ ≤ q

p
|a − b|

(
|a|

q

p
−1 + |b|

q

p
−1

)
.(8)

It is suffices to prove the claims coordinate-wise, i.e. for functions f :V →R.
Fix some f :V →R. By continuity there is some c ∈ R such that:∑

v∈V

|f(v) + c|q/psign(f(v) + c) = 0.

Hence, by replacing f with f + c we may assume that:∑
v∈V

|f(v)|q/psign(f(v)) = 0.
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Now:∑
v∈V

|f(v)|q =
∑
v∈V

∣∣∣∣∣|f(v)|q/psign(f(v)) − 1
|V |

∑
u∈V

|f(u)|q/psign(f(u))

∣∣∣∣∣
p

≤ 1
|V |

∑
u,v∈V

∣∣|f(u)|q/psign(f(u)) − |f(v)|q/psign(f(v))
∣∣p

≤ (Ap)p

∆

∑
[u,v]∈E

∣∣|f(u)|q/psign(f(u)) − |f(v)|q/psign(f(v))
∣∣p

≤ (Aq)p

∆

∑
[u,v]∈E

|f(u) − f(v)|p
(
|f(u)|

q

p
−1 + |f(v)|

q

p
−1

)p
,

where in the last two steps we have used (5) and (8), respectively. An appli-
cation of Hölder’s inequality gives that:∑

[u,v]∈E

|f(u) − f(v)|p ·
(
|f(u)|

q

p
−1 + |f(v)|

q

p
−1

)p

≤

 ∑
[u,v]∈E

|f(u) − f(v)|q
p/q  ∑

[u,v]∈E

(
|f(u)|

q

p
−1 + |f(v)|

q

p
−1

) pq

q−p

1− p

q

.

Using the assumption on the maximal degree we get that:∑
[u,v]∈E

(
|f(u)|

q

p
−1 + |f(v)|

q

p
−1

) pq

q−p ≤ 2
qp

q−p
−1

∑
[u,v]∈E

(|f(u)|q + |f(v)|q)

≤ 2
qp

q−p ∆
∑
v∈V

|f(v)|q.

Summarizing, we have shown that:

∑
v∈V

|f(v)|q ≤ (2Aq)p

∆
p

q

 ∑
[u,v]∈E

|f(u) − f(v)|q
p/q (∑

v∈V

|f(v)|q
)1− p

q

.

This inequality simplifies to:∑
v∈V

|f(v)|q ≤ (2Aq)q

∆

∑
[u,v]∈E

|f(u) − f(v)|q.

We conclude by noting that:∑
u,v∈V

|f(u) − f(v)|q ≤ 2q|V |
∑
v∈V

|f(v)|q.
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We now show that the interplay between the Euclidean distortion and the
cardinality in Theorem 5.1, for p = 2, is tight, up to the dependence on d

and γ. We require an upper estimate for the diameter of an n-point expander.
It is well known that the diameter is O(log n), but here we will be a little bit
more accurate.

We need the following bound on the diameter of expander graphs [20]:

Proposition 5.6. Let G = (V, E) be an n-vertex, d-regular graph. De-
note γ = γ+(G). Then the diameter of G is at most log1/γ n + 1.

Proposition 5.7. Let G = (V, E) be an n-vertex, d-regular graph, d ≥ 3,
and set γ = γ+(G). Then, there is an absolute constant C > 0 such that for
any α > 1,

R2(G;α) ≥ REQ(G;α) ≥ n
1− C

α logd(1/γ) .

Proof. Iteratively, extract a point x ∈ V together with a ball of radius
r = diam(G)/α around x. Each such ball contains at most d+ d(d− 1)+ · · ·+
d(d − 1)�r ≤ 3(d − 1)r+1 points, and thus we can repeat this process at least
n/(3(d − 1)r+1) times, and get the desired set. Its size is at least

n

3(d − 1)r+1
=

n

3
(d − 1)−( diam(G)

α
+1)

≥ n

3(d − 1)2
(d − 1)−

log1/γ n

α =
1

3(d − 1)2
n

1− 1
α log(d−1)(1/γ) .

6. Markov type, girth and hypercubes

Markov type was defined in [2] and was applied in [38] to obtain lower
bounds for the Euclidean distortion of regular graphs with large girth. This
concept plays a key role in our analysis of the metric Ramsey problem for
the discrete cube and graphs with large girth. Let (X, d) be a metric space.
We shall say that {Mk}∞k=0 is a stationary time-reversible Markov chain on X

if there are x1, . . . , xn ∈ X, an n × n stochastic matrix A and a stationary
distribution π = (π1, . . . , πn) of A such that for every i, j, πiAij = πjAji,
{Mk}∞k=0 is a Markov chain with transition matrix A and M0 is distributed
according to π. (X, d) is said to have Markov type p > 0 with constant C if
for any stationary time-reversible Markov chain on X, and for any time s:

E[d(Zs, Z0)p] ≤ CpsE[d(Z1, Z0)p].

In [2] (see also [38]) it was shown that Hilbert space has Markov type 2
with constant 1. Actually, these references deal with the special case in which
A is symmetric and π is the uniform distribution on the states x1, . . . , xn,
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but the proof is easily seen to carry over to stationary time-reversible Markov
chains.

6.1. Graphs with large girth. For later applications, it will be convenient
to introduce a notion of “Euclidean distortion at small distances” as follows.
Let (X, dX), (Y, dY ) be metric spaces and s > 0. For every injective f : X → Y

define:

dist(s)(f) =

(
sup

0<dX(x,y)≤s

dY (f(x), f(y))
dX(x, y)

)
·
(

sup
0<dX(x,y)≤s

dX(x, y)
dY (f(x), f(y))

)
,

and:
c
(s)
Y (X) = inf

{
dist(s)(f); f : X → Y

}
.

As before, we write c
(s)
2 (X) = c

(s)
�2

(X).
Let G = (V, E) be a graph. In what follows we denote by δ(G) the average

degree of G, i.e.

δ(G) =
∑

v∈V deg(v)
|V | =

2|E|
|V | .

We begin with the following strengthening of a result from [38].

Theorem 6.1. Let G = (V, E) be a graph with girth g and average degree
δ = δ(G); then for every integer 1 < s < g/2, c

(s)
2 (G) ≥ δ−2

δ

√
s. In particular,

c2(G) ≥ δ − 2
δ

√⌊g

2

⌋
− 1.

Proof. Assume first that G is connected. Consider the reversible Markov
chain {Zk}∞k=0 that corresponds to the canonical random walk on G. Recall
that πv = deg(v)/(δn) is a stationary distribution of this Markov chain.

For every 1 < s < g/2,

E[dG(Zs, Z0)] ≥ Ev∈V

[
deg(v) − 1

deg(v)
(E[dG(Zs−1, Z0)|Zs−1 = v] + 1)

+
1

deg(v)
(E[dG(Zs−1, Z0)|Zs−1 = v] − 1)

]
= Ev∈V

[
deg(v) − 2

deg(v)
+ E[dG(Zs−1, Z0)|Zs−1 = v]

]
= E[dG(Zs−1, Z0)] + 1 −

∑
v

πv
2

deg(v)

= E[dG(Zs−1, Z0)] + 1 −
∑

v

deg(v)
δn

2
deg(v)

= E[dG(Zs−1, Z0)] +
δ − 2

δ
.
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By induction E[dG(Zs, Z0)] ≥ s δ−2
δ . Therefore

E[dG(Zs, Z0)2] ≥ [EdG(Zs, Z0)]2 ≥ s2

(
δ − 2

δ

)2

.

On the other hand, since Hilbert space has Markov type 2 with constant 1,

E[dG(Zs, Z0)2] ≤ c
(s)
2 (G)2sE[dG(Z1, Z0)2] = c

(s)
2 (G)2s.

So c
(s)
2 (G) ≥ δ−2

δ

√
s.

If G is disconnected, there is a connected component C of G in which
the average degree is at least δ = δ(G). The theorem follows by applying the
above proof to the connected graph spanned by C.

Let G = (V, E) be a d-regular graph, and let A be its adjacency matrix,
and λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of A. Recall (see Section 5)
that the multiplicative spectral gap of G is γ(G) = λ2(G)

d and the absolute
multiplicative spectral gap of G is γ+(G) = max{λ2(G),−λn(G)}

d . For S ⊆ V ,
let E(S) = {{u, v}; u, v ∈ S, [u, v] ∈ E} . Recall that the Expander Mixing
Lemma implies that

2|E(S)|
|S| ≥ d

[ |S|
|V | − γ+(G)

]
.

This statement motivates the following useful definition:

Definition 6.2 (self mixing parameter). Let G = (V, E) be a d-regular
graph. The self-mixing parameter of G is defined as:

µ(G) = max
{ |S|
|V | −

2|E(S)|
d|S| ;S ⊆ V

}
.

The Expander Mixing Lemma implies that µ(G) ≤ γ+(G). We have in
fact the following estimate:

Lemma 6.3. Let G = (V, E) be a d-regular n-vertex graph, let A be G’s
adjacency matrix and let d = λ1 ≥ · · · ≥ λn be its eigenvalues. Then:

µ(G) ≤ −λn

d
.

Proof. Let w1, . . . , wn be an orthonormal system of eigenvectors for A

with Awi = λiwi for i = 1, . . . , n. Let 1 = 1V be the all-ones vector; then
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w1 = 1√
|V |

1. Let 1S be the indicator of some subset S ⊆ V . Then,

2|E(S)|=
〈
A1S ,1S

〉
=

〈
A

n∑
i=1

〈1S , wi〉wi,

n∑
i=1

〈1S , wi〉wi

〉
=

n∑
i=1

〈1S , wi〉2λi

≥〈1S , w1〉2λ1 + λn

n∑
i=1

〈1S , wi〉2

=
|S|2
n

· d + λn|S|.

Lemma 6.4. Let G = (V, E) be a d-regular graph with girth g and put
µ = µ(G). Fix B ⊆ V , 1 ≤ s < g/2 and denote α = c

(s)
2 (B, dG). Assume that

α2 < s. Then,

|B| ≤ µ|V | + 2|V |
d

(
1 − α√

s

) .

Proof. Set |B| = k and |V | = n. By the definition of the self mixing
parameter,

2|E(B)| ≥ dk2

n
− µdk.

Consider the graph on B induced by G (i.e. the edges are the edges of G which
are also in B × B). Its girth is not less than g and its average degree is:

δ = δ(B) =
2|E(B)|

k
≥ dk

n
− µd.

Moreover, since G has girth g and s < g/2, if dB(u, v) ≤ s, for some two vertices
u, v ∈ B, then dB(u, v) = dG(u, v). Consequently, c

(s)
2 (B, dB) ≤ c

(s)
2 (B, dG) =

α. An application of Theorem 6.1 yields:

α ≥
(

1 − 2
δ

)√
s,

so that,
dk

n
− µd ≤ δ ≤ 2

1 − α√
s

,

which gives:

k ≤ µn +
2n

d
(
1 − α√

s

) .
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Let G = (V, E) be a graph and 1 ≤ t ≤ diam(G) be an integer. We define
the t-distance graph of G as G(t) = (V, E(t)) where [u, v] ∈ E(t) if and only if
dG(u, v) = t. We collect below some properties of G(t) (part 6 of the lemma
below will not be applied in the sequel, and is included here for possible future
reference).

Lemma 6.5. Let G = (V, E) be a d-regular graph, d ≥ 3, with girth g and
let 1 ≤ t < g/2. Then:

1) G(t) is a d(d − 1)t−1 regular graph.

2) The girth of G(t) is not less than g/t.

3) For every u, v ∈ V ,

dG(t)(u, v) <
g

2t
=⇒ dG(t)(u, v) =

dG(u, v)
t

.

4) For every B ⊆ V and 1 ≤ s < g
2t , c

(s)
2 (B, dG(t)) ≤ c2(B, dG).

5) If t is even then µ(G(t)) ≤ 8(d − 1)−t/4.

6) If t is odd then γ(G(t)) ≤ 8e−(1−γ(G))t/8.

Proof. Since G has girth g and t < g/2, the number of vertices with
distance t from a given vertex is the number of leaves of a d-regular tree of
depth t, which is d(d − 1)t−1. This proves 1). The statements 2) and 3) are
also simple consequences of the fact that G has girth g. Assertion 4) follows
immediately from assertion 3).

To prove assertion 5), note that the adjacency matrix of G(t), A(t), is the
t-distance matrix of G; i.e., A

(t)
uv = 1 if dG(u, v) = 1 and 0 otherwise. If we

denote by A the adjacency matrix of G then there exists a polynomial Pt of
degree t such that A(t) = Pt(A) (this is the so-called Geronimus polynomial.
The properties of the polynomials used here can be found e.g. in [13], [38]).
The polynomial Pt has degree t; all its roots are real and reside in the interval
[−2

√
d − 1, 2

√
d − 1]. An explicit trigonometric expression for Pt is:

Pt(2
√

d − 1 cos θ) = (d − 1)t/2−1 (d − 1) sin((t + 1)θ) − sin((t − 1)θ)
sin θ

.

Finally, if t is even, then Pt is an even function and if t is odd, then Pt is an
odd function. The spectral theorem shows that {Pt(λi(G))} are the eigenvalues
of A(t).

We turn to estimate the smallest eigenvalue of A(t), for t even. This eigen-
value must be negative, but Pt is positive outside the interval [−2

√
d − 1, 2

√
d − 1].
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In other words, if Pt(x) < 0, then x ∈ [−2
√

d − 1, 2
√

d − 1] and x = 2
√

d − 1 cos θ

for some θ ∈ [−π, π]. Therefore,

Pt(x) = (d − 1)t/2−1 (d − 1) sin((t + 1)θ) − sin((t − 1)θ)
sin θ

.

Using the elementary estimate | sin rα| ≤ r| sinα| for α ∈ [−π, π] and r ≥ 1, it
follows that:

|Pt(x)| ≤ d(t + 1)(d − 1)t/2−1.

Hence, by Lemma 6.3,

µ(G(t)) ≤ d(t + 1)(d − 1)t/2−1

d(d − 1)t−1
= (t + 1)(d − 1)−t/2 ≤ 8(d − 1)−t/4.

To prove assertion 6) we distinguish between two cases:

Case one. λ2(G(t)) = Pt(λ2(G)). In this case we apply the mean value
theorem and find some a ∈ (λ2(G), λ1(G)) such that:

log
[

1
γ(G(t))

]
= log

[
Pt(d)

Pt(λ2(G))

]
= [d − λ2(G)]

P ′
t(a)

Pt(a)

= [1 − γ(G)]d
t∑

i=1

1
a − yi

where yi are the roots of Pt. Therefore,

log
[

1
γ(G(t))

]
≥ [1 − γ(G)]t

d

d + 2
√

d − 1
≥ [1 − γ(G)]t

2
,

as claimed.

Case two. λ2(G(t)) = Pt(λi(G)) for some i ≥ 3. We claim that λi must
be in the interval [−2

√
d − 1, 2

√
d − 1]. Recall that all the zeros of Pt are in

this interval. It is impossible that λi < −2
√

d − 1, since Pt < 0 there (t is
odd). Also, λi > 2

√
d − 1 is impossible, since Pt is increasing on [2

√
d − 1,∞)

and λ2(G) ≥ λi(G), whereas Pt(λi(G)) > Pt(λ2(G)). Therefore, λi(G) ∈
[−2

√
d − 1, 2

√
d − 1], and as in the proof of 5), we estimate:

Pt(λi(G)) ≤ d(t + 1)(d − 1)t/2−1.

Hence:

γ(G(t)) =
Pt(λi(G))
d(d − 1)t−1

≤ (t + 1)(d − 1)−t/2 ≤ (t + 1) · 2−t/2,

which implies the required result.
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We can now prove an upper bound for the Ramsey problem for graphs
with large girth.

Theorem 6.6. Let G = (V, E) be a d-regular graph, d ≥ 3 with girth g.
Let 1 ≤ α <

√
g

6 . There is an absolute constant c > 0 such that

R2(G;α) ≤ 12(d − 1)−c g

α2 |V |.

Proof. The proof proceeds by showing that for every B ⊆ V such that
c2(B, dG) ≤ α, the following estimate holds:

|B| ≤ 12(d − 1)−
g

64α2 |V |.
Let t be the unique even defined by g

8α2 −2 ≤ t < g
8α2 . Put s = 4α2. Now,

since s < g
2t , part 4) of Lemma 6.5 implies that:

c
(s)
2 (B, dG(t)) ≤ c2(B, dG) ≤ α.

By Lemma 6.5, girth(G(t)) ≥ g/t. Also, s < g
2t , so we can apply Lemma 6.4 to

G(t). Combined with assertion 5) of Lemma 6.5 we deduce:

|B| ≤µ(G(t))|V | + 2|V |
d(d − 1)t−1

(
1 − α√

4α2

)
≤

[
8(d − 1)−t/4 + 4(d − 1)−t

]
|V |

≤ 12(d − 1)−t/4|V |
≤ 12(d − 1)−

1
4( g

8α2 −2)|V | ≤ 12(d − 1)−
g

64α2 |V |.

6.2. The discrete cube. The solution for the metric Ramsey problem for
the discrete cube is also based on the notion of Markov type. The discrete cube
has a small girth, and so other ideas are called for. Our analysis utilizes another
family of orthogonal polynomials — the Krawtchouk polynomials which appear
in many studies related to the discrete cube.

Let k ≤ d. The degree-k Krawtchouk polynomial for the d-dimensional
cube is:

K
(d)
k (x) =

k∑
j=0

(−1)j

(
x

j

)(
d − x

k − j

)
.

Again we need an estimate for the smallest value that this polynomial
takes.

Lemma 6.7. Let 1 ≤ k ≤ d
2 be even. Then:

K
(d)
k (x) ≥ −

(
64k

d

)k/2 (
d

k

)
.
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Proof. It is known (see for example [35]) that all k zeros of K
(d)
k are real

and belong to the interval:[
d

2
−

√
(k − 1)(d − k + 2),

d

2
+

√
(k − 1)(d − k + 2)

]
.

Since k is even, K
(d)
k is symmetric around d/2 (i.e. K

(d)
k (x) = K

(d)
k

·(d − x)). It is also easily checked that the leading coefficient of K
(d)
k is (−2)k

k! .

So K
(d)
k (x) ≤ 0 only for x in the above interval. Let z1, z2, . . . , zk be the zeros

of K
(d)
k (x),

K
(d)
k (x) =

2k

k!

k∏
i=1

(zi − x),

and since x, z1, . . . , zk are all in an interval of length 2
√

(k − 1)(d − k + 2) ≤
4
√

k(d − k), it follows that for x in the interval above:

|K(d)
k (x)| ≤ 2k

k!
(4

√
k(d − k))k ≤

(
64k

d

)k/2

·
(

d

k

)
.

To verify this inequality, note that after clearing equal terms, it reduces to
[d(d−k)]k/2 ≤ d(d−1) . . . (d−k+1). This follows by multiplying the inequality
d(d − k) ≤ (d − j)(d + j − k + 1) over j = 0, . . . , k/2.

Let Ωd = {0, 1}d be the graph of the d-dimensional cube. (Two vectors
are adjacent if and only if they differ in exactly one coordinate.) As before, we
consider the t-distance graph on the cube Ω(t)

d . It is well known (e.g. [21]) and
easy to show 2 that the eigenvalues of the graph Ω(t)

d are the numbers K
(d)
t (i)

for i = 0, . . . , d where the i-th eigenvalue appears with multiplicity
(
d
i

)
. This

graph is
(
d
t

)
-regular and so its largest eigenvalue is

(
d
t

)
. Lemmas 6.3 and 6.7

now yield an estimate for the self-mixing parameter µ(Ω(t)
d ).

Lemma 6.8. For every even integer 1 ≤ t < d/2,

µ(Ω(t)
d ) ≤

(
64t

d

)t/2

.

To prove the main result of this section, we need an additional estimate.

2To show this, recall the 2d Walsh functions {WS | S ∈ Ωd} that are defined via WS(T ) =

(−1)〈S,T 〉. It is not hard to see that they form a complete set of eigenfunctions for Ω
(t)
d and

the eigenvalue corresponding to WS is K
(d)
t (n − 2|S|).
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Lemma 6.9. Let t, x, d be integers such that 2t ≤ x ≤ d/2. Then:

t∑
j=t/3

(
x

j

)(
d − x

t − j

)
≤ 2

(
150x

d

)t/3 (
d

t

)
.

Proof. Clearly,
(
d
t

)
=

∑
j

(
x
j

)(
d−x
t−j

)
, so it suffices to consider the range

x ≤ d
150 . In other words, we assume t

3 ≤ j ≤ t ≤ x
2 ≤ d

300 . In this range, the

terms decrease geometrically,
(

x
j+1

)(
d−x

t−(j+1)

)
≤ 1

10

(
x
j

)(
d−x
t−j

)
. It therefore suffices

to show that
(

x
t/3

)(
d−x
2t/3

)
≤

(
150x

d

)t/3 (
d
t

)
. Recall the following elementary and

well-known estimates of binomial coefficients: For every 1 ≤ k ≤ n,(n

k

)k
≤

(
n

k

)
≤

(en

k

)k
.

We plug this into the expression and simplify, to conclude that the inequality
holds.

Theorem 6.10. There are absolute constants C, c, c′ > 0 such that for
every integer d and for every α ≥ 1,

2
(
1− log(c′α)

α2

)
d ≤ R2(Ωd;α) ≤ C2(1− c

α2 )d.

Proof. We start with the lower bound. An easy fact from coding theory,
called the Gilbert-Varshamov bound, [40], states that there exists a subset
B ⊆ Ωd such that all u �= v ∈ B, are at distance ≥ d

α2 , and:

|B| ≥ 2d∑
m≤d/α2

(
d
m

) ≥ 2
(
1− log(c′α)

α2

)
d
,

where the last inequality follows from standard estimates on binomial coeffi-
cients. Note that for every u, v ∈ Ωd, ‖u− v‖2 =

√
ρ(u, v), where ρ stands for

the Hamming distance. But for every distinct u, v ∈ B, d
α2 ≤ ρ(u, v) ≤ d, so

that
√

d
α ≤ ρ(u,v)

‖u−v‖2
≤

√
d. Consequently, c2(B) ≤ α.

To motivate the proof of the upper bound, let us sketch a proof based on
Markov type for (a weakening of) the classical fact [25] that c2(Ωd) ≥ a

√
d for

some absolute a > 0 (in fact, c2(Ωd) =
√

d). The random walk on Ωd almost
surely drifts with constant speed from its point of origin for time > a′d for some
absolute a′ > 0. This is true because a constant fraction of the coordinates stay
unchanged for this duration. On the other hand, the fact that Hilbert space
has Markov-type 2 implies that the corresponding walk on an image of Ωd will
typically drift only O(

√
d) away from its origin. This discrepancy implies a

metric distortion ≥ c
√

d, as claimed. The spirit of the proof we present is
similar. We only have a subset B ⊆ Ωd, so we consider (a dense connected
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component of) the graph Ω(t)
d . The main technical effort is in estimating the

typical rate of drift from the walk’s origin.
We wish to show, then, that if B ⊆ Ωd satisfies c2(B) ≤ α, then |B| ≤

C2(1− c

α2 )d. Let n = 2d and k = |B|. We seek an upper bound on k. As in the
proof of Theorem 6.6, we investigate the random walk on the distance t graph
of the graph in question, namely Ω(t)

d . We define t as the even integer nearest
to d

Kα2 , where K is a suitably large absolute constant to be specified later. It

can be verified that 2(1−
c

α2 )d ≥ 2n
(

32t
d

)t/2 for this choice of t. Therefore, we
may assume that:

k

n
≥ 2

(
64t

d

)t/2

,

or else the required upper bound on k already holds.
Denote by Et(B) the number of unordered pairs of points of distance t

in B. In terms of the graph Ω(t)
d this is: Et(B) = |EΩ

(t)
d

(B)|. By Lemma 6.3:

2Et(B) ≥
(
d
t

)
k2

n
− µ(Ω(t)

d )
(

d

t

)
k ≥

(
d
t

)
k2

n
−

(
64t

d

)t/2 (
d

t

)
k,

so that:

δ = δΩ
(t)
d

(B) =
2Et(B)

k
≥

(
d

t

) [
k

n
−

(
64t

d

)t/2
]
≥

(
d

t

)
· k

2n
.

There is a connected component C of the subgraph of Ω(t)
d spanned by B that

has average degree δ′ ≥ δ, i.e.,

δ′ = δΩ
(t)
d

(C) ≥ δ ≥
(

d

t

)
· k

2n
.

Let {Zr}∞r=0 be the random walk on Ω(t)
d restricted to C. We start the walk at

the stationary distribution, viz.,

P (Z0 = v) =
degt

C(v)
δ′|C| ,

where degt
C(v) is the degree of vertex v in Ω(t)

d restricted to C (i.e. the number
of elements of C with Hamming distance t to v).

Suppose that our random walk starts from S ∈ C and reaches, after some
time, a vertex T with x = ρ(S, T ). Say that we next step from T to W . We
seek an upper bound on the probability that ρ(S, W ) ≤ x + t

3 . The total
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number of neighbors W of T in Ω(t)
d for which this holds is

A(x) =
∑

j≥�t/3�

(
x

j

)(
d − x

t − j

)
.

By Lemma 6.9, A(x) ≤ 2
(

150x
d

)t/3 (
d
t

)
when 2t ≤ x ≤ d

2 .
Now for every possible walk, ρ(Zr, Z0) ≤ rt holds for every integer r > 1.

For times 2 ≤ r ≤ d
2t we are able to show that the walk tends to drift at least

a′′t per step away from its origin for some absolute a′′ > 0.

E[ρ(Zr+1 , Z0)]

≥E

[
degt

C(Zr) − A(ρ(Zr, Z0))
degt

C(Zr)

(
ρ(Zr, Z0) +

t

3

)

+
A(ρ(Zr, Z0))

degt
C(Zr)

(ρ(Zr, Z0) − t)

]

= E[ρ(Zr, Z0)] +
t

3
− 4t

3
E

[
A(ρ(Zr, Z0))

degt
C(Zr)

]

≥E[ρ(Zr, Z0)] +
t

3
− 8t

3

(
150rt

d

)t/3 (
d

t

)
E

[
1

degt
C(Zr)

]

= E[ρ(Zr, Z0)] +
t

3
− 8t

3

(
150rt

d

)t/3 (
d

t

) ∑
v∈C

1
degt

C(v)
· degt

C(v)
δ′|C|

= E[ρ(Zr, Z0)] +
t

3
− 8t

3δ′

(
150rt

d

)t/3 (
d

t

)

≥E[ρ(Zr, Z0)] +
t

3
− 16t

3

(
150rt

d

)t/3 n

k
.

As in the proof of Theorem 6.6, we now contrast this estimate with the fact
that Hilbert space has Markov type 2. Namely, that for every r,

α2rt2 ≥ c2(B)2rt2 ≥ c2(C)2rE[ρ2(Z1, Z0)] ≥ E[ρ2(Zr, Z0)] ≥ [Eρ(Zr, Z0)]2.

Consequently,

αt
√

r ≥ E[ρ(Zr, Z0)]≥
rt

3
− 16nt

3k

(
150t

d

)t/3 ∑
r≥j≥1

jt/3

≥ rt

3
− 16n

k

(
150t

d

)t/3

r
t

3
+1.

We set r = �36α2� and, as stated above, choose t as the even integer nearest
to d

5500α2 to conclude the proof of the desired result.
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Remark 6.11. It is known that for every 1 ≤ p ≤ 2 the metric space
(�p, ‖x − y‖p/2

p ) embeds isometrically into �2 (see [52]). It follows that �p has
Markov type p with constant 1. We can therefore apply the above arguments
and conclude that Theorem 6.6 and Theorem 6.10 remain true when dealing
with embeddings into �p, 1 < p ≤ 2. The only necessary modification is that
in the upper bound on the Ramsey function α2 should be replaced by αp/(p−1).
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