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We show that there are algorithms which find an approximate zero of a system of polynomial 

equations and which function in polynomial time on the average. The number of arithmetic 

operations is cN4”, where N is the input size and c a universal constant. 

1. Introduction 

The main goal of this paper is to show that the problem of finding approximately 

a zero of a polynomial system of equations can be solved in polynomial time, on the 

average. The number of arithmetic operations is bounded by cN4, where N is the 

number of input variables and c is a universal constant. 

Let us be more precise. For d = (d 1, . . . , d,) each di a positive integer, let ZCd, be the 

linear space of all maps f: C’+ ’ + C”, f=(fi, . ,fn), where each fi is a homogeneous 

polynomial of degree di. 

The notion of an approximate zero z in projective space P(C”+‘) of f has been 

defined in [ll, 12,14,6] and below. It means that Newton’s method converges 

quadratically, immediately, to an actual zero [ of ,fi starting from z. Given an 

approximate zero, an E approximation of an actual zero can be obtained with a further 

log (log E 1 number of steps. 
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A probability measure on the projective space (of lines) P(cXCd)) was developed in 

[S, 111 and “average” below refers to that measure. Let N=dimension flCd, as 

a complex vector space. 

Main Theorem. Fixing d, the average number of arithmetic operations to jind an 

approximate zero offE P(HCd,) is less than cN4, c a universal constant, unless n 64 or 

some di= 1. 

Remark. If n 64 or some di = 1, we get cN 5 

The result is also valid in the non-homogeneous case f: C=“-+C’. 

The import of the Main Theorem can be understood especially clearly in the case of 

quadratic polynomials. Thus consider the case d =(2, . . . ,2) of this theorem. Here we 

have that the average arithmetic complexity is bounded by a polynomial function of 

the dimension n since an easy count shows that N <n3. This seems quite surprizing 

in view of the history of complexity results for polynomial systems (see [l] for 

references). 

The special case of quadratic systems has extra significance in view of the NP- 

completeness theorems of [ 11. 

Here it is shown that the decision problem “quadratic systems” is NP-complete 

over R or over C. This problem is given k quadratic inhomogeneous equations, in 

n variables, to decide if there is a common zero. For various reasons, it seems unlikely, 

that there is a polynomial-time algorithm, even with exact arithmetic (in the sense of 

[I]) for this problem. 

Moreover in the recent “weak model” of [4], quadratic systems definitely do not 

admit a polynomial-time algorithm, so that P # NP, as was shown in [2]. 

One might reasonably ask about the analog of the Main Theorem for the worst 

case, rather than the average. In a trivial sense the corresponding conclusion cannot 

be true since some polynomial systems have no approximate zeros. 

But there seems to be a deeper sense in which the result (or a modification thereof) 

fails for the worst case. The algorithms we use here are robust in that they work well in 

the presence of round-off error (see [3,6]). 

This could be made more formal, more conceptual, by the introduction of a 

“d-machine”, see especially [6], but also [8,9, 171 for background. 

A d-machine is defined to introduce a relative error 6 at each computation node of 

a [1] machine. 

Then it could no doubt be proved that a h-machine would be sufficient in our Main 

Theorem, where 6 > 0 could be well-estimated. 

On the other hand for II > 1, polynomial systems may have one-dimensional sets of 

solutions (“excess components”) and that fact seems to imply, that the worst-case 

complexity problem is undecidable with b-machines, for any 6 > 0. Even the linear 

case produces an argument. These ideas need formalization and development, but one 

would expect that to happen in view of 161. 
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The algorithm of the Main Theorem, developed in [ll, 12, 141, is a homotopy 

method, with steps based on a version (projective) of Newton’s method. There is 

a weak spot in its present use in that the existence of a start system-zero pair (g, <) is 

proved, but not constructively. Thus the algorithms depends on d =(d, , . . . , d,), and 

even on a probability of failure c. It is not uniform in the sense of [l] in d and r~. 

In Section 2 an obvious candidate for (g, i) is given. If our (highly likely) conjecture 

stated there is true, then the uniformity of the algorithms is achieved. 

The Main Theorem has the following generalization, which includes the case 

studied in [14]. We say that zl, . . . , zl are 1 (distinct) approximate zeros offE P( Xtd)) if 

they converge under iteration of (projective) Newton’s method to 1 distinct roots 
V 
41, . . ..i. off: 

Generalized Main Theorem. Fixing d, the average number of arithmetic operations to 

$nd 9 > 12 1, where 9 = nr= 1 di is the Bezout number, approximate zeros of‘f~ P(XCd,) 

is less than cl2 N 4, c a universal constant, unless n d 4 or some di = 1 in which case cl2 N5 

sujice. 

2. Main theorem, weak version 

Let Ztd, be as in Section 1 and we suppose it is endowed with the Hermitian inner 

product in [S, 1 l] invariant under the unitary group U(n+ 1). Then S(%?“,,,) denotes 

the unit sphere in Z(d) and 

p= {(f; i)ES(Z(d)) x p(cn+ l )If(i)=O). 

Then let 2’ be the set of singular points of the restriction fil : kS(Z”,,,) (i.e. (L [) 

such that the derivative Ofi : T,,i(@+ T,(S(X,,,)) is singular). Compare all this with 

the similar notions for V of [ 11,12,14]. In fact, one has the fibration ?+ V with fibres 

SO(2) induced by the fibration S(X~,,)-+P(P~,,); thus the vertical distance to C’ of 

[l l] defines a similar vertical distance p (same notation) and neighborhood N,(z’) of 

.E’ in I? 

Let _Yp, be the space of great circles of S(fl(,,) which contain gES(Pcd)). Let 

$ : S(%(,,)- { +g}-+-4pg, $(f)= L, be the map which sends finto the unique great 

circle containing f and g. 

For such anfwe may define tl = ti; 1 ( Lf ) c I? If L, n 2 = 8, where 2 = fil (2’) is the 

discriminant locus [ 111, then L, is a one-dimensional submanifold in p oriented by 

going from g to fomitting -g. If in addition, [ is a zero of g, then there is a unique arc 

in ir starting at (g, [) and ending at the first point of fi ; 1 (f) met on ir. Let us call 

that arc L^(f, g, 0. 

Remark. L^(f;g,<) may be interpreted as a path of zeros of “the homotopy” 

tf+(l -t)g as t goes from 0 to 1. 



144 M. Shuh. S. Smalr 

Our Hermitian structure on Ytd, induces natural Riemannian metrics and prob- 

ability measures on S(HCdJ), P(X,,,) and 9,; see 112,141. Moreover with these 

measures, the natural maps S(YCd,)-P(;XC,,), $ : S(Hcdj)- { ky}--+LZg are measure 

preserving, in the usual sense that meas $ -’ A =meas A. 

Fixing (y, <) as above let cr=o(p,g, 0, 0~ 0 < 1 be the probability that i(1; g, i) 

meets N,(,?‘) for f~S(3y(~,). Later we will see how CJ may be interpreted as the 

“probability of failure”. 

Theorem 2.1. For each p >O, there is a (g, <)E p such that 

o < cp2 N2 n3 D312. 

Here, as throughout this paper, c is some universal constant. Moreover, 

D= max (di). 
i=l, ..,n 

Proposition 2.2. We have n3D3 <cN unless some di= 1 OY n 64 in which case there is 

a slightly weaker estimate. 

The proof is left to the reader (use (D;l+“)< N). 

Using this proposition and [l l] for the case n = 1, one can use Theorem 2.1 to get 

the estimate: 

Theorem 2.1 has a ready interpretation in terms of the condition number 

of J 

~,,~tf)= max ~,,,,tkz). 
lhJki(f:y.i) 

Here see [ll, 12,141 for pL,,,,(h, ) z as well as the condition number theorem 

p(h, z)= 
1 

pL,,,,(k z)’ 
(h, Z)E V, (or d). 

Let 

S y,;.,,={fES(~(d))-(~g}I~(f,g, 5)nNp(%+. 

Theorem 2.3. Given p>O, there is a ~ES(Z~~,) such that 

1 C<.s(;)= 0 Vol $7.;. P 

.L2 Vol S(ZCd,) 
< cp2 N2n3D312. 

Note that Theorem 2.1 is a consequence of Theorem 2.3, since the left-hand side of 

Theorem 2.3 is an average over the zeros [ of g. For at least one [, one gets less than 
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the average. Hence there exist a pair (g,&V such that 

VOl%,i,P 
O=vols(~(,,) 

< cp2 N2 n3D3j2 

proving Theorem 2.1. 

Conjecture 2.4. The pair (g, [) of Theorem 2.1 given by gi(z) = z$ - ’ Zi, i = 1, . , n, and 

[ = e,, = (1, 0, . . . , 0) makes the conclusion of Theorem 2.1 true. 

The truth of this conjecture would make our algorithms more constructive and in 

fact algorithms in the sense of [l] with input (d, cr, f ). 

Remark. Let %,=uq,~.=oSs,.5,p. So 

Vol c%. P) ~CVOlS,.i,P. 
i 

In this way it is seen that Theorem 2.3 is a sharp form of Theorem 2 of [ 141. In fact 

that suggests a proof. Theorem 2.3 is proved in the next section following [14], but 

with a multiplicity function taken into account. 

Next we use the Main Theorem of [ 1 l] and Theorem 2.1 to obtain a weak version 

of our main result. 

Main Theorem (Weak version). Let be given a probability of failure (T, 0 < o < 1. Then 

there exists (g, <)E V such that a number of projective Newton steps k suficient tojind an 

approximate zero of input fES(ZCdI) is 

k bcN3/a. 

(If n ~4, or some di = 1, one obtains only cN4/a.) 

Proof. The Main Theorem of [l l] asserts that k<cD312/p2. But by Theorem 2.1, we 

can take a=cp2 N2D312n3. Th us by Proposition 2.2, we obtain the estimate of our 

theorem. 

The number of arithmetic operations of a projective Newton step can be bounded 

by cN, so we get cN4/a arithmetic operations. 0 

This theorem is easier to prove than the Main Theorem, the weakness coming from 

the factor l/a which cannot be averaged. Thus we must be able to replace l/cr by 

l/o’-‘, Sections 4-7 are devoted to this. 

3. The proof of Theorem 2.3 

As we have noted Theorem 2.3 uses a sharpened form of Theorem 2 of [14]. This 

suggests a proof. To this end we sharpen accordingly, Theorem C of [12] and then 

Proposition 4(a) and (b) of [14]. 
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Let MZp :S(AfCdj)+Z+ be defined as follows. M+(f) is the number of roots of fin 

Nzp(,?() (perhaps co) or more properly, the cardinality of 72; ’ (f)n Nzp(f’). Here we 

are following the notation of Section 2. 

Theorem 3.1. For my p > 0 

This is a sharper version of Theorem C of [12], but the same proof works. 

Define for (g, {)E f? Yq,;,p c _Yq as follows: Suppose that 

Ln2=8 (L,lfcS(.X,,,)). 

Then fi; ’ (L)+ L is a g-fold covering map and 72; 1(L)-7i;1(-g)consistsof90pen 

arcs in 13. Let A,,i denote the arc among them that contains 5. Then define: 

9 s,;.P={LE~WyIAg.rnN,(~‘)Z~}. 

Lemma 3.2. With notation as above, 

c i, g(i) = 0 Vol $7. ;, P < lLS(T) = 0 Vol x,. i. P 

VOlS(~~‘,d,) Vol _Yg 

The proof follows from the fact that $ : S(X(,,) - { f g} +Yg preserves the prob- 

ability measures and that 

S,.5,p=$~W?Pq.:A. 

Lemma 3.3. For any p>O, d=(d,, . . ..d.) there is a gES(YCd,) such that 

c ~.g(~)=ovol~g,i.p~ 
Vol 6pg s 

M2pC.f 1. 
.S(2Y,,,) 

(Here Vol S ’ = 2x .) 

Note that Lemmas 3.2 and 3.3, and Theorem 3.1 give the proof of Theorem 2.3. One 

has to just check that the constants come out correctly. 

Thus it remains to prove Lemma 3.3. For this we sharpen Propositions 4(a) and 

4(b) of [14] as follows. 

Let 9 denote the space of great circles in S(Z,,,). 

Proposition 3.4. (a) There is a gES(%@)) such thut 

1 
M~p(f)Gp Vol _.Y ss 

Mzp(f ). 
YJ JEL 
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(b) Moreover, 

147 

The proof follows so closely that of Propositions 4a, b of [14] that we leave it to the 

reader. 

Corollary 3.5. For any d,p there is a gES(p”,,,) such that 

1 

ss Vol Tg Y, 
M2p(f)< “‘S’ M2,t.f 1. 

L Vol S(~(d,) s S(.F,,,) 

Let rp : 2, -+ Z’ be defined as follows. r,(L) is the number of A,,, meeting N,(f’). 

Then from the definitions 

From the corollary of Theorem 1 of [14] we have 

Therefore, we obtain for any ggS(A“(,,), 

The corollary of Proposition 3.4 now finishes the proof. 0 

4. Integral geometry 

The goal here is to estimate the volume of certain real algebraic sets. The arguments 

go back to Crofton and [19], but we use a modern form closer to [12,14].’ 

The following theorem illustrates what we are doing. 

Theorem 4.1. Let M c P(R’) be a real algebraic variety, given by the vanishing of real 

homogeneous equations with its complexification having dimension m and degree 6, over 

C. Then the m-dimensional volume of M is less than or equal to 6 Vol P( R”+ ‘). 

The affine version can be dealt with by the same methods and in fact is in [lS] for 

the one-dimensional case in R2. 

Let tic S(H”,,, x P(@“+l) b e as in Section 2 with restrictions of the projections 

denoted by 72r: ~+S(Xcdj), fi2: ~+P(IIZ”+~ ). Let L be a great circle in S(%(,,), with 

1 Added in proof See also [lS]. 
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LnC=@ Then72,’ (L) is a one-dimensional (real) submanifold in I? Also g2 (72 1’ (L)) 

is a curve B in P(C’+l). 

Theorem 4.2. The length of B is less than or equal to 2g2. 

We sketch some basic results on integration, especially Fubini’s theorem, in 

a Riemannian manifold setting (the Coarea Formula, see [7]). 

Suppose F : X + Y is a surjective map from a Riemannian manifold X to a Rieman- 

nian manifold Y, and suppose the derivative DF(x): T,(X)+ T, (x, ( Y) is surjective for 

almost all XEX. The horizontal subspace H, of T,(X) is defined as the orthogonal 

complement to ker Df(x). 

The horizontal derivative of F at X is the restriction of DF(x) to H,. The Normal 

Jacobian N, F(x) is the absolute value of the determinant of the horizontal derivative, 

defined almost everywhere on X. 

Example 4.3. Suppose a compact Lie group G acts transitively and isometrically on 

a manifold S. Fixing s,,ES, the normal Jacobian of the map G + S, .q+gsO is a constant. 

More generally the following result is seen easily. 

Proposition 4.4. Let F: X+ Y he a map of Riemannian manifolds, equivariant under the 

action of a compact group G ofisometries of X and Y. If G acts transitively on X then the 

normal Jacobian is a constant. 

Fubini’s theorem takes the following form. 

Coarea Formula. Let F : X-+ Y be a map of Riemannian manifolds satisfying the above 

surjectivity conditions. Then .for cp : X-+Iw 

Here the usual integrability conditions of Fubini’s theorem are supposed. 

Next suppose that G is a compact Lie group acting transitively and isometrically on 

the manifold S. Let N be a submanifold of S such that the subgroup I,V of G leaving 

N invariant acts transitively on N. Thus the quotient space 

represents the various images of N under applications of elements of G. 

Our application will be to the case S is real projective space P( [w’), G is the 

orthogonal group O(1) and N is P( [Wki ‘) considered as inbedded in P( 1w’) as 

a coordinate k subspace. In this case GN can be identified with the Grassmannian Gk of 

k-dimensional linear subspaces of P( [w ‘). 



Complexity of Bezout's theorem V: Polynomial time 149 

Returning to the general setting let W c GN x S be the submanifold 

W= { (gN, s) I SE@ }. 

Let p1 : W+GN, p2 : W-+S be the restrictions of the natural projections. 

The following proposition can be easily proved. 

Proposition 4.5. The above W is indeed a submanifold, the product action of G on GN x S 

leaves W invariant, and acts isometrically and transitively on W. Moreover, p1 and pz 

are equivariant under G. 

Corollary to Propositions 4.4 and 4.5. The normal Jacobians of p1 and p2 are constant. 

Since G acts on S it acts also on the tangent bundle T(S) by the derivative. It also 

acts on the associated bundle G,( T(S)) with fiber, all m planes through the origin in 

T,(S). We say that the action of G on S is m-transitive if this last action is transitive. 

Note that in our application, m-transitivity is satisfied for all the relevant integers m. 

Proposition 4.6. Let M be an m-dimensional submanifold of S. Suppose that G as above 

is also m-transitive on S. Let A? = p; ’ (M) c W. Then the restriction p2 1~ : h? ---f GN has 

normal Jacobian a constant c (possibly not dejned everywhere) depending only on G, S, 

N and m. 

Proof. Define an associated bundle E( T( W))= E over W of T(W) as follows. Let 

WE W: we will define the fiber E, by 

E,={Dp,(w)-‘(Lk T,ILEG,(T,,(,,(S))I. 

Then the induced action of G on E is transitive by our hypothesis of m-transitivity. 

Let g7, be the orthogonal space to ker Dp, (w) in E,. Then NJp, Ifi is the determi- 

nant of the restriction of the derivative of pI to fi,,,. By our transitivity we are finished, 

noting also that the surjectivity of the derivative holds everywhere if at one point. 0 

Theorem 4.7. Let M be as above. Then 

Vol M=A 
vol wO s 

Vol (gN n M), 
yNeG, 

where c is the constant of Proposition 4.6 and Wo=p; l(so) for some5xed ~0~s. 

The volumes are of course in the appropriate dimensions. 

Proof. Apply the Coarea Formula and Proposition 4.5 to pz restricted to fi to obtain 

Volfi=VolMVol W,. 
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Next apply the same argument to pi restricted to fi to obtain 

Vol@= 
s C/NC& 

By Proposition 4.6, and by elimination of Vol@ we obtain the result. 0 

Returning to our special case of projective spaces recall that Gk denotes the space of 

k-linear subspaces of P (IX’). 

Theorem 4.8. Let M c P ([WI) be an m-submanfold. Then 

VolM= 
volP([w”+‘) 1 

VO~P(W”+~-‘+~)VO~G~ s 
Vol(LnM). 

LEG, 

Proof. It suffices to prove that 

C volP([w”+‘) 1 
p= 
Vol II’,, VolP(W+k-f+2)V~lGk’ 

Apply Theorem 4.7 to M=P(Rm+‘). So 

volP(W+‘)=& 
s 

Vol(LnP(1W”+‘)). 
0 LEG, 

The theorem follows, noting that Vol(LnP([W”+‘))=VolP([Wm+k-i+2). 0 

Proof of Theorem 4.1. Let MC c P(@‘) be the complexification of M c P(R’) of the 

theorem. So M = MC nP(R’), P(lQ’) c P(@‘). The real dimension of M is less than or 

equal to m and we suppose that it is m. The generic (I-m - 1) linear subspace in P( R’) 

meets M transversally and in at most 6 points since its complexification can meet 

MC in at most 6 points of transversal intersection. Thus 

s Vol(LnM)<6Vol(G,_,_,). 
LEG,-, , 

Since Vol P(R ‘)= 1, and we are finished by Theorem 4.8. 0 

Proof of Theorem 4.2. Real projective 2n+ 1 space P(R2(“’ ‘)) fibers over P(C’+ ‘) 

with S ’ fibres, by the isometric action of the unit complex numbers mod + 1. Let 

q:p([w2(“+1) )+P(@““) 

be this fibration. Denote by A, q- ’ (II), where B is as in Theorem 4.2. Note that A is 

a surface. 

Lemma 4.9. (a) The length of B equals (l/n) Area A. 

(b) A generic (2n- 1) linear subspace of P(Rz’“+ “) meets A in at most 9’ points. 
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Proof of Theorem 4.2 (continued). We first show that Theorem 4.2 follows from 

Lemma 4.9. 

We use Theorem 4.8 just as in the proof of Theorem 4.1. Thus, 

AreaAda vo1p(Iw3)<VolP([w”)~2 
VolP([w’)’ 

and so length B<(Vol P(rW3)/7c)D2 proving Theorem 4.2. 0 

So it remains to prove Lemma 4.9. Part (a) of Lemma 4.9 is again a (rather simple) 

case of the coarea formula. Now consider (b). The idea is to lift the setting to P([W2n+2) 

and then complexity. 

Observe that L c P(J?~,,), so ST1 L c Lx P(C”+‘) c P(T?(,,) x P(@“+‘) and of 

course 72;‘Lc i? 

The following diagram helps: 

-‘72;1(L)=(LxP([W2”+2))n~ i2 4* ----+P(lR2n+2) 

1 14’ 14 

72;‘(L) = (LxP(@“+‘))nF ” - P(c”+l) 

Here q.+ : L x P( R 2n+Z)+L x p(@n+l) IS induced by q and ?=q;’ ( p). Thus 

A=i?2qi1f;1L. 

Now L may be described as tgl +(s-r)g2 for particular gl, g2EZcd), t,s~[W and 

thus L may be identified with P(R2) c P(C2). Then q;’ 72;’ L=X may be defined by 

the 2n real homogeneous equations 

tRef+(s--t)Reg=O, 

tImf+(s-_)Img=O. 

These equations are homogeneous of degree 1 in (s, t) and (d,, . . , d,) in (Xj, yj) where 

Zj=Xj+J?Yj. C omplexifiying these equations in s, t, xj,yj, we obtain a variety 

Xc in P(C2) x P(@2(“+1)). The generic 2n- 1 linear subspace K c P(R2n+2) has the 

property that the complexification P(C2) x Kc meets Xc in at most Q2 points of 

transversal intersections (via elementary intersection theory). 

This yields the upper bound B2 for the number of real intersection points, finishing 

the proof of the Lemma 4.9 (and hence Theorem 4.2). 0 

5. Some approximate zero Theory 

In this section we do some of the cc-theory and approximate zero theory of [ 151 and 

[11] in the projective Newton setting. See also [6]. 

We take a slightly different perspective than [l 11, but still relying on it in part. In 

this account we do not attempt to get the best constants. 
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Letf: @‘+l -+ ~=“,f=Lf-1 , . . . ,fn), where,fi is analytic and homogeneous of degree di, 

e.g. f~*(~). 
Recall that the projective Newton method is a map Ns: @ncl+@n+l, defined by 

and an induced map N,.:P(@“+‘)-+P(@“+‘) h’ h w IC we have denoted by the same 

letter. We also sometimes identify x and its equivalence class in P(@“+l). Also N, is 

obviously not defined everywhere, so the above represents a certain abuse of notation. 

A point xE@“+’ or I’(@“+’ ) will be called an approximate zero’ for fif the sequence 

Xi defined by X=X~ and N,(xi)=xi+ 1 is defined for all natural numbers i, and there is 

a zero c offsuch that dR(Xi,i)~(:)“-’ &(x0, 0. Here d, is the Riemannian distance 

in P(C”+ ‘) and < is the associated zero of x, i.e. < = lim xi. 

The next theorems are devoted to giving criteria for a point to be an approximate 

zero in terms of invariants c(, PO, y. and the distance function dR . 

1 
BO(.f; x)=ll:yir II u?f(x)lN”n XI- ‘f(x) II 3 

?iou; x)=sup k~2 
( 

j$ II v?f~xhlx)-’ ~k.f(X) II 
1 

l’(k-l) II XII, 

where /IO, y,, c( are taken as infinite if (Df(x)I,,,,.)- ’ does not exist 

Note. We have not restricted Dkf(x) to Null x as in [l 11. This change does not effect 

the theorems of [ll]; they still hold with this yo. 

If < is a simple zero off; i.e. (D,f(<) INull :) ’ exists, then [ is a fixed point of N,. We 

begin by showing that N,, contracts discs of a certain size in P(Cn+ ‘), centered at <, 

towards i. 

Theorem 5.1. There are constants c>O and 2, >O such that given ,f as above, and 

x, [EP(@““) with 

.f(i)=O 

dR(-~,i),<l, 

&ki)Yo(f, i)<&, 

then l/DN.f(x)lI <cdR(x, i)yo(J 0. Here DN/(x): T,P(a,“‘)-,T,,,,,P(C”‘*) is the 

derivative. 

Remark. Theorem 5.1 is sharper if we maximize fi.+ and minimize c. In any case in the 

sequel we assume ti, d 112~. 

21n [15] there are approximate zeros of the first and second kind. Our approximate zeros here 

correspond to the second kind. 
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Let B,(x) denote the closed ball of radius r around x. 

Corollary 5.2. Ifr<min(l,&+Jy,(f, i)), then Ns:B,(<)+P(C”“) is well dejned and 

Ns(B,([)) c B,(c). It is a contraction with contraction constant cryO(f; [), so 

Nf(&(I)) c b(i), r’=cr270(l; 0 

Proof. Observe that B,(i) is convex. By Theorem 5.1 the length of the image of a curve 

of length L in B,(i) is at most cryO(A [) L. This establishes the assertions on the 

contraction constant. Applying the contraction estimate to the straight lines from c to 

x, =B,(i), shows that NJ&(i)) = B,,(i), r’=cr’y,,(f, [). As cry,(f; [)<l, N, is 

indeed a contraction and Nf(B,(lJ) c B,(i). 0 

Contraction mappings have a convenient property, which we pause to record. 

Let X be a complete metric space with metric d, C#I :X+X a contraction map with 

contraction constant k and unique fixed point p. 

Proposition 5.3. Let t$, X, p, k be as above. Then for any XEX 

Proof. Both inequalities are standard. We prove only the left-hand one: 

d(x,~(x))~d(x,p)+d(~(x),p)~(l +k)d(x,p). 0 

Corollary 5.4. Iff(i) = 0, dR (x, i) < 1 and dR(x, i)yo (J i) -C ~2,. Then x is an approxim- 

ate zero off with associated zero [. 

Proof. By Corollary 5.2. 

&(Ns(x), i)G&(x,1)2Yo(f, i) 

and by induction 

&(Nl;(x), I)G(&(x,i)YO(f, 1))2”-14&5). 

Since ti,<1/2c, cd,(x,[)y,(f; 0~4. 0 

Theorem 5.1 follows immediately from the next two propositions which are of 

independent interest. 

Proposition 5.5. Let f be as above. For x~P(@“+‘) 

II DNAx) II d 2~ (f; xl. 

Proof. Let 

E,=x+Nullx, 

E N, (xl = NJ(X) + Null N/(x). 
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We use E, and EN, CX, as charts for P(@ ‘+ ‘) at x and NJ(x), respectively, in the 

obvious way. 0 

Let z;~Null x. 

DNs(x)(r)=n(Qf(~) ~Null.xml o,of(X)lNu,,x(O)(Df(X)lNu,, x)- ‘.fb), 

where x is the orthogonal projection onto the null space of N/(x). 

Thus llDN,-(x)~ I~c”+I <2y(f; x)/3(f, x) 11 u IJcn+~. Recall that NJ(x)~x+Nullx so 

II Ns(x) I/P+J 3 II x lIc”+l. 
Now 

II DN+)u l/7- 
llDNs(4~ IIc”+~ 

xr ,,,P(c”-‘I= 
II N,r(x) /Ic”+~ 

~ IIDN&)~? lI~“+l < 2c(tf xJ II c’lIc”+1 
Il~IIc”+~ 

. 
’ IIX II@“+’ 

=2x(,f; XI II L: lIT,P(C”+‘). 0 

For the next proposition we use a simple geometry lemma. 

Lemma 5.6. Let x,y~@““-IO}. If dR(x,y)< 1 in P(@“+‘) then x~Ay+Nulliyfor 

some I. and 11 x - jby I/ / 11 j-y I/ = tan d, (x, y). 

Proof. I/x - %y II/Ii x I/ = sind,(x, y) by Proposition 4, Section 1 of [17]. So 

11x-i,yl//IIi”yl/=tand,(x,y). 0 

Proposition 5.7. There exist constants c>O, fi, >O such that, if 

d,c(x,i)< 1 

and 

d,(x,i)y,(J; i)<&... 

Then 2c((f; ~)<cd,(x,i)y~(f;i). 

Proof. It follows from the lemma that 

&(x>i)d 
II .y - x II 

II 2 II 
<tan(l)d,(x,i), 

where x~E~[+Nullii. Also, YO(J; X)=YO(~; i) so 

II x-x II 
&(x,i);jO(Ai) and u= l lnill YO(~;Y) 

also differ at most by a multiple of tan(l). 
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Now apply Proposition 2, Section III-2 of [ll] to conclude that 2a(J; x)< 

~(K?u/$(u)*); K= K(U) and $(u) are close to one for u small so we are done. Here we 

have been using the notation of [ 111. 0 

Next we prove a version of the cc-theorem. 

Definition 5.8. Let fO(f; x)=max(Yo(J; x), 1) and oi(f; x)=y*,(f; x)pO(L x). 

Theorem 5.9. (Projective a-theorem). There is an ~proj >0 such that if oi(f; x)<&,,,~ 

then x is an approximate zero off: 

Compare this to [6]. 

In fact, we will prove a little more. 

Proposition 5.10. There are constants c(* > 0, c > 0 such that ifa(f; x) < c(* then there is 

a zero i offand b.(x,i)~~(fr i)<cm(fT x) 

First we prove Theorem 5.9 from Proposition 5.10. 

Proof of Theorem 5.9. Just let Oiproj =min(cc,, u,/c) and apply Proposition 5.10 and 

Corollary 5.4. 0 

Proof of Proposition 5.10. By the Domination Theorem (following the notation of 

that theorem) (Theorem 2, Section I-2 of [11] for a(L ~)<a, there is a zero [ offin 

E, = x + Null x such that 

Thus, 

llx-ill 
mYo(J x)<Wf; x)1. (*I 

Now if oi(f; x) is small so is &,(f; x) and so is /Ix - ( II/II x /I by the Domination 

Theorem again. Thus 11 x -[ ~~/~~ x II and L&(X, i) differ by a multiplicative constant 

close to one and L&(X, <) is also small. Since [ is a zero, ker Of([) -i = Null([) and 

II v!!(i) INull i) - l W(i) INullx II G 1. 

Hence in Proposition 2, Section III-2 of [l 11, K may be taken as 1 and 

YOU x) 
y”(f; OG $(r@(f, x)1(1 -2(a(f; x)1))’ 
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Substituting in (*) 

&(X,ih’O(f,,i)~Cwt x) 

for u (.f; x) small enough. Finally, r(J; x) < 9( f; x) so if gproj is small enough we are 

done. 0 

6. The homotopy 

The goal of this section is to give the proof of Theorem 6.1 below. 

Throughout this section we suppose that (j;, i,) is a curve in F-f’, 0~ t < 1. 

Except for Proposition 6.2 and Lemma 6.3, we assume moreover that f; can be 

represented as f; = tf’+ (1 - t)g for some f; gES(Xtd,)). Let $ be an upper bound for 

I and ;jO(J i,), O<t< I. 

Theorem 6.1. Withf, as above, there is a partition 

to=o, fi< li+ 13 tk= 1 

with 

-u,=i,, xi=NI,,(xi~l), i= 1, . . . . k 

well-defined for each i and xi is an approximate zero of..f,, , \$ith associated zero <,, Also 

kdc/qq,i,(f)(l +D3”L), 

where L is the length of the curve [, . Moreover, (as we will see) ti can he easily calculated 

at ti_1. 

Recall that Nft is given by projective Newton’s method. 

Towards the proof we have the following proposition. 

Proposition 6.2. There exist universal constants r*, u* with the jbllowing property. 

Suppose 

t, t+AtE[O, 11, .x,EP(@“+‘) 

satisfy: 

Yd,(x,, i,)<u*, 

3/10(,f,,, x,)<cc* ,for all t’E[t, t+At], 

then,for all t’E[t, t+At], $dR(x’, &)<u*, where x’ = Nr,, (x,) and x, is an approximate 

zero of ft3 with ussociuted zero i,, 

Moreover, given uny positive constant K we may take u* < Ka*. In fact, K = 1148 in 

what ,ftillo~~s. 
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Proof. AS long as c(* < Diproj , x, is an approximate zero forf,, from Theorem 5.9. That 

[,, is the associated zero is a simple continuity argument. As usual there is a constant 

K1 close to one such that, 

dR(NJ (x,), x,)GKIp,(ff,, x,)GKI@*ly^. 

So from Proposition 5.3, 

&(X,, L)G2K,~*/9 

and by Corollary 5.2 

c the constant of Corollary 5.3. 

Choose CI*, u* so that 2K:c(~*)* < u* and U* < KU*. 0 

Lemma 6.3. There are universal constants K > 0, u** > 0 with the following property. If 

f~P(=@“,,,)>f(i)=O and 

dR(X, i)Yo(_L i)Gu**, 

dR(X, i)G l/D, 

then ~,,,,(f, x) d K A,~,(.L 0. 

For the proof we may take XE[ + Null [, 

Following [l l] and the notation there, 

PL,o,,(~, x)= 11 f 11 11 (D!(x) INull x ~-‘~~~!‘*~~~ll~lld~~lI 

d ll f 11 ll (Df(x) hull .) - 1 Df(x) INull< II 11 @f(x) INu11& ’ Df(i) lNull< II 

/I @f(i) INull~ ~-1~~~!‘2~~~llilld’~ll IIA 

Let ro= llx-iIl/IIiII and u=roYo(f; i) so r0 and dR(x, [) differ by a multiplicative 

constant close to 1, and the same for u and L&(X, i)yo (f, g). 

By Proposition 1, Section III-2 of [l l] 

II(Df(X)INullx)-lDf(X)INu,,~II d (1+r’)“2 
l_r 
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By Lemma 3(2), Section II-1 of [l I] 

and these quantities are both bounded as soon as C&(X, i)ro(f; g) is small enough. 

Finally 

+=(l +rd)“‘<(* +(%)‘)‘:’ for K1 near 1 

so ( /I x iI/ 11 i 11 )d’ is also bounded and we are done. 

Now let 

Proposition 6.4. (a) B, d 2p,,,,(f;, x,). 

(b) B- G b’o(h, x,)<B+> 
where 

p*= AtWr+b’o(.f;, x,) 
lTAtB, , Ar=lt’-rl 

US long us At d l/B,. 

Proof. We may assume 11 x, II= 1. Then 

B, d II (@X4 lw xc )F’ I/ ll~(.f’-9K?)Il 

~P(.L> xt)(l/w(x,) II + lI~Y(x,)ll) 

~2P(f,, x,1 
using Proposition 2, Section III- 1 of [l 11. Finally, 

P(f;> x,)G/&n(.ft, -u,) 

proving (a). 

Since 

Proposition 6.4(b) follows from the following lemma. 

Lemma 6.5. 

(4 II(Dft~(~~)l~~~~~,)-~Dft(~,)l~~~~~~ll d ’ 
1 - I t’ - t I II 4 II 

(b) I/ U?Y&t)lNu,,xc) -’ Df(xt) l~u,,xt I/min 3 
1 

1 + I f’ - f I II & II ’ 
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Proof. 

oft, (x,) IN~II xt = Dft(xl)lNu,,x,+(t’-t)D(f-g)(xt)/Nu,,xt, 

SO 

U?ft(xt) lwx, )-‘Dfr,(xt)=I+(t’-t)(Df,(x,)I~u,,xl)-,D(f-g)(xt). 

Now the minimum norm 

1 

3 1 +lt’--tlB,7 

which proves Lemma 6.5(b). Part (a) follows from the additional fact that if 

III-A-‘Bll<c<l then IIB-‘A//<l/(l-c). 0 

Define 

Choose $ = D312fi. This is permissible by Proposition 3, Section I-3 of [l 11. Set 

cz** =min(a*,u**), c(*, u** of Proposition 6.2, Lemma 6.3, respectively. Also 

At=(t’-tl. 

Proposition 6.6. With notation as above, there exists a universal constant c as follows. 

Given t with 

fdR(& i,)< u*, 

then there is a At such that 

P+(At)<m**,‘f 

and 

At>,5 or else d,(i,, I,+al)>cc(*“/y. 
P 

In fact At is easily computed as will be seen. Also there is an obvious adjustment to 

make in case t+At> 1. 

Proof. If 

fi+ IAr= I/Zg, f @*/? 

let At = 1/2B,. Then by Proposition 6.4, 

P(“&, %)<a**/$. 
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Moreover by the same proposition, B, d 2pL,,,, (f;, x,). Then by Lemma 6.3 we obtain 

At=L> 1 1 

2C4km(fr, x,)‘4~~,,,,(.1;, i,)’ 

Otherwise let At be the solution of 

j?+(At)=c(**/$ 

Then At d l/2& and it only remains to show that 

Lemma 6.7. Under the conditions of Proposirion 6.6, 

(4 4(x,, i,), d,t(xt’, ird31**, 
48 y* 

(b) 
1 ci** 

BOK x,)G---, 
8 3 

Proof. Since (e) gives our proof of Proposition 6.6 it only remains to prove Lemma 

6.7. The first part of (a) is in the hypothesis and since (Proposition 6.4) 

fl,(ft,> x,)<P+ (At)=m**ly^> 

Proposition 6.2 yields the second part of (a). 

Use (a) (first part), that PO ( ji, i,) = 0 and Proposition 2, Section II-I of [ 1 l] to easily 

obtain (b). For (c) we argue as follows. 

Recall AtB,<f. Since 

using (b), 

Therefore, 

p-(At)= 
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We obtain (d) using Proposition 6.4, &,(f;,, x,)>B- (At) and (c). This uses the 

definition of /I0 as the Newton vector and the exponential map. 

Finally, (e) follows from 

&(it, Il’)>dR(X,, +)-&(x1, i,)-dR(&‘, it*) 

using (a) and (d). q 

Proof of Theorem 6.1. We use Proposition 6.2 and 6.6. Let to =O, ti=ti- 1 + At 

according to Proposition 6.6. So at each step At satisfies one of the alternatives 

in (b). 

Since 

C&(i*,>ir,-l)~~~ P=k,i,(f). 

We get the result. i? 

7. The main theorem 

The goal of this section is to prove the Main Theorem of Section 1. To this end we 

first prove two theorems on the number of projective Newton steps sufficient to find 

a zero. 

Theorem 7.1. Fix d = (d,, . . . , d,) and a probability offailure 0, O< CJ < 1. Then there 

exists (g, [)E p such that the number k of projective Newton steps, starting from (g, 0, 

suficient to$nd an approximate zero of input f~S(x(,,) is 

cN3 
kd-, 

1 

fs &=w 

(or cN4/(01-’ ) if some di= 1 or n<4). 

Thus the set offwhere the algorithm fails to produce such an approximate zero in 

k steps has probability measure less than 0. 

For the proof we have the following result. 

Proposition 7.2. Fix (d) = (d, , . . . ,A) and suppose (g,iFf, fES(~cd+{+gl and 
0 6 E< 1 are given. Then 

k<c(p( i,(f))2-"(92)HD3'2 \ 9. 

steps of projective Newton’s method are suficient to produce an approximate zero off: 

InSection2wehavedefined,ug,i(f)andanarcL^(f,g,[)in ?~S(TF~,,,)XP(@“+~). 
Let L be the length of fiZ(i(f; g, [)). 
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Lemma 7.3. (a) L d 28’. 

(b) L~vg,<(f). 

Part (a) of the lemma is a consequence of Theorem 4.2. Part (b) is a projective space 

version of the Proposition, Section 1D of [14]. The proof is the same noting 

that ~(11, z)<,~,,,,(h,z) for all (II, Z)E c, and that the length of a great circle in S(XCdi) 

is 2x. 

Returning to the proof of Proposition 7.2, we have from Theorem 6.1 that 

steps of projective Newton suffice. Hence by the lemma (b), 

ckJ,r, (.f) 2-‘~‘:~3’2 

steps suffice. 

Finally, from Lemma 7.3(a), 

Cp~,~~,(f)2-~~2~~3~2 

steps suffice. This proves Proposition 7.2 0 

Proof of Theorem 7.1. In Proposition 7.2 take ~=2/log 9 so that 9” is a universal 

constant. 

By Proposition 7.2 we need to show there exists (g, [)E p such that the function 

&g,r,(f)2=@W2 1s bounded above by cN3/(~‘-‘) for a subset of.fES(XCd,) of 

probability measure at least 1 -G. 

Solve the equation o = cp2N2n3 D 3/2 for p. Apply Theorem 2.1, for this p and the 

condition number theorem to conclude the existence of (g, [) such that 

for allfin a subset of probability measure at least l-0. Now Proposition 7.2, Section 

2 and a little arithmetic finish the proof. 0 

Theorem 7.4. The average number qf projective Newton steps s@icient to find an 

approximate zero of,fES(Ytd,) is less than or equal to c(log9)N3. (clog9N’ ifsome 

Iii= 1 or n<4). 

In Theorem 7.4 we employ a quasi-algorithm. This construction fails to be an 

algorithm because it employs an infinite sequence (gi, ii)E c, i= 1,2,3, . . . without 

exhibiting them. 

The idea is quite simple. Start with (g,[) as in Theorem 7.1 to insure a “small” 

chance of failure say o =f initially. If on input .f the algorithm fails, halve the chance of 

failure and start over. 
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More formally let parameters of our quasi-algorithm (gi,ii)E P be given by 

Theorem 7.1, with probability of failure pi = l/2’, i = 1,2,3,4. 

Let K(0)=cN3/(01-‘) (or cN4/(0(*-‘)) if some di=l or n<4). 

For input f, i = 1, do K(oi) projective Newton steps for the homotopy (1 - t)gi + tf 

starting at to as in Theorem 6.1. 

X 

If XKCgi) is an approximate zero offby the alpha test, Theorem 5.9, halt and output 

K(a,). 
If not set i = i + 1 and repeat (some f). 

The average number of steps of this algorithms is less than or equal to 

The first inequality follows by summing a geometric series. For the second note that 

~~=]rr-~~-iI,i=l,... with~,=1,thatKismonotoneontheinterval[~i,ai_,]and 

K(Ci)/K(oi_i)=2”-“‘so the Riemann sum 

ids I~i-~i-l~K(~i)~2'1-"~1 K(a)do. 
0 

Finally, jt K(a) do = c log 9 N 3 (or E log gN4 if some di = 1 or n < 4). 

See [lo] for more arguments of this sort. 

Proof of the Main Theorem. To prove the Main Theorem, we need only make the 

passage from the number of Newton steps to the number of arithmetic operations. 

This argument uses well-known facts from numerical analysis about the number of 

arithmetic operations needed for approximations, for solving linear problems, etc. We 

omit the details. 

Proof of Generalized Main Theorem. We sketch some of the changes necessary for the 

proof. 

Theorem 2.1 has the following version which also follows from Theorem 2.3. 

Fixing gES(xC,,) and [l,...,[l~P(@““), I distinct zeros of q. Let 

~~=~~(p,g,[i,...,[i) O<a,<l be the probability for f~Es(p(~,) that for some 

i=l , . . . . I, t^(f; g, ii) meets N<(e’). 

Theorem 2.3 (New version). For each p > 0 and 1, 1 f 1~ 9 there is a gES(XCdJ) and 

distinct zeros iI, ,~l~P(@“+‘) of y such that 

CT, < p2n3D3121. 

Now we can apply Proposition 7.2 to each of the 1 homotopies starting at (g,ii), 

i=l,..., 1 as in the proof of Theorem 7.1. To prove an l-zero version (change an 

approximate zero to 1 approximate zeros and k < cN 3/(01 -“) to k < cN 3 12/(a1 -“)) one 

factor of 1 is for the probability estimate the other because we follow 1 homotopies. The 

l-zero version of Theorem 7.4 follows similarly. 
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