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Abstract. In the first part of this paper we study dynamical systems from the point of
view of algebraic topology. What features of all dynamical systems are reflected by their
actions on the homology of the phase space? In the second part we study recent progress
on the conjecture that most partially hyperbolic dynamical systems which preserve a
smooth invariant measure are ergodic, and we survey the known examples. Then we
speculate on ways these results may be extended to the statistical study of more general
dynamical systems. Finally, in the third part, we study two special classes of dynamical
systems, the structurally stable and the affine. In the first case we study the relation
of structural stability to entropy, and in the second we study stable ergodicity in the
homogeneous space context.
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1. Introduction

We study discrete differentiable dynamical systems f : M → M on a smooth closed
manifold of dimension m.∗ Thus, f ∈ Diffr(M) or Endr(M), the Cr diffeomor-
phisms or endomorphisms of M respectively, where 1 ≤ r ≤ ∞, and occasionally,
r = 0.

What can be said about differentiable dynamical systems? The best things
that can be said concern all systems. When we can’t make statements about all
systems we may content ourselves with most systems. We expect that properties
which hold for most systems hold for a specific system under consideration, but
we can’t be sure until we’ve proven it.

Section 2 concerns properties which may hold for all dynamical systems, mainly
properties from algebraic topology. Principal among these is the Entropy Conjec-
ture which relates the topological entropy of a dynamical system to the induced
map on the homology groups.

∗The author would like to thank Charles Pugh for years of collaboration and also for help in
preparing this article.

∗ “Closed” means that M is compact and has empty boundary.
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In section 3 we turn from all to most. We investigate the time honored role
of (a) some hyperbolicity, especially as it concerns (b) the stable and unstable
manifolds of points, (c) their intersections and (d) the equivalence relation these
intersections define in the manifold. In the by now classical uniformly hyperbolic
case, the equivalence classes form Smale’s spectral decomposition and the behav-
ioral properties entailed are structural stability, SRB measures, and ergodicity in
the volume preserving Anosov case.

Uniformly hyperbolic systems are some, not most dynamical systems. So from
the point of view of hoping to describe most dynamical systems we relax the struc-
tural properties to some hyperbolicity . Our goal is to understand how hypotheses
about (a)-(d) affect ergodicity of volume preserving diffeomorphisms and whether
these hypotheses hold for most partially hyperbolic volume preserving diffeomor-
phisms. Later we speculate on how they may affect the existence of SRB measures.
Our theme is that a little hyperbolicity goes a long way toward ergodicity. Part
of our problem is that the (un)stable manifolds, their intersections, and the equiv-
alences they define are topological objects, while the desired results we wish to
conclude are measure theoretic. Working in mixed categories raises rather severe
technical difficulties, some of which have only recently been overcome.

We conjecture that most volume preserving partially hyperbolic dynamical sys-
tems (initially studied by Brin and Pesin) are ergodic, and we survey the rather
substantial recent results in this direction, especially by Keith Burns and Amie
Wilkinson, and Federico and Jana Hertz and Raul Ures. Here we first confront the
role of the equivalence relation on M induced by the strong stable and unstable
manifolds and their intersections. This equivalence relation divides the manifold
into accessibility classes. The main problem is to understand the relationship of the
topologically defined accessibility classes of a partially hyperbolic dynamical sys-
tem to the measure theoretically defined ergodic components via the Anosov-Hopf
argument for ergodicity.

In section 4.1 we study flows on homogeneous spaces and more generally affine
diffeomorphisms. The ergodic theory of affine diffeomorphisms and flows on ho-
mogeneous spaces is extremely well developed. It relies to a large extent on the
structure of Lie groups and representation theory. The ergodicity results in sec-
tion 3 apply outside of the homogeneous space context and per force use different
techniques such as the accessibility relationship and julienne quasi-conformality.
Juliennes are dynamically defined sets and quasi-conformality applies to the holon-
omy maps of the invariant stable and unstable manifolds. How good are these
techniques when applied back in the homogeneous space context where a more
elaborate set of tools is available for the study of ergodicity and stable ergodicity?
While the proofs are very different there is a remarkable coincidence between those
affine diffeomorphisms which are stably ergodic when considered with respect to
affine perturbations and those which are stably ergodic with respect to all per-
turbations. Some rather interesting cases remain unresolved. The coincidence of
results makes us feel that we have landed in the right place with our definitions of
accessibility and makes the outstanding cases even more interesting.

In section 4.2 we see how the results of section 2 and 3 relate to one another. The
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SRB measures were initially proven to exist for uniformly hyperbolic dynamical
systems. The Entropy Conjecture holds for these diffeomorphisms and we consider
how sharp it is. How much complexity must a diffeomorphism have beyond that
which is forced by the Entropy Inequality? Of particular interest are the Morse-
Smale diffeomorphisms. The study of these diffeomorphisms has a deep connection
to the theory of the structure of manifolds in high dimensions accomplished by
Smale. Yet there are new invariants and obstructions.

The relations between dynamics and algebraic topology studied in sections 2
and 4.2 may hold for all r ≥ 1 but there are definite distinctions between the er-
godic theory of C1 and C2 dynamical systems, so in sections 3 and 4.1 we mostly
assume that r ≥ 2. Sections 2 and 4.2 and sections 3 and 4.1 may be read inde-
pendently of one another. But I think it would be a mistake to disassociate them.
For one thing, the hyperbolic systems are partially hyperbolic. To understand the
partially hyperbolic we must first understand the hyperbolic. For another, the
variational principle ties measure theoretic entropy to topological entropy. (See
for example Problem 3 of section 2.) One of the main themes of this talk are the
structures that link and the ties that bond the topological and measure theoretic
in the presence of smoothness and some hyperbolicity. Moreover, what is true for
all must be taken into consideration when studying most.

2. All Differentiable Dynamical Systems

What dynamical properties hold for all dynamical systems f? The answer often
depends on the degree of differentiability of f .

• Every continuous dynamical system supports an invariant probability mea-
sure.

• Every Lipschitz dynamical system has finite topological entropy, but non-
Lipschitz systems can have infinite topological entropy.

• Every C∞ dynamical system satisfies the Entropy Inequality explained be-
low, but this can fail for Lipschitz dynamical systems that are not continu-
ously differentiable.

Let us recall the concept of entropy and the statement of the Entropy Con-
jecture. The topological entropy of f measures the growth rate of its epsilon
distinguishable orbits. It makes sense for any continuous endomorphism of a com-
pact metric space, f : X → X. Given ε > 0 and n ∈ N, let N(f, n, ε) be the
maximum cardinality of a subset A ⊂ X such that for each pair of distinct points
x, y ∈ A there is an iterate f j with 0 ≤ j ≤ k and

d(f j(x), f j(y)) > ε.

Then, h(f, ε) is the exponential growth rate of h(f, n, ε) as n →∞, namely

h(f, ε) = lim sup
n→∞

1
n

ln h(f, n, ε).
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The supremum of h(f, ε) over all ε > 0, or what is the same thing, its limit as
ε → 0, is the topological entropy of f , h(f). In [New1], Newhouse surveys how the
concept of entropy fits into the Cr category.

There is a corresponding growth rate in algebraic topology. The map f : M →
M induces a homology homomorphism f∗ : H∗(M,R) → H∗(M,R). Under fn∗ ,
homology classes grow no more rapidly than sn where s = s(f∗) is the spectral
radius of f∗, i.e., the modulus of the largest eigenvalue of f∗i : Hi(M,R) →
Hi(M,R), 0 ≤ i ≤ m.

Conjecture (Entropy Conjecture). [Sh2] For all Cr dynamical systems, r ≥ 1, we
have the Entropy Inequality

h(f) ≥ s(f∗).

Of course, the conjecture for r = 1 implies all the others, so this is the principal
case. But if it fails for r = 1 and holds for larger r, this is also interesting.
The Entropy Conjecture is true for C∞ dynamics, but remains unknown for Cr

dynamics, 1 ≤ r < ∞. The positive result is due to Yomdin, [Yom], who compares
the growth rate of the volumes of submanifolds of M under iteration of f to the
entropy. See also [Gro2].

The Entropy Conjecture is in general false for Lipschitz endomorphisms already
on the 2-sphere, and also for Lipschitz or piecewise linear homeomorphisms in
dimension four or larger, [Pu]. For C1 f , Misiurewicz and Przytycki [MiPr] prove
that h(f) ≥ ln(degree(f∗m)). Some entropy lower bounds are known for continuous
endomorphisms in terms of the growth rate of the induced map on the fundamental
or first homology group, [Ma1, Bo, FaSh]. These imply entropy lower bounds for
homeomorphisms of manifolds below dimension 4 by Poincaré duality. See [MaPr]
for recent results.

Here are some more problems which are of a similar nature, relating algebraic
topology to differentiable dynamics. We use the notation

GR(an) = lim sup
n→∞

1
n

ln an

to denote the exponential growth rate of a sequence (an) in (0,∞].
Let V and W be closed smooth submanifolds of complementary dimension in

the closed manifold M , and let f be a smooth endomorphism of M . Let Nn denote
the number of distinct points of intersection of fn(V ) with W and let In denote
the intersection of the homology classes fn∗ [V ] and [W ], where [V ] and [W ] are the
homology classes in M represented by V and W .

Problem (1). Is GR(Nn) ≥ GR(In)?

A special case of this problem concerns the Lefschetz formula. Let Nn(f) be
the number of geometrically distinct periodic points of f of period n. Let L(fn) =∑m

i=0(−1)i trace(f∗i : Hi(M) → Hi(M)).

Problem (2). Is GR(Nn(f)) ≥ GR(|L(fn)|)?
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By the transversality theorem the inequalities in the last two problems hold Cr

generically. The question is: Do they always hold? It is known that if f is C1 and
L(fn) is unbounded then so is Nn(f) [ShSu1]. This fails for Lipschitz maps.

A first interesting case is a smooth degree two map, f , of the 2-sphere. Let Nn

be the number of distinct periodic points of f of period n.

Problem (3). Is GR(Nn) ≥ ln 2?

The results of [MiPr] concerning topological entropy and degree and of Katok
[Ka] comparing GR(Nn) to topological entropy for diffeomorphisms in dimension
2 make a start on this problem.

All these examples fall into the following general framework. Let F be a functor
from the category of manifolds to another category. Since a dynamical system f
may be iterated so may F (f). We ask to compare the asymptotic behavior of the
iterates of F (f) and f . Here, we considered the functors of algebraic topology.
Later the structures we consider and questions we ask for most or some f consider
functors such as the tangent bundle, measures, the de Rham complex, etc.

3. Most Differentiable Dynamical Systems

Since the range of dynamical behavior exhibited by all dynamical systems seems
too large to admit a meaningful universal description applicable to all systems,
many attempts have been made to describe features of most dynamical systems.
SRB measures were introduced by Sinai, Ruelle and Bowen in the 1970’s in the
study of uniformly hyperbolic dynamical systems. The space integrals for contin-
uous functions with respect to these measures predict the time averages of almost
every Lebesgue point in the manifold. It is a fundamental result of Sinai, Ruelle and
Bowen [Si, Ru1, BoRu] that a finite number of SRB measures exist for C2 hyper-
bolic dynamics (technically Smale’s Axiom A and no cycle systems.) Ruelle [Ru2]
suggested that these measures apply much more generally. Much effort in dynam-
ical systems in recent years has focused on Ruelle’s suggestion. One widespread
optimistic program dating from the late 1970s suggests that most systems have
a finite (or perhaps countable) collection of ergodic SRB measures. For volume
preserving diffeomorphisms of closed manifolds this program can not be correct
because the KAM phenomenon insures the robust existence of positive measure
sets of codimension one tori with quasi-periodic motions [ChSu, Yoc, Xi]. These
tori have no non-zero Lyapunov exponents. So the existence of some non-zero
exponents may be decisive for the program.

3.1. Partially hyperbolic diffeomorphisms. In contrast, we have sug-
gested that a little hyperbolicity goes a long way towards ergodicity of volume pre-
serving diffeomorphisms and hence (trivially) a unique SRB measure. Concretely
our principal results are limited to C2 partially hyperbolic volume preserving dif-
feomorphisms. These systems are generalizations of Anosov (globally hyperbolic)
dynamical systems. In the Anosov case volume preserving C2 diffeomorphisms
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are proved to be ergodic [An, AnSi], [Ho]. Brin and Pesin [BrPe] studied ergod-
icity of partially hyperbolic diffeomorphism with an accessibility property. The
hypotheses of their ergodicity theorem were too limiting to be broadly applicable.
In fact they probably almost never hold, [ShWi2], [HiPe]. In a series of papers
[GrPuSh, Wi1, PuSh3, PuSh4, PuSh5, BuWi2, BuWi3, RHRHUr] these hypothe-
ses have been replaced by ones quite generally applicable.

More precisely:

Definition. A diffeomorphism f : M → M is partially hyperbolic if there is a
continuous Tf -invariant splitting TM = Eu⊕Ec⊕Es such that Tf is hyperbolic
on Eu ⊕Es and the hyperbolicity dominates Tf on Ec in the sense that for some
τ, λ with 1 ≤ τ < λ and positive constants c, C we have

(a) For all v ∈ Eu and all n ≥ 0, cλn|v| ≤ |Tfn(v)|.
(b) For all v ∈ Es and all n ≥ 0, |Tfn(v)| ≤ Cλ−n|v|.
(c) For all v ∈ Ec and all n ≥ 0, cτ−n|v| ≤ |Tfn(v)| ≤ Cτn|v|.
(d) The bundles Eu, Es are non-zero.

Condition (d) is present to avoid triviality. Without it, every diffeomorphism
would be partially hyperbolic, for we could take Ec as TM . Sometimes, one only
requires Eu⊕Es 6= 0, but for simplicity we use the stronger assumption (d) in this
paper.

Partial hyperbolicity means that under Tfn, vectors in Ec grow or shrink more
gradually than do vectors in Eu and Es. The center vectors behave in a relatively
neutral fashion. The definition can be recast in several different ways. For instance,
expansion of Eu under positive iteration of Tf can be replaced by contraction un-
der negative iteration. Also, non-symmetric rates can be used for expansion and
contraction. More significantly, one could permit pointwise domination instead of
the absolute domination as above. See [Puj, BoDı́Vi] for a discussion of domi-
nated splitting. All of these refinements to the notion of partial hyperbolicity are
exploited by Burns and Wilkinson in their result discussed below.

Given a smooth manifold M , fix a smooth volume µ on M . Then we say f is
volume preserving if it preserves this volume and we write the set of µ preserving
Cr diffeomorphisms of M as Diffr

µ(M).
A diffeomorphism is ergodic if it preserves a measure and each measurable

invariant set is a zero set or the complement of a zero set. No measurable invariant
set has intermediate measure. Ergodicity is stable if it persists under perturbation
of the dynamical system. Towards our theme that a little hyperbolicity goes a
long way toward ergodicity and more optimistically toward the goal of finding
SRB measures, we have our main conjecture.

Main Conjecture. Among the volume preserving Cr partially hyperbolic dy-
namical systems for r ≥ 2, the stably ergodic ones form an open and dense set.

An approach to the Main Conjecture via two additional conjectures consists in
generalizing the Anosov-Hopf proof of the ergodicity of Anosov systems (Ec = {0})
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by studying the accessibility relationship. The Anosov-Hopf argument proceeds
as follows. If x, y are forward asymptotic then the time average of continuous
functions along the orbit of x equals the time average along the orbit of y. Reversing
time, the same is true for f−1 and points x, y which are asymptotic in negative
time. Now the Birkhoff ergodic theorem says that positive time averages equal
negative time averages almost everywhere. So we say x ∼ y if x and y are positive
or negative asymptotic and extend ∼ to an equivalence relation on M . In principle
by the Birkhoff theorem time averages should be constant on equivalence classes
and we may prove ergodicity by proving that the equivalence classes are measure
zero or one. There are severe technical difficulties to this program but it can be
made to work in the Anosov and the partially hyperbolic cases with some extra
hypotheses. We say x, y ∈ M are us-accessible if there is a piecewise differentiable
path joining x to y and tangent either to Eu or Es at every point of differentiability.
A diffeomophism is e-(ssentially) accessible (in the measure theoretic sense) if the
only subsets of M saturated with respect to us-accessibility have measure 0 or
1. A diffeomorphism is us-accesssible if M itself is a us-accessibility class. us-
accessibility obviously implies e-accessibility.†

Conjecture (A). Every C2 volume preserving e-accessible partially hyperbolic
diffeomorphism is ergodic.

Conjecture (B). The partially hyperbolic diffeomorphisms with the us-accessibility
property are open and dense in the Cr partially hyperbolic diffeomorphisms for
every r ≥ 1, volume preserving or not.

Conjectures A and B obviously imply the main conjecture.
Conjecture A was proven with two technical hypotheses in [PuSh4], center

bunching and dynamical coherence. Burns and Wilkinson [BuWi2, BuWi3] have
since removed the dynamical coherence hypothesis and improved the center bunch-
ing condition. The center bunching condition puts bounds on the ratios of the
expansions and contractions in Eu and Es as compared to Ec. If Tf |Ec is close to
conformal the center bunching conditions are satisfied.‡

We say that f is BW partially hyperbolic and center bunched, if it satisfies the
Burns-Wilkinson conditions.

†Note that the us-accessibility classes are contained in the ∼ equivalence classes we defined
above. They are much more amenable to use in proofs.

‡Burns and Wilkinson’s center bunching conditons suppose that there are continuous positive
functions ν(p), ν̂(p), γ(p), γ̂(p) such that for every every p ∈ M

1. ν(p), ν̂(p) < 1 and ν(p) < γ(p) < γ̂(p)−1 < ν̂(p)−1

2. For any unit vector v in TpM ,
‖ Tpf(v) ‖< ν(p) for v ∈ Es(p)

γ(p) <‖ Tpf(v) ‖< γ̂(p)−1 for v ∈ Ec(p)

‖ Tpf(v) ‖> ν̂(p)−1 for v ∈ Eu(p)

3. ν(p) < γ(p)γ̂(p) and ν̂(p) < γ(p)γ̂(p)

The second condition is the partial hyperbolicity and the third the center bunching.
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Theorem (Burns-Wilkinson). [BuWi3] Let f be C2 , volume preserving, BW par-
tially hyperbolic and center bunched and essentially accessible. Then f is ergodic
and in fact a K-automorphism.

When the dimension of the center bundle Ec is one the bunching conditions
are automatically satisfied. So it follows as a simple corollary that:

Corollary (Burns-Wilkinson). Conjecture A is true when dimension Ec is one.

Even more is true when the dimension of the center bundle Ec is one, Federico
and Jana Rodrigues-Hertz, and Raul Ures prove the Main Conjecture.

Theorem ([RHRHUr]). When the dimension of Ec is one, Conjecture A, Conjec-
ture B for volume preserving diffeomorphisms and hence the Main Conjecture all
are true.

Towards Conjecture B in general there is [DoWi] in the C1 topology.
The major new elements in the proofs of the series of theorems on stable ergod-

icity of partially hyperbolic systems are dynamically defined sets called juliennes
which can be used to estimate Lebesgue volumes either directly or by proving that
they form a Lebesgue density basis and an analysis of the stable and unstable
holonomy maps which are julienne quasi-conformal.

Partial hyperbolicty and center bunching are easily seen to be open conditions
and us-accessibility is frequently easily proven to hold in an open neighborhood of
a given example. Sometimes even e-accessibility is (not so easily) proved to hold
in the neighborhood of a given example[RH]. The situation is good enough to be
able to conclude stable ergodicity in the C2 topology of quite a few examples. Here
are several examples. See [BuPuShWi, PuSh5] for more details and for more on
the current state of affairs.

1 The product of a volume preserving Anosov diffeomorphism and any other
other volume preserving diffeomorphism can be arbitrarily C∞ closely ap-
proximated by a partially hyperbolic, us-accessible stably ergodic diffeomor-
phism [ShWi1, BuPuShWi], as long as the hyperbolicity of the Anosov dif-
feomorphism is strong enough to produce a partially hyperbolic splitting of
the tangent bundle. (Conjecturally an open and dense set of perturbations is
ergodic.) So the KAM phenomenon seems to be dominated by the hyperbolic
phenomenon and ergodicity of weakly coupled systems of KAM and Anosov
type should be expected to be ergodic.

2 The time t map of the geodesic flow of a manifold of negative curvature is
stably ergodic.

3 Skew products which are compact group extensions over standard Anosov
diffeomorphisms are generically us-accessible and C2 stably ergodic, [Br1,
Br2, BuWi1, FiPa].

4 Ergodic toral automorphisms having a two dimensional invariant subspace
with isometric derivative and some mild extra technical conditions are Cr

stably ergodic for a fairly large r [RH].
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5 Partially hyperbolic affine diffeomorphisms of finite volume compact homo-
geneous spaces of simple Lie groups are stably ergodic. We discuss these
below.

Systems whose Lyapunov exponents are non-zero, called non-uniformly hyper-
bolic, were introduced by Pesin and play a large role in the ergodic theory of
volume preserving diffeomorphisms and the study of SRB measures. Pesin’s paper
[Pe1] raises the question if in dimension bigger than two those diffeomorphisms
without zero Lyapunov exponents are generic. We have mentioned above that
KAM theory produces open sets of volume preserving diffeomorphisms with pos-
itive measure sets of invariant tori which have no hyperbolicity. So the answer to
the question is “no”. But it may be an either/or situation.

Problem (4). [ShWi2] Is it true for generic f ∈ Diffr
µ(M) that for almost every

ergodic component of f either all the Lyapunov exponents of f are 0 or none of
the Lyapunov exponents of f are 0 (µ- a.e.)?

For some partially hyperbolic diffeomorphisms zero exponents were perturbed
away in [ShWi2], which produces pathological center foliations. More of this is car-
ried out in [HiPe] and for the C1 topology in [BaBo]. So there is some evidence that
the answer to the problem is “yes” at least for stably ergodic or partially hyper-
bolic diffeomorphisms. The problem is even interesting when restricted to ergodic
diffeomorphisms so there is only one ergodic component. When r = 1, Mañé and
Bochi prove for two dimensional manifolds that generically all the exponents are
zero or the diffeomorphism is Anosov [Mañ1], [Boc].

3.2. Possible Extensions. How might the Anosov-Hopf argument be trans-
ported from the category of volume preserving diffeomorphisms to most of Diffr(M)?
and especially to the existence of SRB measures? Here we enter a more speculative
realm. First we recall the definition of SRB measures and some suggestions from
[ShWi2].

Given f ∈ Diffr(M) (not necessarily preserving µ) a closed f invariant set
A ⊂ M and an f invariant ergodic measure ν on A, we define the basin of A to be
the set of points x ∈ M such that fn(x) → A and for every continuous function
φ : M → R

lim
n→∞

1
n

(φ(x) + · · ·+ φ(fn(x))) →
∫

A

φ(x)dν.

ν is an SRB measure and A an SRB attractor (or an ergodic attractor) if the
µ measure of the basin of A with respect to µ is positive.

It follows from the definition that a diffeomorphism has at most countably
many SRB measures. We can more formally describe the Sinai, Ruelle and Bowen
[Si, Ru1, BoRu] result already referred to. If f is a C2 Axiom A no cycle diffeo-
morphism then µ almost every point in M is in a basin of an SRB measure and
there are only finitely many SRB measures. It is this result that one would like to
extend into a (more) general context.
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The next problem obviously presents itself from the presentation.

Problem (5). For r ≥ 2 is it true for the generic f in Diffr(M) that the union of
the basins of the SRB attractors of f has full µ measure in M?

This natural question is on the minds of quite a few people. See for exam-
ple [Ru1, BuPuShWi, Pa, Vi1, You1, You2, BoDı́Vi]. One way to approach the
problem along the lines of the Anosov-Hopf argument and as in [Pe1], [PuSh1]
might be via an analogue of the either/or question on Lyapunov exponents for
volume preserving diffeomorphisms above . For r ≥ 2 there is no known analogue
without the volume preserving hypothesis of the robust positive measure set of
invariant tori with zero Lyapunov exponents which occurs via KAM theory. See
[Vi2], [BuPuShWi].

Problem (6). For r ≥ 2 is it true for the generic f in Diffr(M) and any weak
limit ν of the push forwards 1

n

∑n
1 f j∗µ that almost every ergodic component of ν

has some exponents not equal to 0 (ν - ae)? All exponents not equal to 0?

Partially hyperbolic systems are a natural domain to begin considering prob-
lems [5] and [6]. When the volume is not preserved and we distinguish future
behavior from the past the accessibility equivalence relation has to be adapted.
Even for partially hyperbolic f it is not entirely clear how to do this. So suppose
f partially hyperbolic . Let Wuu(x) and W ss(x) denote the strong unstable and
stable manifolds which are known to exist tangent to the Eu and Es foliations.
For x, y ∈ M define x > y if Wuu(x) ∩ W ss(y) 6= ∅. Transitivize > to a partial
order on M and declare x ∼ y if x > y and y > x. The ∼ equivalence classes may
play a role similar to us-accessibility classes.

Problem (7). For the generic partially hyperbolic f , do all ∼ equivalence classes
which are minimal with respect to > have SRB measures?

3.3. A little hyperbolicity. Now that we have given a lot of examples, we
return to our theme that a little hyperbolicity goes a long way towards ergodicity.
We ask how often can we prove that hyperbolicity does exist in the guise of some
non-zero Lyapunov exponents. Some specific families of non-uniformly hyperbolic
dynamical systems have been worked out which contain positive measure sets in
the parameter space with SRB measures having non-zero Lyapunov exponents.
Most prominent among these families are the quadratic and Henon families, see
[Ja, Ly, Be, BeCa, You1, You2, Vi1]. The proofs are difficult. One would like to
find a fairly general principle which guarantees that a family has a positive measure
set of parameters which have an SRB measure with a positive Lyapunov exponent.

One attempt posits that rich enough families of dynamical systems should have
members with positive Lyapunov exponents. Examples have been constructed with
uncertain but evocative results. Let M have a Riemannian metric and let G be a
group of isometries of M which is transitive on the projectivized tangent bundle of
M . Let µ be the Riemannian volume. Let fε be a family of Cr dynamical systems
defined on M depending on ε. For fixed ε, consider the family Gfε = {gfε, g ∈ G}.
Give Gfε the push forward of the Haar measure on G. If fε preserves µ let H(ε)
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be the average over Gfε of the entropy of gfε with respect to µ. This is the case in
example 3 below. If fε does not preserve µ but gfε has a unique SRB measure for
each g ∈ G, let H(ε) be the average over Gfε of the entropy of gfε with respect to
this SRB measure. This is the case in examples 1 and 2 below. We compare H(ε)
to the random Lyapunov exponents with respect to random products of elements
of Gfε which we shall call

R(ε) =
∫

PTM

ln|Tfε(v)| dv,

where PTM is the projectivized tangent bundle of M. It is usually easy to see that
R(ε) is positive. When H(ε) is positive then there are obviously positive measure
sets in the parameter space with positive Lyapunov exponents and positive entropy.
Here are the results for a few families.

1 Blaschke products [PujRoSh]
The family of dynamical systems does not depend on ε; we take fε = B
where

B(z) = θ0

n∏

i=1

z − ai

1− zai
,

n ≥ 2, ai ∈ C, |ai| < 1, i = 1 . . . n, and θ0 ∈ C with |θ0| = 1.

The group G is the unit circle T in the complex plane, C. Its elements are
denoted by θ. Now we take

TB = {θB}{θ∈T}.
Then

H(ε) ≥ R(ε).

(H(ε) is always positive)

2 Expanding maps of the circle [LlShSi]

The dynamical systems are fk,α,ε : S1 → S1 which when written mod 1 are
of the form

fk,α,ε : x 7→ kx + α + ε sin(2πx). (3.1)

The group is S1, α ranges over S1 and k ≥ 2. Then for small ε the average
over α of the entropy H(ε) is smaller than R(ε), while the max over α of
the entropies of fk,α,ε is larger than R(ε). In the case of the averages the
difference is on the order of ε2k+2. H(ε) is again obviously positive.

3 Twist maps of the sphere [LeShSiWi]

For ε > 0, we define a one-parameter family of twist maps fε as follows.
Express S2 as the sphere of radius 1/2 centered at (0, 0) in R × C, so that
the coordinates (r, z) ∈ S2 satisfy the equation

|r|2 + |z|2 = 1/4.
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In these coordinates define a twist map fε : S2 → S2, for ε > 0, by

fε(r, z) = (r, exp(2πi(r + 1/2)ε)z).

The group is SO(3). So SO(3)fε = {gfε, g ∈ SO(3)}.
For small ε, H(ε) seems experimentally to be positive and is provably less
than R(ε). R(ε) tends to infinity with ε and experimentally R(ε) and H(ε) are
asymptotic. If we add a small fixed amount of randomization δ to the each
g in gfε and average the Lyapunov exponents of this randomized family over
g ∈ SO(3), we obtain Rδ(ε) which is indeed asymptotic to R(ε) as ε →∞.

4 Linear maps [DeSh]

If, instead of dynamical systems, we consider a linear map A ∈ GL(n,C)
and the family SU(n)A, then the average of the logarithms of the k biggest
moduli of eigenvalues of UA over U ∈ SU(n) is greater than or equal to the
sum of the k largest Lyapunov exponents of random products of matrices
from SU(n)A.

There may be a general principle operating here that we haven’t put our finger
on yet.

4. Some Differentiable Dynamical Systems

4.1. Affine diffeomorphisms. The ergodic theory of affine diffeomorphisms
of homogeneous spaces has been much studied in its own right, see for example
[St1], and contains some of the principal examples studied in smooth dynamics
such as the geodesic and horocycle flows on surfaces of constant negative curva-
ture and toral automorphisms. Here we study the question of ergodicity of affine
diffeomorphisms in the context of partially hyperbolic dynamical systems with Cr

perturbations. Our methods of proof recover the stable ergodicity of affine diffeo-
morphisms when they are stably ergodic among affine perturbations and usually
extend this stability to Cr perturbations. On this last point there remain some
open problems.

Suppose that G is a connected Lie group, A : G → G is an automorphism,
B is a closed subgroup of G with A(B) = B, g ∈ G is given, and the affine
diffeomorphism

f : G/B → G/B

is defined as f(xB) = gA(x)B. It is covered by the diffeomorphism

f̄ = Lg ◦A : G → G,

where Lg : G → G is left multiplication by g.
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An affine diffeomorphism f̄ induces an automorphism of the Lie algebra g =
TeG, a(f̄) = Adg ◦TeA, where Adg is the adjoint action of g, and g splits into
generalized eigenspaces,

g = gu ⊕ gc ⊕ gs,

such that the eigenvalues of a(f̄) are respectively outside, on, or inside the unit
circle. These eigenspaces and the direct sums gcu = gu ⊕ gc, gcs = gc ⊕ gs are Lie
subalgebras and hence tangent to connected subgroups Gu, Gc, Gs, Gcu, Gcs.

Proposition ([PuShSt1]). Let f : G/B → G/B be an affine diffeomorphism as
above such that G/B is compact and supports a smooth G-invariant volume. Let
G∗ be any of the groups Gu, Gc, Gs, Gcu, Gcs. Then the orbits of the left G∗-
action on G/B foliate G/B. Moreover, f exponentially expands the Gu-leaves,
exponentially contracts the Gs-leaves, and affects the Gc-leaves subexponentially.

Now we characterize partial hyperbolicity, bunching and accessibility in the
context of affine diffeomorphisms. Let h denote the smallest Lie subalgebra of g
containing gu ∪ gs. It is not hard to see that h is an ideal in g. We call it the
hyperbolic Lie subalgebra of f̄ , and we denote by H the connected subgroup of G
tangent to h, calling it the hyperbolic subroup of f̄ . Finally, let b denote the Lie
algebra of B, b ⊂ g.

Theorem ( [PuSh4]). Let f : G/B → G/B be an affine diffeomorphism as above
such that G/B is compact and supports a smooth G-invariant volume. Then

(a) f is partially hyperbolic if and only if the hyperbolic Lie subalgebra of f̄ is
not contained in the Lie algebra of B, h 6⊂ b.

(b) If f is partially hyperbolic then it is center bunched.

(c) f has the us-accessibility property if and only if g = b + h.

(d) f has the e-accessibility property if and only if HB = G.

When the stable and unstable foliations are smooth, as in the affine case, us-
accessibility is stable. Thus we have:

Theorem. [PuSh4] Let f : G/B → G/B be an affine diffeomorphism as above
such that G/B is compact and supports a smooth G-invariant volume. Then f is
stably ergodic among C2 volume preserving diffeomorphisms of G/B if (merely)
the hyperbolic Lie subalgebra h is large enough that g = b + h.

If G is simple then any nontrivial h is large enough since it is an ideal.
Suppose that A ∈ SL(n,R) has some eigenvalues that are not of modulus one,

and suppose that Γ is a uniform discrete A-invariant subgroup of SL(n,R). Set
M = SL(n,R)/Γ. Then left multiplication by A, LA : M → M , is stably ergodic
in Diff2

µ(M). The case where n is large and all but two eigenvalues have modulus
one is interesting, in that the dimension of Gu and Gs is n−1 while the dimension
of Gc is (n− 1)2, so the dimension of Gc is much larger than that of Gu and Gs.
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At the other extreme are abelian groups. If G = Rn and B = Zn then transla-
tions on the torus, Tn = Rn/Zn are ergodic if the entries of the element defining
the translation are rationally independent, but they are never stably ergodic. An
automorphism A of Tn is ergodic if and only if A has no eigenvalues that are roots
of unity. A little bit of algebra quickly shows that the hypothesis that A has no
eigenvalues which are roots of unity is equivalent to the hypothesis that HZn = Rn

where H is the hyperbolically generated subgroup of Rn.
We have concentrated on the accessibility condition because accessibility is a

topological property and as such it is not difficult to stipulate easily verifiable
conditions which guarantee that it persists under small perturbations.

In a recent remarkable paper, Federico Rodriguez Hertz gives the first examples
of a stably e-accessible diffeomorphisms that are not us-accessible, [RH]. They are
ergodic, non-hyperbolic diffeomorphisms of tori. The first such occurs in dimension
four.

Hertz sometimes uses a technical assumption on the automorphism A, which
will refer to as the Hertz condition, namely that the characteristic polynomial of
A is irreducible over the integers and it can not be written as a polynomial in tk,
k ≥ 2.

Theorem. [RH] Let A be an ergodic toral automorphism of Tn.

(a) If n ≤ 5 then A is stably ergodic in Diff22
µ (Tn).

(b) If n ≥ 6, Ec is two-dimensional, and A satisfies the Hertz condition then A
is stably ergodic in Diff5(Tn).

The differentiability degrees 22 and 5 are not misprints.
Part of Hertz’ proof involves an alternative. Either the perturbation is us-

accessible or the stable and unstable manifold foliations are differentiably conju-
gate to the foliations of the linear example and hence the perturbation has the
e-accessibility property.

Problem (8). Is every ergodic toral automorphism stably ergodic in the Cr topol-
ogy for some r?

The next result is an approximate solution of this problem.

Theorem ([ShWi1]). Every ergodic toral automorphism of Tn that is an isometry
on the center bundle Ec can be approximated arbitrarily well in Diff∞µ (Tn) by a
stably us-accessible, stably ergodic diffeomorphism.

Further examples of partially hyperbolic stably ergodic diffeomorphisms are
considered in [BuPuShWi]. These include skew products, frame flows, and Anosov-
like diffeomorphisms.

The next theorem shows that the condition for stable ergodicity of affine diffeo-
morphisms among perturbations which are restricted to be left multiplication by
group elements near the identity is the same as e-accessibility. Hence, the julienne
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proof of stable ergodoicity applies to prove the stable ergodicity of these affine dif-
feomorphisms among affine perturbations as well. This phenomenon is discussed
in [PuShSt2].

Theorem ([St2]). Suppose that f : G/B → G/B is an affine diffeomorphism such
that M = G/B is compact and supports a smooth G-invariant volume. Then the
following are equivalent.

(a) f is stably ergodic under perturbation by left translations.

(b) HB = G where H is the hyperbolically generated subgroup of G.

Corollary . Suppose that f : G/B → G/B is an affine diffeomorphism such
that M = G/B is compact and supports a smooth G-invariant volume. Assume
that G is simple. Then stable ergodicity of f with respect to perturbation by
left translations is equivalent to stable ergodicity among C2 volume preserving
perturbations.

This corollary and the result of Rodriguez-Hertz naturally lead to a generaliza-
tion of Problem 10.

Problem (9). For an affine diffeomorphism f of a compact, finite volume G/B, is
stable ergodicity of f with respect to perturbation by left translations equivalent
to stable ergodicity among C2 volume preserving perturbations?

We end our discussion of partially hyperbolic diffeomorphisms with a question
from [BuPuShWi] of a very different nature. We have used both the strong unsta-
ble and strong stable foliations in our proof of ergodicity, but we don’t know an
example where this is strictly necessary.

Problem (10). For a partially hyperbolic C2 ergodic diffeomorphism f with the
e-accessibility property, are the unstable and stable foliations already ergodic and
uniquely ergodic?

Unique ergodicity of for horocycle flows was proved by Furstenberg [Fu]. Bowen
and Marcus [BoMa] proved the unique ergodicity of the strong stable and unsta-
ble manifold foliations in the case where f is the time-one map of a hyperbolic
flow. Rodriguez Hertz’ result adds more cases in which the invariant foliations
are uniquely ergodic, namely those in which they are differentiably conjugate to
the invariant foliations of a linear ergodic toral automorphism. Starkov [PuShSt2]
proves that unique ergodicity of the strong stable or unstable foliations for all affine
diffeomorphisms which are stably ergodic under perturbation by left translation.

In the topological category Bonatti, Dı́az, and Ures [BoDı́Ur] prove the mini-
mality of the stable and unstable foliations for an open and dense set of robustly
transitive diffeomorphisms.

4.2. Models. Two dynamical systems f : M → M and g : N → N are topo-
logically conjugate if there is a homeomorphism h : M → N such that hf = gh.
The dynamical system f is structurally stable if there is a Cr neighborhood of f
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such that every g in U is topologically conjugate to f .§ By the work of Smale, Palis
[PaSm] , Robbin [Ro] and Robinson [Rob], diffeomorphisms that satisfy Smale’s
Axiom A and the strong transversality condition are structurally stable. Mañé
[Mañ2] in general and Liao [Li] also in dimension 2 prove that in the C1 topology
this condition is also necessary. The C2 Axiom A strong transversality diffeomor-
phisms also have finitely many attractors which have SRB measures. These Axiom
A strong transversality diffeomorphisms are extraordinarily appealing since they
have all the properties we hope for. They are fairly well understood. Yet there
remain interesting questions about them. Some of the issues are discussed in [Su].
I will denote the set of Axiom A strong transversality diffeomorphisms of M by
ASr(M).¶

Since topological entropy is a topological conjugacy invariant and C∞ is dense
in Cr the Entropy Inequality holds for all Cr structurally stable diffeomorphisms.
How sharp is the Entropy Inequality as a lower bound for the entropy of dynam-
ical systems in ASr(M)? Smale [Sm3] proved that every isotopy class of diffeo-
morphisms contains an element of ASr(M). Since the fundamental group can
contribute information about the entropy not readable in the homology groups, we
restrict ourselves to simply connected manifolds.‖

Problem (11). Let M be simply connected. Let I be an isotopy class of diffeo-
morphisms of M . Is there a sequence of diffeomorphisms, fn ∈ I ∩ ASr(M) such
that h(fn) → ln(s(f∗))?

If the restriction that the diffeomorphism lie in ASr(M) is removed then it is
even unknown whether equality may be achieved in the Entropy Inequality within
every isotopy class of diffeomorphisms. There are examples where equality may
not be achieved with elements of ASr(M). A diffeomorphism in ASr(M) with
zero entropy is necessarily Morse-Smale. As a result of [ShSu2, FrSh] and [Le],
it is known that there are isotopy classes of diffeomorphisms of simply connected
manifolds for which ln(s(f∗)) = 0, yet there is no Morse-Smale diffeomorphism in
the class. Are there diffeomorphisms in ASr(M) with arbitrarily small topological
entropy in these classes? If not, what is a lower bound on the entropy?

Model elements of ASr(M) are constructed in every isotopy class of diffeomor-
phisms in [ShSu2, Fr2, Mal1] from information on chain complexes for M and chain
complex endomorphisms induced by f. This work is closely related to Smale’s work
on the structure of manifolds. See also [Sh2, Sh3] for more discussion of this point.
There are further relations between stability and homology theory established in
[ShWil, RuSu] where the entropy conjecture was first proven for C1 diffeomor-
phisms satisfying Smale’s axioms. This work is also related to our next problem.

To close our discussion of structurally stable diffeomorphisms, I recall one other
outstanding problem.

§We restrict ourselves to dynamical systems in Diffr(M) even though the same concepts apply
in Endr(M) and to structural stability as opposed to Omega stability for the sake of simplicity
of exposition.
¶AS is a fortuitous selection of letters since Anosov, Sinai, Smale, Axiom A and Strong all

begin with A and S.
‖See Maller [Mal1, Mal2] for non-simply connected manifolds.



All, Most, Some Differentiable Dynamical Systems 17

Problem (12). Are all Anosov diffeomorphisms infra-nil?

Smale[Sm2], considered the nil-manifold setting for Anosov diffeomorphisms
which was later extended by example [Sh1] to infra-nil manifolds where the corre-
sponding examples of expanding maps were considered. All expanding maps are
infra-nil by the results of [Sh1], [Fr1] and Gromov [Gro1] on groups of polynomial
growth. For Anosov diffeomorphisms defined on a manifold M, it is known that if
M is an infra-nil manifold then the diffeomorphism is conjugate to an affine exam-
ple, [Ma2]. It is not known if all manifolds M supporting Anosov diffeomorphisms
are infra-nil manifolds. If one of the bundles Es or Eu is one dimensional then
problem is answered in the affirmative by [New2]. Perhaps the best results go back
to [Fr1].

Questions about the classification of manifolds admitting partially hyperbolic
diffeomorphisms are raised in section 20 of [PuSh5].

We end the paper by mentioning a few surveys which go into greater depth on
some of the issues we have considered, [Sm2, Fr2, Sh1, Sh3, BuPuShWi, PuSh5,
Pe3, BoDı́Vi].
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