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Abstract In this paper we address the issue of uniformly positive scalar curvature on
noncompact 3-manifolds. In particular we show that the Whitehead manifold lacks such a
metric, and in fact that R

3 is the only contractible noncompact 3-manifold with a metric of
uniformly positive scalar curvature. We also describe contractible noncompact manifolds of
higher dimension exhibiting this curvature phenomenon. Lastly we characterize all connected
oriented 3-manifolds with finitely generated fundamental group allowing such a metric.

Keywords Positive scalar curvature · Noncompact manifolds ·Whitehead manifold

Mathematics Subject Classification (2000) 53C21 · 19K56 · 57N10 · 57M40

1 Introduction

If M is an n-dimensional endowed with a Riemannian metric g, then its scalar curvature
κ : M → R satisfies the following property. At each point p ∈ M there is an expansion

VolM (Bε(p)) = VolRn (Bε(0))

(
1− κ(p)

6(n + 2)
ε2 + · · ·

)
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for all sufficiently small ε > 0. A complete Riemannian metric g on a manifold M is
said to have uniformly positive scalar curvature if there is fixed constant κ0 > 0 such that
κ(p) ≥ κ0 > 0 for all p ∈ M . In the compact setting, obstructions to such metrics are largely
achieved in one of two ways: (1) the minimal surface techniques in dimensions at most 7
by Schoen-Yau and more recently in all dimensions by Christ-Lohkamp; (2) the K -theoretic
Dirac index method for spin manifolds by Atiyah-Singer and its generalizations by Hitchin,
Gromov, Lawson and Rosenberg.

In the realm of noncompact manifolds it is now well recognized that the original approach
by [9] and [26] proving that no compact manifold of nonpositive sectional curvature can
be endowed with a metric of positive scalar curvature, is actually based on a restriction
on the coarse quasi-isometry type of complete noncompact manifolds. Block and Wein-
berger [2] investigate the problem of complete metrics for noncompact symmetric spaces
when no quasi-isometry conditions are imposed. They prove that, if G is a semisimple Lie
group with maximal compact subgroup K and irreducible lattice �, then the double quotient
M ≡ �\G/K can be endowed with a complete metric of uniformly positive scalar curvature
if and only if � is an arithmetic group with rankQ� ≥ 3. This theorem includes previously
derived results by Gromov-Lawson in rational rank 0 and 1, in view of the characterization
of compactness in terms of rational rank by Borel and Harish-Chandra. In the case when the
rational rank exceeds 2, Chang proves that any metric on M with uniform positive scalar
curvature fails to be coarsely equivalent to the natural one [5].

For noncompact (spin) manifolds that are diffeomorphic to interiors of manifolds with
boundary, there is a reasonable plan of attack: one can define a index of a Dirac operator
that lies in a real K -theory of pairs which presumably obstructs the existence of a complete
uniformly positive scalar curvature metric. We note that the condition for a space to be the
interior of a manifold with boundary involves a mixture of fundamental group and homo-
logical conditions, together with the Siebenmann obstruction in K O(Zπ∞1 ). Here π∞1 is the
inverse limit of the fundamental groups of complements of a sequence of compact sets that
exhaust the manifold.

It is fairly straightforward to connect this notion to index theory when the fundamental
group at infinity injects into π1(M). As a result, for groups which coarsely embed in Hilbert
space, this obstruction must vanish. See [27] and [28] in addition to the argument in [2]. If
the fundamental group at infinity does not inject into π1(M), the analytic setting for proving
such a vanishing result is less apparent, and will be discussed in a sequel article. In this paper,
we will discuss 3-dimensional noncompact manifolds, in which venue there is relevant fun-
damental group information at infinity completely different than that in the case for interiors
of compact manifolds.

Our first main result asserts that the only non-compact contractible 3-manifold with uni-
formly positive scalar curvature is R

3. Uncountably many such non-compact contractible
3-manifolds are known, the most famous being the Whitehead manifold W , which we dis-
cuss first in Sect. 2. This manifold has a trivial fundamental group at infinity but it not simply
connected at infinity, and thereby demonstrates much richer structure than π∞1 (W ) is able
to detect. Here we will give an ad hoc argument mixing 3-manifold topology with known
facts about the Novikov conjecture to prove this result. We will also prove a general taming
theorem, described below. Our later paper will unify this case and the tame situation for
which the fundamental group at infinity does not inject into that of the entire manifold.

Our theorems are as follows:

Theorem 1 If M3 is a three-dimensional contractible manifold with a complete metric of
uniformly positive scalar curvature, then M3 must be homeomorphic to R

3.
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Theorem 2 For all n ≥ 3 there is a contractible manifold Mn of dimension n with no
complete metric of uniformly positive scalar curvature.

Theorem 3 Suppose that M is a connected oriented 3-manifold whose fundamental group is
finitely generated, and M has a complete Riemannian metric with uniformly positive scalar
curvature. Then we have the following.

(1) The space M is homeomorphic to a connected sum of space forms (quotients of the
3-sphere) and copies of S2 × S1. In fact it can be compactified to a compact manifold
M̃ so that the set P = M̃ − M of boundary points is a totally disconnected set.

(2) Further, if M is homotopy equivalent to a finite complex (or even has finite second Betti
number), then P can be taken to be finite.

Remark Compact 3-manifolds can be geometrized by the work of Perelman, and their posi-
tive scalar curvature properties are well known. For instance, Theorem 3 implies Theorem 1
in light of the Poincaré conjecture. The final section of the paper gives a version of Theorem
3 that strongly relates to Perelman’s work, and allows for infinite homotopy type. It is also
worth noting here that the complement N of a Cantor set in S3 is a non-tame manifold with a
complete uniformly positive scalar curvature metric, showing that the homotopy condition in
Theorem 3 is necessary. In fact, the space N is the universal cover of a connected sum L3#L3

of Lens spaces, which has a uniformly positive scalar curvature metric by [8] and [26].

2 The Whitehead manifold

Definition A topological space V is said to be simply connected at infinity if, for all com-
pact subsets C of V , there is a compact set D in X containing C so that the induced map
π1(V − D)→ π1(V − C) is trivial.

The following theorem of Stallings indicates that there is topologically a unique noncom-
pact manifold that is both contractible and simply connected at infinity.

Theorem (Stallings) Let n ≥ 4 and consider a contractible manifold V . The following are
equivalent.

(1) The manifold V is homeomorphic to R
n.

(2) The manifold V is simply connected at infinity.
(3) There are compact sets K1 ⊂ K2 ⊂ K3 ⊂ · · · such that

⋃∞
i=1 Ki = V and π1(V −Ki )

is trivial for all i .
(4) For every sequence K1 ⊂ K2 ⊂ K3 ⊂ · · · of compact subsets with

⋃∞
i=1 Ki = V ,

the sequence π1(V − K1)← π1(V − K2)← · · · is protrivial; i.e. lim←−π1(V − Ki ) is
trivial.

Stalling’s theorem is however not true in dimension 3. The Whitehead manifold is an open
contractible 3-manifold that satisfies (4) but is not homeomorphic to R

3. It is constructed in
the following manner: we start with a copy of the three-sphere S3 and identify an unknotted
torus T1 inside of it. Take another torus T2 inside T1 such that T2 forms a thickened Whitehead
link with a tubular neighborhood of the meridian curve in T1. The torus T2 is null-homotopic
in the complement of the meridian of T1. Inductively embed Tn in Tn−1 in the same manner
and let K = ⋂∞

n=1 Tn . Define the Whitehead manifold to be W = S3\K , which is non-
compact without boundary. By the Hurewicz theorem and Whitehead’s theorem, it follows
that W is contractible. Although π∞1 (W ) is trivial, it is not simply connected at infinity, so
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the Whitehead manifold is not homeomorphic to R
3. This space is a standard example of a

nontame manifold.
Some properties of the Whitehead manifold W are given as follows ([1,3]):

(1) W × R is homeomorphic to R
4;

(2) Every homeomorphism of W to itself is orientation-preserving;
(3) The one-point compactification S3/K is not a manifold but (S3/K )×R is homeomor-

phic to R
4.

We can imagine the Whitehead manifold as the following union:

W = T c
1 ∪ (T1 − T2) ∪N2 (T2 − T3) ∪N3 (T3 − T4) ∪N4 · · ·

where Ni is the boundary of Ti for each i and T c
1 is the complement of T1 in S3. For each i

let Ai = Ti − Ti+1 and let ∂0
i be the outer boundary of Ai and ∂1

i the inner boundary. Then
there are injections π1(∂

0
i )→ π1(Ai ) and π1(∂

1
i )→ π1(Ai ).

Let Ki be those compact sets such that W =⋃n
i=1 Ki and S3− Int(Ki ) = Ti . Then there

are maps π1(W − Ki+1)→ π1(W − Ki ) which gives rise to maps

π1(Ai ) ∗π1(∂
1
i ) π1(Ai+1) ∗π1(∂

1
i+1)
· · · −→ π1(Ai+1) ∗π1(∂

1
i+1)

π1(Ai+2) ∗π1(∂
1
i+2) · · ·

The inverse limit of this diagram is very small, but the π1(S3 − Ki ) are infinitely generated.

3 Positive scalar curvature and the Whitehead manifold

To prove that R
3 is the only contractible 3-manifold with a complete Riemannian metric of

uniformly positive scalar curvature, we first eliminate the Whitehead manifold by an index-
theoretic argument. In the next section, we show that the general topological results of this
section imply that all contractible 3-manifolds have similar enough topological structure to
the Whitehead manifold for the same proof to apply.

We will rely on the following three basic theorems of Papakyriakopolous:

Theorem 1 (Dehn Lemma) Let M be a 3-manifold with boundary. If � ∈ ∂ M is an embed-
ded loop which is trivial in π1(M), then there is an embedded disk D2 ⊂ M such that
� = D2 ∩ ∂ M.

Theorem 2 (Loop Theorem) Let M be a 3-manifold with boundary. Suppose that the map
i∗ : π1(∂ M)→ π1(M) is not injective. Then there is an essential loop � ∈ ∂ M, i.e. � is not
trivial in π1(∂ M) such that i∗(�) is trivial in π1(M).

Theorem 3 (Sphere Theorem) If M is an oriented 3-manifold such that π2(M) is nontrivial,
then there is an embedded essential 2-sphere S2 in M.

Corollary If L is a link in S3 and S3 − L is not aspherical, then π2(S3 − L) �= 0 and there
is an essential S2 splitting the link.

Proof Let M = S3− L and let M̃ be the universal cover. Then H1(M̃) = 0 and Hn(M̃) = 0
for all n ≥ 3. If π2(M̃) = 0, then H2(M̃) = 0 by the Hurewicz theorem, so all homotopy
groups of M̃ vanish. Therefore M is aspherical, a contradiction. The sphere theorem then
gives an embedded essential 2-sphere in M . If it does not split the link, then it is nullhomo-
topic, a contradiction. �
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Lemma Suppose that K ⊂ S1 × D2 is a knot. The following are equivalent.

(1) The knot K lies in some ball B3 in S1 × D2.
(2) The space (S1 × D2)− K is not aspherical.
(3) The fundamental group π1(∂(S1 × D2)) does not inject into π1((S1 × D2)− K ).
(4) There is an embedded disk D ⊆ S1×D2 with ∂ D ⊆ ∂(S1×D2) and not null-homotopic

in ∂(S1 × D2) such that D ∩ K = ∅.
Proof The equivalence of (1) and (4) is clear. If (4) holds, then let D2 be chosen so that
D2 ∩ K = ∅ and ∂ D2 is a nontrivial loop in π1(S1 × D2). The loop can be contracted in
S1 × D2 − K , thus giving (3). Conversely, if (3) holds, then by the Loop Theorem, there
is a loop � ∈ ∂(S1 × D2) that vanishes in S1 × D2 − K . Choose a tubular neighborhood
N (K ) of K such that � vanishes in M = S1 × D2 − N (K ). By the Dehn Lemma there is a
disk D such that D2 ∩ ∂(S1 × D2 − N (K )) = �, so D ∩ K = ∅. Statements (1) and (2) are
equivalent by the Sphere Theorem and homological arguments. �

Corollary In our construction at the end of Sect. 2, each Ai is aspherical.

Theorem 3.1 Any complete Riemannian metric on the Whitehead manifold does not have
uniformly positive scalar curvature in the complement of any compact subset.

Proof Suppose that the Whitehead manifold W has a metric of uniformly positive scalar
curvature and write

W = (S1 × D2) ∪T 2 A1 ∪T 2 A2 ∪T 2 · · ·
as at the end of Sect. 2. Note that each Ai is the complement in a solid torus of a non-split
link, and is aspherical by the above Lemma. We cut the manifold W along the first T 2 and
glue the noncompact piece with its double to obtain a two-ended manifold N of the form
· · · A2 ∪ A1 ∪ A1 ∪ A2 · · ·, where Ai is Ai with the opposite orientation. This N has uni-
formly positive scalar curvature away from the glueing between A1 and A1. In particular,
the manifold N has uniformly positive scalar curvature outside of a compact set. Consider
� = π1(N ) = π1(W − B) ∗π1(T 2) π1(W − B), where B = S1 × D2 with boundary T 2. �


By the equivariant version1 of Roe’s partitioned index theorem proved in [2], we know
that the index of the Dirac class [DT 2 ] vanishes in K0(C∗r �), where C∗r � is the reduced group
C∗-algebra of �. We will show that this result yields a contradiction.

Consider the commutative diagram given as follows:

Note that K0(T 2) ∼= Z × Z. The Fredholm index lies in the first copy of Z; the projec-
tion of the K -homology class of the Dirac operator onto the second copy of Z is nonzero.

1 This theorem states that, if Z is a noncompact spin manifold with uniformly positive scalar curvature at
infinity, and if V is a spin hypersurface that partitions Z into two pieces, then the index of the Dirac operator
on V vanishes in Kn−1(C∗r (π1(Z)), where n is the diemnsion of Z .
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This second copy of Z injects into the K -homology of B� (note that the manifold N is an
Eilenberg-MacLane space) since the torus separates the noncompact manifold N into two
noncompact pieces. In fact, the map K0(T 2)→ K0(B�) is injective.

Therefore the image of [DT 2 ] ∈ K0(T 2) under the map α is nonzero in K0(B�). The
rational strong Novikov conjecture holds for all two-dimensional cohomology classes ([7],
[13]). Via the Chern map, we can conclude that the image of α([DT 2 ]) under the map
φ : K0(B�) → K0(C∗r �) is nonzero (note that K0(T 2) is torsion-free, so the image of the
nonzero class [DT 2 ] under the map K0(T 2)→ K0(B�) has infinite order, hence its image
under the composition φ ◦ α is rationally nonzero, and therefore integrally nonzero). As a
result the index ind(DT 2) in K0(C∗r �) is nonzero, contradicting the above result.

Remark Instead of the 2-dimensional Novikov Conjecture, one can use Pimsner’s theorem
[21] to show that the Baum–Connes conjecture holds for the group �, using the fact that
injections must commute with direct limits.

Theorem 3.2 For all n ∈ Z≥2, there is a contractible manifold Mn having no complete
Riemannian metric with uniformly positive scalar curvature outside a compact set.

Proof We first note that R
2 and the Whitehead manifold do not have metrics of uniformly

positive scalar curvature. For tame manifolds, i.e. manifolds diffeomorphic to the interiors of
compact manifolds, a sufficient condition for the absence of a metric with uniformly positive
scalar curvature outside a compact set is that the fundamental class of the boundary be non-
zero in Kn−1(Bπ1(∂ M)) and that the strong Novikov conjecture hold for π1(∂ M). For n = 4,
the Mazur manifolds [15] are such examples. Indeed, many of these Mazur manifolds have
hyperbolic structures, and therefore in this case the desired result follows by the Gromov-
Lawson theorem [9]. In dimensions n exceeding four, any n-dimensional homology sphere
bounds a contractible manifold after perhaps changing the differentiable structure (see [10]).
We merely need to build homology spheres which represent nontrivial cycles in their group
homology (and which satisfy the Novikov conjecture). But this result is achieved in [17]. �


4 General contractible 3-manifolds and positive scalar curvature

Lemma 4.1 Suppose that M3 is a contractible noncompact 3-manifold and let K ⊆ M3 be
compact. Then there is a separating (hyper)surface 	 disjoint from K partitioning M into
a compact piece K ′ containing K and a noncompact piece V such that π1(	)→ π(V ) is
injective.

Proof First we know that a contractible n-manifold is one-ended if n ≥ 3, and as a result we
can choose our 	 to be connected. For every point x in 	, consider the unit normal vector
n(x) pointing in the direction of the noncompact piece V . Since M is contractible, it is also
orientable. The orientation on M together with the nonzero normal vector field n(x) on 	

give us an orientation for 	. �


If the map π1(	) → π1(V ) is not injective, then there is some nontrivial loop � in 	

that is nullhomotopic in V . By the Dehn Lemma there is an embedded disk D in V such
that D ∩	 = �. Execute surgery on 	 via this disk to produce a surface 	′ of lower genus.
Iterate this process finitely many times to produce a separating hypersurface with the desired
property.
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Let � be a discrete group and X be a metric space with a proper and free isometric action
of �. Let C0(X) be the algebra of all complex-valued continuous function on X which vanish
at infinity.

Let H be a Hilbert space and let φ be a ∗-homomorphism from C0(X) to the C∗-algebra
B(H) of all bounded operators on H such that φ( f ) is a noncompact operator in B(H) for
any nonzero function f ∈ C0(X). We further assume that H has a �-action compatible with
φ in the sense that φ(γ f )h = (γ (φ( f ))γ−1)h for all γ ∈ �, f ∈ C0(X) and h ∈ H . Such
a triple (C0(X), �, φ) is called a covariant system.

The following concepts were introduced by Roe [22].

(1) Let T be a bounded linear operator acting on H . The support of T , denoted by Supp(T ),
is defined to be the complement (in X × X ) of the set of all points (x, y) ∈ X × X for
which there exist f ∈ C0(X) and g ∈ C0(X) satisfying φ( f )T φ(g) = 0 and f (x) �= 0
and g(y) �= 0;

(2) The operator T is said to have finite propagation if there exists r ≥ 0 such that d(x, y) ≤
r for all (x, y) ∈ Supp(T );

(3) The operator T is said to have �-bounded propagation if there exist a finite subset
F ⊆ � and r ≥ 0 such that min{d(gx, y) : g ∈ F} ≤ r for all (x, y) ∈ Supp(T );

(4) The operator T is said to be locally compact if φ( f )T and T φ( f ) are compact for all
f ∈ C0(X).

We define C∗�,b(X) to be the operator norm-closure of all �-invariant locally compact
operators with �-bounded propagation on H . It is not diffcult to verify that C∗�,b(X) is inde-
pendent of the choice of H (up to ∗-isomorphism). Let C∗�(X) be the operator norm-closure
of all �-invariant locally compact operators with finite propagation on H . Notice C∗�(X) is
an equivariant version of the Roe algebra [22] and is a subalgebra of C∗�,b(X).

Theorem 4.2 Let M be a noncompact n-manifold with fundamental group �. Suppose that
M has a complete Riemannian metric with uniformly positive scalar curvature outside a
compact set. Let D be the Dirac operator on M with �-lift D̃ and let C∗�,b(M̃) be the opera-
tor norm-closure of all �-invariant locally compact operators with �-bounded propagation
on the universal cover M̃. Then ind(D̃) = 0 in K∗(C∗�,b(M̃)).

Proof The index map is a composite K �∗ (M̃)→ K∗(C∗�(M̃))→ K∗(C∗�,b(M̃)) but factors
through K∗(K⊗C∗r �) by the positivity assumption on scalar curvature. Here K is the algebra
of compact operators on M . It suffices therefore to prove that the map

i∗ : K∗(K⊗ C∗r �)→ K∗(C∗�,b(M̃))

is identically zero.
When ∗ = 0, we consider a geodesic ray R+ → M embedded in M . We write

L2(R+) =
∞⊕

n=0

L2[n, n + 1] = L2[0, 1] ⊗ �2(N).

�

If p1 is a rank 1 projection on L2[0, 1], then p1 ⊗ p0 generates K0(K) ∼= Z, where
p0 : �2(N) → �2(N) is the projection onto the function δ0. Let S : �2(N) → �2(N) be
the shift operator given by (Sξ)(n) = ξ(n + 1) for all ξ ∈ �2(N) and n ∈ N. Note that S has
adjoint S∗ given by

(S∗ξ)(n) =
{

ξ(n − 1) if n ≥ 1,

0 if n = 0
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for all ξ ∈ �2(N). Let q be a projection in the matrix algebra of C∗r � representing an element
in K0(C∗r �). Set p = q ⊗ p1. If T = p⊗ S, then T ∗T = p⊗ I and T T ∗ = p⊗ (I − p0).
Since T ∗T and T T ∗ are Murray-von Neumann equivalent, so [p ⊗ I ] = [p ⊗ (I − p0)] in
K0(C∗(R+) ⊗ C∗r �), where C∗(R+) is the Roe algebra for R+. Hence [p ⊗ p0] is zero in
K0(C∗(R+)⊗ C∗r �). With the map K0(C∗(R+)⊗ C∗r �)→ K0(C∗�,b(M̃)) (induced by the

�-equivariant embedding of the lift of the geodesic ray into M̃), it follows that i∗ is the zero
map.

Now let ∗ = 1. We proceed by an Eilenberg swindle argument. Again let us write

L2(R+) = L2[0, 1] ⊗ �2(N)

and let u ∈ (K(L2[0, 1])⊗ C∗r �)+ be a unitary representing an element in K∗(K ⊗ C∗r �).
Then u ⊗ I lies in K∗(K⊗ C∗r �). Using the shift operator S as above, we define

W =
∞⊕

n=1

(I ⊗ S)n(u ⊗ I )(I ⊗ S∗)n :
∞⊕

n=0

L2(R+)→
∞⊕

n=0

L2(R+).

Now define

W1 =
∞⊕

n=1

(I ⊗ S)n+1(u ⊗ I )(I ⊗ S∗)n+1

and

W2 = I ⊕
( ∞⊕

n=1

(I ⊗ S)n+1(u ⊗ I )(I ⊗ S∗)n+1

)
.

Then [W ] = [W1] = [W2] in K∗(C∗(R+)⊗C∗r �). Therefore [u⊗ I ] = [I ] in K∗(C∗(R+)⊗
C∗r �), and thus it is trivial in K∗(C∗�,b(M̃)).

Theorem 4.3 Suppose that M is an oriented n-manifold with � = π1(M) and 	 is a com-
pact separating codimension 1 hypersurface partitioning M into M0 and M1. Denote by 	�

the �-lift of 	. Assume that the strong Novikov conjecture holds for � and that the image
of [D	] is nonzero under the map f∗ : K �∗−1(	�) → K∗(B�). Then ind(D̃) is nonzero in
K∗(C∗�,b(M̃)).

Proof For each r > 0, let Nr be the r -neighborhood of 	 in M1, with metric inherited from
M̃ . Let 	� be the �-lift of 	. Define C∗�,M1

(	�) ≡ lim
r→∞C∗�,b(Ñr ). Then C∗�,M1

(	�) is an

ideal in C∗�,b(M̃). It is not hard to show that the map j∗ : K∗(C∗�,b(	�))→ K∗(C∗�,M1
(	�))

is an isomorphism. Consider the commutative diagram given by
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Now K∗−1(C∗�,M1
(	�)) ∼= K∗−1(C∗�,b(	�)) ∼= K∗−1(C∗r �) by the fact that 	 is compact.

The Dirac class [D̃] in K �∗ (M̃) has image [D̃	� ] in K �∗−1(	�) under the composition of the
first horizontal map with the two vertical maps on the right hand side in the above diagram,
whose index is nonzero in K∗−1(C∗r �) because the strong Novikov conjecture is assumed
for �. Therefore the index ind(D̃) is nonzero in K∗(C∗�,b(M̃)), as required. �

Theorem 4.4 If a noncompact contractible 3-manifold M has a complete Riemannian metric
with uniformly positive scalar curvature outside a compact set, then it is homeomorphic
to R

3.

Proof If M has a complete Riemannian metric with uniformly positive scalar curvature
outside some compact set, let K be any compact set in M . By Lemma 4.1, there is an
orientable hypersurface 	 that partitions M into a compact subset K ′ containing K and a
noncompact piece V . Moreover 	 can be chosen so that π1(	) injects into π1(V ). Let N
be the doubling of V . If 	 is aspherical, then N is aspherical. Let π1(N ) = �. Notice that
H2(	) injects into H2(N ). This can be seen as follows: there is a noncompact 1-dimensional
submanifold of N whose intersection number with 	 is 1. Hence H2(Bπ1(	)) injects into
H2(B�). By [14], the strong Novikov conjecture holds for �. Therefore N and � satisfy the
conditions of Theorem 4.3, contradicting the result of Theorem 4.2. It follows that 	 must
be a sphere. By the Poincaré conjecture, the union 	 ∪ K ′ is a ball. Since K is arbitrary, it
follows that M is a union of nested balls, so must be R

3. �


5 General 3-manifolds and positve scalar curvature

Theorem 5.1 Suppose that M is a connected oriented 3-manifold whose fundamental group
is finitely generated, and M has a complete Riemannian metric with uniformly positive scalar
curvature. Then we have the following.

(1) The space M is homeomorphic to a connected sum of space forms (quotients of the
3-sphere) and copies of S2 × S1. In fact it can be compactified to a compact manifold
M̃ so that the set P = M̃ − M of boundary points is a totally disconnected set.

(2) Further, if M is homotopy equivalent to a finite complex (or even has finite second Betti
number), then P can be taken to be finite.

Proof The proof is again based on the same ideas. We start with an exhaustion of M and
then improve it so that (1) the boundary components separate different ends and (2) the
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fundamental groups of the boundary components inject into the fundamental groups of their
ends.

If there is ever a surface of positive genus among the collection of boundary components,
then we contradict uniformly positive scalar curvature (outside a compact set) by the earlier
arguments in the proof of Theorem 4.4, i.e. by doubling the manifold and using the geom-
etrization theorem and an index theory argument based on Theorem 4.2 and Theorem 4.3
(the geometrization theorem implies that the doubled manifold is aspherical in this case).
Then at each stage we obtain finite unions of 2-spheres as the separating surfaces. For suf-
ficiently large exhaustions, the (annular) three-manifolds bounding these 2-spheres must be
simply connected; otherwise the fundamental group is infinitely generated by van Kampen’s
Theorem.

As they are simply connected, the Poincaré conjecture implies that these annular pieces
are all multiply punctured spheres, and the assumption that the fundamental group is finitely
generated implies that the geometry at infinity is asymptotically a tree. The set of boundary
points of the compactification is precisely the space of end points of the tree. We therefore
have a noncompact manifold M with uniformly positive scalar curvature that is homeomor-
phic to a connected sum N#A, where N is a compact 3-manifold and A is a multiply punctured
sphere. The prime decomposition theorem for 3-manifolds states that N is a finite connected
sum of manifolds with finite fundamental group (i.e. space forms), copies of S1 × S2 and
Eilenberg-Maclane spaces K (π, 1).

We claim that none of these summands can be Eilenberg-Maclane. If so, we can express
M as K #L for some finitely presented group π and some noncompact manifold L , where K
is a compact K (π, 1) manifold. Since every noncompact manifold admits a proper (coarse)
map onto a ray R, consider the corresponding proper map f : K #L → K ∨ R, where K ∨ R
means the one-point union of K and the ray R at the endpoint of R. Let X and Y be respec-
tively the covering spaces of K #L and K ∨ R with proper and free actions of π satisfying
X/π = K #L and Y/π = K ∨ R. One can define a higher index of the Dirac operator D on
K #L in K1(C∗π (X)) (denoted by ind(D)), where C∗π (X) is the operator norm closure of all
π-invariant and locally compact operators with finite propagation acting on the Hilbert space
of all L2-sections of the spinor bundle on X . The map f induces a proper π-equivariant map
g from X to Y . This g induces a homomorphism g∗ from K1(C∗π (X)) to K1(C∗π (Y )), where
C∗π (Y ) is the operator norm closure of all π -invariant and locally compact operators with
finite propagation acting on the Hilbert space L2(Y ) (the measure on the lift of the ray R is
given by the Lebesgue measure). By a (controlled) Mayer-Vietoris sequence argument, one
can show that

K1(C
∗
π (Y )) = K1(C

∗
r (π))⊕ Z.

It is not difficult to check the first component of g∗(ind(D)) in the above decomposition
corresponds to the higher index of the Dirac operator on K in K1(C∗r (π)), which is nonzero
since the strong Novikov conjecture holds for π [14]. This implies that ind(D) is nonzero.
This result contradicts the existence of a uniformly positive scalar curvature metric on M .
We have therefore proven (1).

Under the assumptions of (2), the tree has only finitely many places of valence exceeding
two; otherwise the second homology of the 3-manifold is infinitely generated.

Remark One can show that X = K #L lacks a uniformly positive scalar curvature metric by
the following alternate observation. Since π is torsion-free, it contains a copy of Z. Choose
an embedded curve γ in X which is not homotopic to zero, and consider the covering space
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X̃ → X corresponding to the infinite cyclic subgroup of π generated by [γ ]. There is a lifting
of γ to an embedded curve γ̃ ⊆ X̃ which generates π1(X̃) ∼= Z.

By homological calculations, the class of the small normal circle is of infinite order in
H1(X̃−S1, Z). In such a situation, the manifold X̃ is said to carry a small circle. Gromov and
Lawson [8] prove that manifolds that carry small circles cannot have a metric of uniformly
positive scalar curvature.

Remark It is possible to have a complete Riemannian manifold with uniformly positive
scalar curvature and an infinitely generated fundamental group and finitely generated first
and second homology: consider simply an infinite connected sum of Poincaré dodecahedral
spheres.

Question: Are there contractible 4-manifolds other than R
4 which can be endowed with

complete metrics of uniformly positive scalar curvature? Note that we know little about the
curvature of any of the uncountably many differentiable structures on R

4 itself.
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