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Abstract. A translation surface is a multifaceted object that can be
studied with the tools of dynamics, analysis, or algebraic geometry. Mod-
uli spaces of translation surfaces exhibit equally rich features. This
survey provides an introduction to the subject and describes some de-
velopments that make use of Hodge theory to establish algebraization
and finiteness statements in moduli spaces of translation surfaces.
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1. Introduction
Riemann surfaces are mathematical jewels that shine brightly regardless of
the angle from which we’re looking at them. To Mumford’s list1 of algebraic
curves, complex-analytic 1-manifolds, and constant curvature surfaces, one
can add translation surfaces. Translation surfaces can be defined either as
polygons in the plane glued according to simple rules, or as algebraic curves
with an abelian differential. The relationship between these two points
of view is highly transcendental and is at the heart of a fruitful exchange
between the two theories.

The polygonal point of view arises naturally in low-dimensional dynamical
systems such as billiards or interval exchange transformations. A productive
way to understand the dynamics on an individual translation surface is to
study the moduli spaces of all such surfaces and a natural dynamical system
on it given by the action of the group GL2(R). While the definition of
the GL2(R)-action is far removed from algebraic geometry, its properties
are closely related to Hodge theory and hence to the algebraic geometry
of Riemann surfaces. This survey presents an overview of these ideas and
connections.

Translation surfaces. To give on a compact Riemann surface X a holo-
morphic 1-form ω is the same as to give a collection of charts on X to C,
such that the transition maps are translations; the charts are allowed to
be ramified at finitely many points corresponding to the zeros of ω and are
given locally by z 7→

´ z
z0

ω. These special charts of (X, ω) have an echo in
the moduli space ΩMg(κ) of genus g Riemann surfaces with holomorphic
1-forms having zeros of multiplicities κ = (k1, . . . , kn). Indeed these moduli
spaces are themselves locally modeled on complex vector spaces, with linear
transition functions between charts that are called “period coordinates”.

The action of GL2(R) is locally in period coordinates given by a diagonal
action on a product of copies of C ∼= R2, or explicitly and more globally in
terms of the real and imaginary parts of the holomorphic 1-form:[

a b
c d

] [
Re ω
Im ω

]
=

[
a Re ω + b Im ω
c Re ω + d Im ω

]
1[Mum75, Lecture 1]
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The subgroup SL2(R) preserves a natural Lebesgue-class probability measure
constructed by Masur [Mas82] and Veech [Vee82]. The Hopf argument, a
standard tool in ergodic theory, implies that already the diagonal subgroup
acts ergodically. So, in the measure-theoretic sense most orbits are dense.
The first SL2(R)-closed orbits, or equivalently translation surfaces (X, ω)
whose stabilizers are lattices, were discovered by Veech [Vee89] who also
established striking properties of the straight-line flow on such surfaces. After
analogues of Ratner’s measure and topological rigidity theorems [Rat91]
were established by McMullen in genus 2 [McM07], Eskin, Mirzakhani, and
Mohammadi [EMM15, EM18] proved:
Theorem 1 (Topological and measure rigidity). For any (X, ω) ∈ ΩMg(κ),

its GL2(R)-orbit closure M := GL2(R) · (X, ω) is locally in period coor-
dinates a linear manifold.
Furthermore, any ergodic SL2(R)-invariant probability measure is sup-
ported on a codimension 1 submanifold of such an orbit closure, and is of
Lebesgue class on it.

McMullen [McM03] also discovered that in genus 2, interesting orbit closures
parametrize Riemann surfaces whose Jacobians have real multiplication.
Möller [Möl06a] proved that over the lowest-dimensional orbit closures, the
zeros of the holomorphic 1-forms must map to torsion points on (a factor of)
the Jacobian. These results were extended to all orbit closures in [Fil16a,
Fil16b] and used to characterize orbit closures and hence prove that they
have a purely algebro-geometric description:
Theorem 2 (Real multiplication, Torsion, and Algebraicity). Let M be an

orbit closure as in Theorem 1. Then there exists a factor F ⊂ J of the
relative Jacobian over M, and a subgroup S of the free abelian group on
the zeros of the 1-forms, such that:

real multiplication: The factor F admits real multiplication by a
totally real number field.

torsion: The Abel-Jacobi map, possibly twisted by real multiplication:
AJ : S → F

maps the subgroup S to a torsion subgroup of F .
algebraicity: These conditions, combined with a dimension bound,

characterize the locus M inside the ambient moduli space.
In particular, M is an algebraic subvariety defined over Q.

Note that the orbit closure might be the entire moduli space, so the factor
F is nonempty but not necessarily proper, and the totally real number field
might well be Q. Similarly, the subgroup S might be trivial.
Typical and Atypical orbit closures. Because an orbit closure M is
characterized in Theorem 2 by imposing certain algebro-geometric conditions,
it is tempting to try to construct one by imposing those conditions and
studying the locus where the conditions hold. This only yields an orbit
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closure if a further dimension bound is attained. In analogy with results
in unlikely intersections and the Zilber–Pink conjectures, see [BKU21] in
particular, we will call an orbit closure typical if its dimension agrees with the
expected dimension by intersecting the Hodge loci, and atypical otherwise.
It is natural to extend the notion of (a)typical to the relative situation of an
orbit closure N containing another M. In this language, the main results
in [EFW18] give:
Theorem 3 (Finiteness of Atypical, Abundance of Typical). Every orbit

closure N contains only finitely many maximal atypical suborbit closures.
If an orbit closure N admits relatively typical suborbit closures, then those
are dense in N .

In the statement, “maximal” means with respect to inclusion. Not all orbit
closures admit typical suborbit closures, and those that do have a straightfor-
ward characterization of numerical invariants, see Theorem 5.1.7. Note that
the formulation of Theorem 3 in terms of the typical/atypical dichotomy is
not how the results were originally stated in [EFW18].
Algebraic Hulls. A key tool in the proof of Theorem 3 is the notion of
algebraic hull of a dynamical system, and which can be applied, in partic-
ular, to orbit closures for the GL2(R)-action. It is feasible to compute the
algebraic hull in this situation because of its rigidity properties established in
[Fil16a], namely that measurable and “polynomial” algebraic hulls coincide.
It also turns out that relative (a)typicality can be formulated in terms of the
algebraic hull (see Theorem 5.4.5), and to establish finiteness of atypical it
suffices to instead establish that algebraic hulls appropriately equidistribute.

These equidistribution results of the algebraic hull can in particular be
used to establish further dynamical properties of orbit closures:
Theorem 4 (Monodromy and Lyapunov spectrum of square-tiled surfaces).

For a square-tiled surface (X, ω) denote by T(X,ω) its orbit closure. Then
for all square-tiled (X, ω) in a fixed stratum ΩMg(κ) and outside finitely
many proper, atypical suborbit closures, the Zariski closure of monodromy
over T(X,ω) is isomorphic to SL2(R)×Sp2g−2(R), and the Lyapunov spec-
trum is simple.

Square-tiled surfaces yield typical closed orbits and are a particularly well-
studied class, see §4.6.4 for a discussion, and Theorem 5.4.7 for a proof of
the above result.
Meromorphic strata; Compactifications; Classification. Although
the bulk of the survey is dedicated to explaining the context and techniques
behind the above results, we give a broader discussion of the geometry of
translation surfaces and their moduli spaces. In particular, we give a brief
overview of the recent work of Bainbridge, Chen, Gendron, Grushevsky, and
Möller [BCG+18, BCG+19b] on compactifications of strata of holomorphic
differentials, and the adjacent notion of meromorphic (and more generally
multiscale) differentials.
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These tools ought to be especially useful for the question of classifying or
giving restrictions for orbit closures. We include an overview of some of the
known techniques as well.

Bialgebraic geometry. With the benefit of hindsight, one can view the
period coordinates on strata and the related finiteness questions within the
emerging framework of “bialgebraic geometry”, see [KUY18] for an introduc-
tion. Finiteness results analogous to Theorem 3 were established by Baldi,
Klingler, and Ullmo [BKU21] in a broader Hodge-theoretic setting, and very
closely related methods and results were developed by Bader, Fisher, Miller,
and Stover [BFMS21] in the context of hyperbolic manifolds and their to-
tally geodesic submanifolds. It is natural to wonder: can these methods and
results be put into a common framework? For some questions related to the
bialgebraic geometry of strata of translation surfaces, see the recent work of
Klingler and Lerer [KL22].

Overview of this text
We have included a number of questions for further investigation, some
quite precise and others more open-ended. These questions are included
throughout the text, at places where they fit naturally with the narrative.

Translation surfaces. We start in Section 2 with the definition and some
illustrative examples of translation surfaces. Examples are selected from
the dynamics of billiards in polygons and classical algebraic geometry. Our
exposition is necessarily brief, as there are now many excellent treatments
in the literature.

Moduli spaces. Strata parametrizing translation surfaces with a specified
number and multiplicity of zeros are introduced in Section 3. One of their
key features is the presence of period coordinates, described in §3.1. These
coordinate systems endow strata with a locally linear structure and can be
seen as a moduli space counterpart to the local flat geometry of a translation
surface. An overview of known topological properties of strata is included.

We turn to the GL2(R)-action in §3.2 and illustrate its significance with
some classical applications to the ergodic theory of billiards. Strata of
meromorphic translation surfaces are described briefly in §3.3, complemented
by a discussion of an example of Bakker–Mullane [BM23] of a closed, linear
submanifold of a meromorphic stratum which is not algebraic. We end with
an overview in §3.4 of algebro-geometric compactifications of strata.

Orbit closures. We introduce linear manifolds in §4.1 and describe the
measure and topological rigidity results of Eskin, Mirzakhani, and Moham-
madi. The discussion includes Example 4.1.10 of an orbit closure with
self-intersection along a smaller-dimensional one.

Background in Hodge theory is provided in §4.3, followed by a discussion
of Hodge-theoretic rigidity results in §4.4. These rigidity results provide
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analytic control of measurable equivariant bundles and establish their real-
analyticity and compatibility with the Hodge structure. With these proper-
ties in hand, we describe in §4.5 a characterization of orbit closures in terms
of real multiplication and torsion conditions on factors of Jacobians. Some
examples are included in §4.6.

Finiteness results. We introduce the typical–atypical dichotomy in §5.1
and use this point of view to state in Section 5 optimal results on finiteness
of atypical and abundance of typical orbit closures. While the abundance
results are by now well-understood, to prove finiteness we need an additional
tool: the algebraic hull, introduced in §5.2. After deducing, based on Hodge-
theoretic rigidity, the necessary results on algebraic hulls in §5.3, we establish
the finiteness theorems in §5.4.

Classification. We end this survey with a brief overview of classification
questions in Section 6. Results based on Wright’s cylinder deformation
theorem are included in §6.1, while results that use arithmetic and algebro-
geometric methods are presented in §6.2. We conclude with a discussion of
algorithmic questions related to translation surfaces and their orbit closures
in §6.3.

Further references. A number of recent developments are not included in
this survey and we include some pointers to the literature. The dynamics of
the horocycle flow is surveyed by Chaika–Weiss [CW22]. Moduli spaces of
dilation surfaces, a generalization of translation surfaces, are discussed by
Apisa, Bainbridge, and Wang in [ABW23]. For results on the dynamics of
the relative foliation, see the work of Calsamiglia, Deroin, and Francaviglia
[CDF23] and Winsor [Win22a].

The reader can choose from a number of excellent surveys devoted to
closely related topics: on the ergodic theory of translation surfaces and
their moduli spaces, see the surveys of Masur–Tabachnikov [MT02], Zorich
[Zor06], and Forni–Matheus [FM14]; for an exposition of the work of Eskin–
Mirzakhani–Mohammadi [EMM15, EM18] see the report of Quint [Qui16];
for Teichmüller curves, the surveys of Hubert–Schmidt [HS06] and McMullen
[McM23]; for general orbit closures, see Wright’s survey [Wri15b]; for an
algebro-geometric point of view see Möller’s report [Möl18] and Chen’s lec-
ture notes [Che17].

Acknowledgments. I am grateful to the participants of the Lake Como
conference (October 2022), and especially to Ben Bakker, Bruno Klingler,
David Fisher, Gregorio Baldi, Leonardo Lerer, Sergei Starchenko, and Uri
Bader, for stimulating exchanges on the topics treated in this survey. I am
also grateful to Giovanni Forni, Carlos Matheus, and Curt McMullen for
comments that improved the presentation and for pointers to the literature. I
thank the referee for a careful and thorough reading of the text and numerous
suggestions.
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2. Translation surfaces
There are many equivalent definitions of a translation surface, but we have
to start somewhere and we will take it to mean: a pair (X, ω) consisting
of a compact Riemann surface and a holomorphic 1-form. In practice it is
useful to extend the notion and allow meromorphic 1-forms, as well as more
general stable Riemann surfaces, and introduce marked points. We shall
develop these notions in §3.3, but to start with, the reader unfamiliar with
the subject can restrict to the compact, holomorphic case.
Outline of section. We introduce in §2.1 some standard constructions
of translation surfaces, with a view towards examples of orbit closures in
moduli spaces that we consider later on. The reader will find a more thorough
introduction, with more examples and relations to various low-dimensional
dynamical systems, in the surveys of Zorich [Zor06] and Masur–Tabachnikov
[MT02]. A thorough treatment of the relations to quasiconformal maps,
Teichmüller theory, and applications to dynamics can be found in the survey
of Forni–Matheus [FM14].

Some elementary algebro-geometric constructions of translation surfaces
are included in §2.2. Throughout this survey, the two parallel points of view
of “flat” geometry and algebraic geometry will frequently interact.

2.1. Dynamics
2.1.1. Gluing polygons. The most immediate way to obtain a translation
surface is to start with a collection of polygons Pi ⊂ R2 and specify a gluing
of all edges such that the result is a compact surface, with two requirements:
all glued edges are isometric via a translation in the plane, and the interiors
of polygons are on opposite sides of the identified edges. One can relax
the notion of polygon and allow, more generally, “abstract” surfaces with
polygonal boundary that are immersed in R2.

Let X := (
∐

Pi)/∼ be the resulting surface, with Z0 ⊂ X the images of
vertices of the polygons. If we fix a basepoint x0 ∈ X \Z0, we obtain a map
from the universal cover to the plane X̃ \ Z0 → R2 ∼= C, which endows the
universal cover, and hence X \ Z0, with the structure of a Riemann surface.
It is also immediate to check that the holomorphic 1-form dz on C descends
to X \Z0. A key point is that by standard removable singularities theorems
in complex analysis, the complex-analytic structure extends to X and so
does the holomorphic 1-form, denoted ω. Some of the points in Z0 can result
in zeros of ω, namely those for which the total sum of angles of the polygons
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is in 2πN≥2. Note that the sum of angles around any point will be in 2πN,
since the gluing is done by translations in the plane.

A classical example is to start with a parallelogram and identify opposite
sides. This gives a torus, equipped with a complex structure and a nowhere
vanishing holomorphic 1-form. Note that the sides of the parallelogram can
be recovered, as points in C ∼= R2, by integrating the 1-form over topological
cycles on the torus.

Here is an interesting variant of this construction that leads to a genus 2
surface. Take two parallelograms in R2, not necessarily isometric, and make
cuts (aka slits) in each of them that are isometric. Glue the opposite edges
of the parallelograms to obtain tori, and glue the tori along the “opposite”
sides of the slit to obtain a closed surface. The holomorphic 1-form has two
zeros, at the vertices of the slits. See Figure 2.1.2 for an illustration.

Figure 2.1.2. Two tori glued along parallel and isometric
slits.

2.1.3. Billiards. The above construction arises naturally in low-dimensional
dynamics. Start by considering a ball moving without friction on a billiard
table in the shape of a polygon P . When the angles of P are not all rational
multiples of π, little is known about this dynamical system. Even in the
case of a triangle, it is expected but not known if a periodic trajectory exists
(avoiding the vertices). We thus restrict to the case of a polygon with angles
in Qπ.

For more on irrational billiards, see the survey of Schwartz [Sch22, §5]
and references therein.
2.1.4. Unfolding construction. It is now possible to reduce the dynamics
to a straight line flows on a compact surface, with finitely many singularities.
Concretely, let Φ be the surface obtained by gluing P and its mirror image
along corresponding sides, and denote by Z ⊂ Φ the vertices. Note that Φ is
homeomorphic to a sphere. The flat metric on Φ is induced by the Euclidean
one on P , and we have a holonomy representation ρ : π1(Φ\Z)→ SO2(R), by
parallel transport along paths. Since SO2(R) is abelian, the representation
factors through the first homology H1(Φ \ Z).
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Let us also note that everything we said so far works even if the original P
had irrational angles. Furthermore, we can allow P to be only immersed, i.e
P can be an abstract 2-manifold with boundary, with marked points on the
boundary, equipped with an immersion (i.e. local diffeomorphism) P → R2

such that pieces of the boundary outside the marked points go to straight
lines.

This construction, introduced in [FK36] and independently in [KZ75], is
usually presented in more concrete terms by drawing successive reflections
of P in its sides. The rational angles of P guarantee that only finitely
many reflections are necessary, and this immediately relates to the preceding
discussion in §2.1.1.

2.1.5. A finite cover. Returning to the holonomy representation ρ : H1(Φ\
Z) → SO2(R), if the angles of P are rational multiples of π, then every
generator maps to a rotation by a rational angle. Therefore the image of ρ
is a finite subgroup GP ⊂ SO2(R) and we can pass to a finite GP -cover Φh

of Φ, with points Zh ⊂ Φh branching over Z ⊂ Φ, on which the holonomy
representation is trivial. Geometrically, since Φh is also tessellated by P
and its reflection, trivial holonomy is equivalent to the sum of angles around
points in Zh being an integral multiple of 2π.

To keep the notation more suggestive, we will denote by (XP , ωP ) the
Riemann surface obtained by completing Φh at the finitely many punctures,
and equipping it with the induced holomorphic 1-form.

An illustrative example was analyzed by Veech [Vee89]:
2.1.6. Example (Regular polygons). Fix n ≥ 3 and consider the triangle
with angles

(
π
2 , π

n , (n−2)π
2n

)
, and we assume for simplicity that n = 2g + 1 is

odd. The surface Φ is a sphere, with three cone points p2, pn, p2n with cone
angles π, 2π

n , (n−2)π
n . The holonomy cover Φh → Φ has degree 2n, there are n

preimages of p2 ramified to order 2, there are 2 preimages of pn ramified to
order n, and there is one preimage of p2n ramified to order 2n. We see that
the preimages of p2, pn in Φh are not cone points anymore, but the preimage
of p2n is a cone point with cone angle (n − 2)(2π). This implies that the
genus of Φh is g, where n = 2g + 1, and the holomorphic 1-form on Φh has
a single zero of order 2g − 2 at the preimage of p2n.

The geometric picture of the holonomy cover Φh is obtained by gluing
the regular n-gon and its reflected copy, identifying parallel sides, see Fig-
ure 2.1.7.

2.1.8. Caution: unfolding and “sameness”. The construction in §2.1.4,
applied to the regular n-gon P , will yield a compact surface which is larger
than the one more traditionally considered, i.e. the one obtained by gluing
opposite sides of the n-gon when n is even, or parallel sides of the polygon
and its reflected copy when n is odd. The billiard trajectories on a regular
n-gon are most naturally described on the translation surface (XP , ωP ).
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Figure 2.1.7. The unfolding of the triangle with angles
π
2 , π

7 , 5π
14 as in Example 2.1.6 and its holonomy cover obtained

from the regular polygon.

The distinction arises when we ask what unfoldings of the polygon P in
the plane are “the same”. If we don’t ask the marked sides to go to the
marked sides under a translation, then the unfolding construction leads to
the smaller surface just described.
2.1.9. Saddle connections and closed trajectories. A translation sur-
face (X, ω) is equipped with a flat metric, with singular points at the zeros
of ω, where the cone angle is 2π(k + 1) if ω has a zero of order k. Globally
one can write the metric as

√
−1ω ∧ ω. We can therefore speak of geodesics,

which we will refer to as straight lines or geodesics.
Two types of geodesics appear frequently: the closed geodesic, and saddle

connections which by definition are geodesics that connect two singular
points. In the case of translation surfaces obtained from billiards, closed
geodesics are in bijection with closed billiard trajectories that avoid vertices
of the polygon, and saddle connections are in bijection with trajectories that
go between two vertices.

Observe that a closed geodesic comes in a 1-parameter family and sweeps
out a cylinder; we will consider such closed geodesics as equivalent. We will
say more about cylinders in §6.1, but for now let us note that a consequence
of the measure classification results of Eskin, Mirzakhani, and Mohammadi
is that on every translation surface, the number of equivalence classes of
closed geodesics of length at most T is ∼ cT 2, see [EM18, Thm. 1.8] for the
precise statement. See also [Fil20, Thm. B] for an analogous counting result
on K3 surfaces.
2.1.10. Dynamics of the billiard flow. For a fixed angle θ we can consider
the transformation T θ

t mapping a point x ∈ X to one which is distance t away
at angle θ. Because of the singularities, these transformations are defined
away from a codimension 1 subset of X, but nonetheless on a common set
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of full measure Lebesgue they are well-defined and form a group. One can
verify that in the case of translation surfaces coming from polygonal billiards
with rational angles as in §2.1.3, this models the billiard flow on the table.

Two basic questions about this flow are whether there are dense trajecto-
ries, and whether the natural invariant measure is ergodic. One can ask (and
answer) these questions in a stronger form: whether the system is minimal,
i.e. every trajectory is dense, and whether the system is uniquely ergodic,
i.e. there is only one invariant probability measure.

It turns out that T θ
• is minimal for any θ outside of a countable set: in fact

removing all θ’s in which there is a saddle connection suffices, see [MT02,
Thm. 1.8]. Unique ergodicity is more delicate, and we will return to it in
Theorem 3.2.8.

An example of failure of unique ergodicity, for an uncountable set of
directions θ, is described in [MT02, §3.1]. The translation surface in question
is built out of two tori, with an appropriate choice of slits, as in §2.1.1.

2.2. Algebraic geometry

Figure 2.2.2. Quartic poly-
nomial V (q) and elliptic curves
as level sets.

2.2.1. Algebraic curves and bialge-
braic structures. Recall that a compact
Riemann surface X can also be viewed as
an algebraic curve over C, and a holomor-
phic 1-form ω is in this case also called an
(abelian) differential. We can view the extra
datum of the 1-form as giving a “bialgebraic
structure” on X, in the sense of [KUY18,
Def. 4.1]. Namely, we have a holonomy rep-
resentation ρ : π1(X) → C (which factors
through H1) and an equivariant “develop-
ing” map X̃

Dev−−→ C, where we view C as an
affine algebraic curve. We will see an echo
of this in the moduli space of translation
surfaces, see §3.1.

Algebraic curves, and integrals of differ-
entials over them, have been studied from
the early days of dynamical systems. We
include a classical illustration:

2.2.3. Example (Periods of elliptic curves). Consider a particle moving in a
1-dimensional potential given by a degree 4 polynomial V (q), see Figure 2.2.2.
Its phase space consists of points with coordinates (q, p), with p denoting
the momentum. The Hamiltonian is

H(q, p) = 1
2p2 + V (q)
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and the phase curves are the level sets of H(q, p). When these level sets
are smooth, at energy E they are the real points of the elliptic curve p2 =
2(E − V (q)).

The period of motion is given by the integral

2
ˆ q1

q0

dq√
2(E − V (q))

where V (q0) = V (q1) = E and there are no further solutions to this equation
in (q0, q1). Note that this is an integral of an abelian differential on the
elliptic curve. For certain level sets there are two intervals (q0, q1) and
(q′

0, q′
1) at the same energy, but located in different wells of the potential, see

the thicker line and level sets in Figure 2.2.2.
On the complex points of the elliptic curve, the two cycles of integration

are homologous, therefore the integrals are the same. We reach a classically
known conclusion: in a quartic potential, the two periods of motion at the
same energy agree.

This example also illustrates why hyperelliptic integrals and curves were
extensively studied early on: they describe the motion of particles in poly-
nomial potentials.
2.2.4. Example (Regular polygons). We continue with Example 2.1.6, but
now give an algebro-geometric description. Let as before n = 2g+1 be an odd
natural number and let (XP , ωP ) denote the translation surface constructed
in Example 2.1.6, obtained by gluing a regular n-gon with its reflected copy
along parallel sides. We will verify that the pair (XP , ωP ) is isomorphic to
(the completion of):

y2 = xn − 1 with ωP = dx

y
.

In fact, the map XP := Φh → Φ ∼= P1 is also immediately described, it
coincides with (x, y) 7→ xn. Indeed, the hyperelliptic double cover XP → P1

given by (x, y) 7→ x is ramified over the n-th roots of unity, and ∞, each
with ramification order 2, and the point 0 ∈ P1 has two preimages. Now the
map x 7→ xn takes n-th roots of unity to 1, and is ramified of order n over
0,∞.

From this we immediately deduce that XP → P1 with (x, y) 7→ xn is of
degree 2n and ramified over 0, 1,∞ with respective sizes of preimages 2, n, 1
and ramification orders n, 2, 2n. Geometrically, preimages of 0 correspond
to the two centers of the two copies of the regular polygon, preimages of 1
correspond to the n midpoints of the sides, and preimages of ∞ correspond
to preimages of the vertices of the regular n-gon (which all get identified by
the gluing).
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3. Moduli spaces
It is a remarkable fact that to study the dynamics on an individual translation
surface, it is useful to understand the moduli space of all translation surfaces
with prescribed combinatorial data. In this section we define the appropriate
moduli spaces and structures on them that are of intrinsic interest and can
also be used to study individual surfaces.
Outline of section. Period coordinates are a key feature of the moduli
space of translation surfaces, echoing the flat geometry of an individual
surface. We describe them in §3.1, followed by a description of the action of
GL2(R) in §3.2. This action plays an essential role in all that follows. We
include a description of the geometry of strata of meromorphic differentials
(i.e. translation surfaces of infinite area) in §3.3. These turn out to play an
essential role in the construction of compactifications of holomorphic strata,
described in §3.4.

3.1. Period coordinates

3.1.1. Setup. For this section, a translation surface will mean a pair (X, ω)
consisting of a compact Riemann surface X and a holomorphic 1-form ω. Let
κ := (k1, . . . , kn) denote the multiplicities of zeros of ω, with k1 + · · ·+ kn =
2g − 2 where g is the genus of X. It turns out that a useful moduli space
for pairs (X, ω) is obtained if we freeze the vector κ. We will denote by
cardinality of the set of zeros by |κ| := n.

3.1.2. The Hodge bundle and its stratification. Let Mg denote the
moduli space of genus g Riemann surfaces and ΩMg → Mg the Hodge
bundle, whose fiber over X ∈Mg is the space of all holomorphic 1-forms on
X. While ΩMg is a rank g vector bundle, it is stratified2 by the algebraic
subsets ΩMg(κ) of holomorphic 1-forms with zeros of multiplicities given
by κ. We will refer to each ΩMg(κ) as a stratum of translation surfaces (its
connected components are described in §3.1.16) and proceed to equip it with
natural complex-analytic local charts, which in particular imply that it is a
smooth orbifold. Before doing so, we need some topological preliminaries.

3.1.3. Relative homology. Let (S, Z) be a pair consisting of a compact
genus g surface S with a finite set of points Z = {z1, . . . , zn}. The first
integral homology of S is denoted H1(S;Z) and with the intersection product,
it is isomorphic to Z2g with its standard symplectic form. Let also H1(S, Z;Z)
denote the group of cycles whose boundaries are in Z, i.e. a class [γ] ∈
H1(S, Z;Z) is represented by a collection of paths γ on S, with integral
weights, such that their boundaries satisfy ∂γ ⊂ Z, with equivalence induced
by 2-cycles in S. We have the fundamental short exact sequence, induced

2One should include the “trivial” stratum of zero 1-forms, isomorphic to Mg itself.
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by the long exact sequence of the pair (S, Z):

0→ H1(S;Z) ↪→ H1(S, Z;Z) ↠ H̃0(Z;Z)→ 0(3.1.4)

where H̃0 denotes the reduced 0-th homology of Z, i.e. any assignment of
integral weights to points in Z, of total weight 0.

3.1.5. Relative cohomology. We can dualize the short exact sequence in
Eqn. (3.1.4) and take complex coefficients to obtain:

0→ H̃0(Z;C) ↪→ H1(S, Z;C)
p
−↠ H1(S;C)→ 0(3.1.6)

This is the basic object that leads to local charts on the stratum ΩMg(κ).
Indeed, suppose (X, ω) is a translation surface and Z ⊂ X is the set of
zeros of ω. Then integration of ω along paths yields a cohomology class
[ω] ∈ H1(X, Z;C). One can think of the cohomology class [ω] as an intrinsic
way to encode the possible polygonal divisions of the translation surface: [ω]
gives the answer, as a complex number, of any side of any polygon.

To describe the local structure of the moduli space of pairs (X, ω) we
need:
3.1.7. Definition (Marked deformations). For a translation surface (X0, ω0),
a marked deformation consists of:

• a complex manifold B with distinguished basepoint b0 ∈ B
• a fibration in Riemann surfaces X → B with a holomorphic 1-form

ω on X ; fiber over b ∈ B denoted Xb and the restriction of ω to it
denoted ωb.
• an identification of the pair (X0, ω0) ∼= (Xb0 , ωb0)
• sections σ1, . . . , σn : B → X with disjoint images such that the zeros

of ωb coincide with Zb := {σi(b)}.
A marked deformation (X , B) is called universal if any other marked de-
formation (X ′, B′) is obtained, after possibly shrinking B′, from a unique
classifying map B′ → B by pullback.

It is immediate that up to shrinking the base B, a universal marked
deformation, if it exists, is unique up to unique isomorphism. With these
preliminaries, one can verify the following result, established first by Veech
[Vee90, Thm. 7.15]:
3.1.8. Theorem (Local structure of deformations).

(i) For a translation surface (X, ω) with zero set of ω denoted Z, a
universal marked deformation exists and the base can be taken to be
an open neighborhood U[ω] of [ω] in H1(X, Z;C).

(ii) The classifying map of a family (X , B) is given by b 7→ [ωb] us-
ing a local smooth trivialization of the fibration and identification
H1(Xb0 , Zb0)−̃→H1(Xb; Zb).

(iii) Furthermore, the classifying map from any sufficiently small neigh-
borhood of (X, ω) ∈ ΩMg(κ) to U[ω] is a local biholomorphism.
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In the last statement, a “sufficiently small neighborhood” is to be understood
in the sense of orbifolds/stacks.

3.1.9. The developing map. Fix now a basepoint s := (X, ω) ∈ ΩMg(κ).
We have the fundamental group π1(ΩMg(κ), s) and the corresponding uni-
versal cover Ω̃Mg(κ). From the local description of the stratum in Theo-
rem 3.1.8(iii) we obtain a locally biholomorphic map

Devµ : Ω̃Mg(κ)→ H1(X, Z;C)(3.1.10)

We will refer to the map Dev as the developing map or alternatively as period
coordinates. It is equivariant for a representation

ρµ : π1(ΩMg(κ), s)→ Mod(X, Z)(3.1.11)

where Mod(X, Z) denotes the mapping class group of diffeomorphisms of X
preserving the set Z. This mapping class group acts on cohomology via a
linear representation

L : Mod(X, Z)→Sp
(
H1(X, Z)

)
where Sp

(
H1(X, Z)

)
∼= Sp(H1(X)) ⋉ Hom

(
H1(X), H̃0(Z)

)(3.1.12)

where the last semidirect product structure comes from the short exact
sequence in Eqn. (3.1.6) (with integer coefficients). Let us note, again, that
in analogy with the case of curves discussed in §2.2.1, strata are therefore
endowed with a bialgebraic structure in the sense of [KUY18, Def. 4.1].

From the short exact sequence Eqn. (3.1.6), we obtain on the stratum a
short exact sequence of local systems that will be denoted as:

0→W0 ↪→ H1
rel

p
−↠ H1 → 0(3.1.13)

The kernel of the map p is denotes by W0 since it is the weight 0 piece of a
mixed Hodge structure, see Definition 4.3.3 below.

3.1.14. Topology of the developing map. A series of natural questions
arise about the above structures. First, one can ask what is the image of the
representation in the mapping class group. This was answered by Calderon–
Salter [CS22, Thm. A] who prove that the image of ρ : π1(ΩMg(κ)) →
Mod(X, Z) is surjective onto the mapping class subgroup that preserves a
“framing” (ignoring hyperelliptic strata, see §3.1.16 below).

Next, since the image of the developing map is an open set, one can ask
for its characterization. In the case of a maximal stratum, and at least after
projecting to absolute cohomology, this was answered by Haupt [Hau20] who
found a simple topological obstruction for a cohomology class to be in the
image, coming from torus covers, and showed that’s the only obstruction.
Kapovich [Kap20] found an approach to this question based on Ratner’s
theorems, using that the image is open and invariant under a lattice in the
corresponding Lie group. This was further extended by Bainbridge, Johnson,
Judge, and Park [BJJP22] as well as Le Fils [LF22] to all strata.
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3.1.15. Question (Haupt for orbit closures). Determine the image of the
developing map in relative cohomology H1(X, Z;C) for all strata. Similarly,
for any orbit closure M (see Section 4 below) determine the image of the
developing map restricted to M, inside the vector space T(X,ω)MC, for a
basepoint (X, ω) ∈M.
3.1.16. Connected components. Given a configuration of zeros κ, the
question of what are the connected components of ΩMg(κ) was answered by
Kontsevich and Zorich [KZ03, Thms. 1, 2]. The results can be summarized
as follows (with g ≥ 4):

• ΩMg(2g − 2) and ΩM2k+1(2k, 2k) each have three connected com-
ponents: the hyperelliptic one, and two more distinguished by
even/odd spin structures.
• ΩM2k(2k−1, 2k−1) has two connected components, a hyperelliptic

and a non-hyperelliptic one.
• When κ is divisible by 2, i.e. ki = 2k′

i, ∀i then there are two con-
nected components distinguished by spin structures.
• All other strata are connected.

In the remaining (low) genera, we have:
• g = 3: ΩM3(2, 2) and ΩM3(4) each have two components, the

hyperelliptic and the odd spin one. The remaining strata are con-
nected.
• g = 2: there are two connected strata ΩM2(1, 1) and ΩM2(2).

We recall one definition of the spin invariant for a finite (possibly with
multiplicity) set of points D ⊂ X such that there exists a holomorphic
1-form on X with divisor of zeros 2D. Then one says that D is even/odd
according to dim H0(X;OX(D)) mod 2; a classical theorem implies that this
discrete quantity is locally constant in holomorphic families, hence defines
an invariant of connected components. A topological definition can be found
in [KZ03, §3.1].

3.1.17. On the topology of strata. Returning to strata themselves, one
would like to know more about their topology. It has been speculated that
perhaps strata are K(π, 1)-spaces, i.e. the universal cover is contractible.
This was verified in genus 3 by Looijenga–Mondello [LM14]. Chen in [Che19]
considered the question of how far are strata from affine algebraic varieties,
more broadly in the setting of meromorphic differentials. Let us also note
that Zykoski in [Zyk22, Thm. 1.1] gives a finite simplicial complex which
is homotopy equivalent to a stratum. The following observation might be
useful in studying the geometry of minimal strata, i.e. those with one zero:
3.1.18. Question (Algebraic symplectic geometry of strata). SupposeM is
a connected component of ΩMg(2g − 2), or more generally an orbit closure
(see Section 4) with zero torsion corank. The symplectic pairing on H1

induces a nondegenerate symplectic form onM, which is moreover algebraic
for the algebraic structure on M, and equivariant for the C×-action.
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Is it possible to embed M into a “symplectic singularity” M ↪→Ms, in
the sense of [Kal09, Def. 1.1] such that the scaling action is dilating in the
sense of [Kal09, Def. 1.7]? If so, what does this tell us about the topology
and geometry of minimal strata, and more generally of orbit closures with
zero torsion corank?

3.2. The action of GL2(R)
3.2.1. Action on the complexification of a vector space. Suppose H
is a real vector space and HC := H⊗R C is its complexification. The group
GL2(R) acts naturally on R2; using the isomorphism C ∼= R2 we also obtain
an action on HC ∼= H⊗R R2 as follows. A vector ω ∈ HC decomposes into a
real and imaginary part ω = Re ω +

√
−1 Im ω and the action is explicitly:[

a b
c d

]
·
[
Re ω
Im ω

]
=

[
a Re ω + b Im ω
c Re ω + d Im ω

]
(3.2.2)

Note that this action is R-linear but not C-linear, unless the matrix belongs
to C×, i.e. is of the form

[
a b

−b a

]
with a2 + b2 ≠ 0. So the group action,

while real-analytic, is not biholomorphic and does not preserve holomorphic
functions.

3.2.3. The action on a stratum. The above construction of a GL2(R)-
action can be extended to a stratum of translation surfaces ΩMg(κ). The
period coordinates from Eqn. (3.1.10) are equivariant for the GL2(R)-action
on both sides, but it is worth emphasizing that just the existence of period
coordinates does not guarantee that the action on the vector space lifts to
the action on a stratum. Period coordinates only imply the existence of
vector fields that satisfy the commutation relations of gl2(R), not that they
also integrate to an action of the group.

Indeed, the action on a stratum is best seen in terms of the polygonal de-
scription of a translation surface from §2.1.1. Specifically, suppose (X, ω) =
(
∐

Pi)/ ∼ is a polygonal presentation and g ∈ GL2(R). Now g naturally acts
on the plane R2 and we define the new surface g · (X, ω) := (

∐
gPi)/ ∼ to

be the gluing of the polygons gPi using the same combinatorial equivalence
relation ∼. Observe that crucially, if two segments in the plane are isometric
via a translation, they remain so after we apply to both of them an element
of GL2(R).

The above construction is highly transcendental from the point of view of
algebraic geometry, i.e. the algebraic curve and differential g(X, ω) cannot
be easily expressed in terms of (X, ω) using the standard tools of algebraic
geometry. Instead, one has to compute the periods of ω and manipulate
them. In particular, let us note that for a fixed g ∈ GL2(R), the induced
transformation of a stratum is not holomorphic if g is not in C×.

It is also possible to give an alternative description of the GL2(R)-action,
by acting directly on the real and imaginary parts of ω exactly as in
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Eqn. (3.2.2). A pleasant exercise is to verify that in local period coordi-
nates, the vector field giving the action of gt :=

[
et 0
0 e−t

]
is “maximally

antiholomorphic”: any holomorphic function invariant by it must be con-
stant.

We will see nonetheless in §4.5 that a subtle interaction between alge-
braic geometry, and arithmetic, does come into play in the geometry of the
GL2(R)-action.

3.2.4. Masur–Veech measure. The area of the translation surface (X, ω)
can be computed cohomologically as

√
−1
2 [ω] ∪ [ω], so the image of the de-

veloping map lands in the open subset of H1
rel where the self-intersection√

−1[ω]∪ [ω] is strictly positive (after mapping H1
rel to the absolute cohomol-

ogy H1). After rescaling by an element of R>0, we can always ensure that
a translation surface has area 1 and we will denote by ΩMg(κ)1 the subset
of surfaces thus normalized. Note that we have a natural diffeomorphism
ΩMg(κ)1 × R>0−̃→ΩMg(κ).

In the short exact sequence of Eqn. (3.1.13), the H1-piece has a symplectic
form while the W0-piece is (virtually) trivial, so there is a natural monodromy
and SL2(R)-invariant volume on H1

rel. We can also radially induce a measure
on the unit area surfaces, by assigning to A ⊂ ΩMg(κ)1 the volume of
A× (0, 1) ⊂ ΩMg(κ).

The resulting measure on the stratum is called the Masur–Veech mea-
sure, and it is a fundamental result of Masur [Mas82, §5] and Veech [Vee86,
Thm. 1], [Vee82, Thm. 1.1], that the measures are finite. With the normaliza-
tions implicit in the above construction, it becomes an interesting question
to explicitly compute it. For instance, the Masur–Veech measure of ΩM1(0)
is π2/3 (see [Zor06, pg. 92]).

3.2.5. Subgroups of interest. Depending on the intended application, it
is important to analyze a subgroup of GL2(R). Traditionally one restricts
to SL2(R), since it preserves the Masur–Veech measure, and hence one can
apply the tools of ergodic theory. The other important subgroups are

P :
[
∗ ∗
0 ∗

]
A :

[
∗ 0
0 ∗

]
N :

[
1 ∗
0 1

]
and Rθ :=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

The action of gt :=
[

et 0
0 e−t

]
is called the Teichmüller geodesic flow, and plays

a key role in the entire story; see Theorem 3.2.8 below for an illustration.
We will not discuss the dynamics of the unipotent subgroup N in this survey,
but see the work of Chaika, Smillie, and Weiss [CSW20] for some recent
developments.

Let us also note that one can also restrict the action to the connected
component of the identity GL+

2 (R). The action of
[ 1 0

0 −1
]

agrees with that
of complex conjugation on ΩMg(κ), viewed as an algebraic variety over
C. In particular, this induces a dichotomy on orbit closures (see Section 4)
according to whether they are preserved by complex conjugation, or not.
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If they are preserved by complex conjugation, and so can be descended to
varieties over R, it is meaningful to ask:
3.2.6. Question (Real locus in orbit closures). Describe the real-algebraic
locus of an orbit closure, i.e. those translation surfaces (X, ω) which are
isomorphic to

[ 1 0
0 −1

]
(X, ω), or equivalently isomorphic to (X, ω) where •

denotes complex conjugation.
3.2.7. An application: unique ergodicity. An illustration of the connec-
tion between the dynamics on an individual translation surface (X, ω) and
that on its moduli space is provided by the following criterion due to Masur
[Mas92, Thm. 1.1]:
3.2.8. Theorem (Recurrence implies unique ergodicity). Suppose that the

gt-orbit of (X, ω) returns to a compact set K ⊂ ΩMg(κ) infinitely often
in the future, i.e. there exist ti → +∞ such that gti(X, ω) ∈ K.
Then the horizontal foliation of ω is uniquely ergodic.

This statement can be viewed as a general principle applicable in many situa-
tions, and a version of it in the setting of K3 surfaces is established in [FT23,
Thm. 4.3.1]. It also turns out that the assumption of recurrence to compact
sets in Theorem 3.2.8 can be weakened to sufficiently slow divergence. This
has been developed by Cheung–Eskin [CE07, Thm. 1.1] using techniques
from flat geometry and extended by Treviño [Tre14, Thms. 2-4] to also cover
infinite genus, finite-area translation surfaces, using techniques from Hodge
theory. Besides Masur’s original proof, other treatments can be found in
[For02, Thm. 0.1] and [AF08, Thm. 1.1] which also establish estimates on
the speed of convergence of ergodic averages, as well as [FM14, Thm. 59],
and [McM20, Thm. 1.1].

One of the early striking applications of this criterion was obtained by
Kerckhoff, Masur, and Smillie [KMS86, Thm. 2]:
3.2.9. Theorem (Recurrence for every surface). For every translation sur-

face (X, ω) and for Lebesgue-a.e. θ ∈ [0, 2π], the gt-orbit of Rθ(X, ω) is
recurrent in the sense of Theorem 3.2.8.
In particular, the horizontal foliation of Rθ(X, ω) is uniquely ergodic, for
Lebesgue-a.e. θ.

A crucial point of the above theorem is that it applies to every translation
surface. In particular, it applies to a translation surface obtained from a
billiard table with rational angles, and gives:
3.2.10. Corollary (Unique ergodicity of rational billiards). Let P be a

polygon in R2 with angles in Qπ. Then for Lebesgue-a.e. θ, the billiard
flow on the unit tangent bundle of P in direction θ is uniquely ergodic.

Note that for every θ, there is a natural billiard flow-invariant Lebesgue class
measure supported on the appropriate subset of the unit tangent bundle.
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For applications of this flavor, it has been desirable to obtain theorems that
apply to every translation surface (X, ω). We will describe the most general
such results, due to Eskin, Mirzakhani, and Mohammadi, in Section 4.

3.2.11. Irrational billiards. An observation of Katok and Zemljakov is
that ergodicity, as well as minimality, is a property that holds on a Gδ-set in
the parameter space of polygons with given number of sides. Corollary 3.2.10
shows that ergodicity holds at the rational-angled polygons, which are dense,
hence a dense Gδ-set of polygons are ergodic. In particular, there are “many”,
in the Baire category sense, irrational polygons which are ergodic. The same
holds for minimality, and was established much earlier in [KZ75].

3.3. Meromorphic strata

One may generalize the setup of a translation surface (X, ω) to the case when
ω is allowed to have poles. In this case the area of the surface is infinite and
a number of significant differences arise. The dynamics on the individual
surface is, in a way, simpler: there is a “convex core” C(X, ω) that has
finite area and contains all the bounded linear trajectories; all other linear
trajectories escape to a pole. While the moduli spaces continue to have period
coordinates, a natural GL2(R)-action, and volume forms, the analogue of
Masur–Veech measure has infinite total mass. The GL2(R)-action can now
have positive-dimensional stabilizers, and closed submanifolds that are R-
linear in period coordinates need not be algebraic. We include below some
illustrative examples.

3.3.1. Setup. Let κ = (k1, . . . , kn) be a collection of integers and ΩMg(κ)
denote the parameter space of pairs (X, ω) where X is a compact Riemann
surface of genus g and ω is a meromorphic differential with zeros of order
ki > 0, poles of order ki < 0, and marked points corresponding to ki = 0;
the relation

∑
ki = 2g − 2 must hold. For a meromorphic differential ω, we

will denote by (ω)<0 the divisor of poles, by (ω)>0 the divisor of zeros, and
by (ω)≥0 the divisor of zeros and the marked points.

Period coordinates on ΩMg(κ) are also available, and in this case they
are valued in the relative cohomology group

H1
◦(X \ (ω)<0, (ω)≥0;C)

where X \ (ω)<0 is the open Riemann surface with the poles of ω removed,
and we are taking the cohomology relative to the finite subset (ω)≥0. The
subscript ◦ denotes the codimension 1 subspace cut out by the condition
that the sum of residues vanishes: it is given by pairing the cohomology
against the 1-cycle that circles each pole exactly once clockwise. See also
[BCG+19a, Thm. 2.1] for the algebraic description of the same cohomology
group. Note that the total dimension, in the presence of poles, is 2g + |κ|−2,
as opposed to 2g + |κ| − 1 in the holomorphic case.
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3.3.2. Connected components. Boissy [Boi15] classified the connected
components. Surprisingly, in genus 1 there can be an arbitrarily large number
of connected components as |κ| grows, while for genus g ≥ 2, there are at most
three connected components, just like in the case of holomorphic differentials
treated by Kontsevich & Zorich [KZ03], see §3.1.16.

3.3.3. Geometry of meromorphic differentials. The results of [HKK17,
§2.3] show that any (X, ω), where ω has at least one pole, has a canonical
convex core C(X, ω) ⊂ X, defined as the convex hull of the non-pole singu-
larities. The complement of poles X \ (ω)<0 retracts to C(X, ω), and the
boundary ∂C(X, ω) is a finite union of saddle connections. Any saddle con-
nection or flat cylinder is contained in C(X, ω). The structure is analogous
to the convex core of a geometrically finite hyperbolic surface (or manifold).

3.3.4. A description of ΩM1(2,−2). A more detailed study of the genus
1 case was done by Tahar, and we refer to [Tah18, §4] for proofs of the next
results.

It is possible to exhibit any (X, ω) ∈ ΩM1(2,−2) by gluing two half-
planes in C, with appropriate “wedges” removed or added. This naturally
leads to a GL2(R)-invariant stratification with three strata. Note that the
topological structure of the convex core C(X, ω) does not change under the
action of GL2(R).

Two strata are open subsets of ΩM1(2,−2) and homogeneous under the
GL2(R)-action. In one such stratum, the convex core consists of a cylinder,
in the other it consists of two non-collinear saddle connections. Finally, the
real codimension 1 stratum consists of translation surfaces with convex core
consisting of two collinear saddle connections.

Figure 3.3.5. The three strata in ΩM1(2,−2), with pole
p−1 at infinity. In the first stratum, the convex core is a
cylinder (shaded). In the second, it consists of two nonparallel
saddle connections. In the third, the two saddle connections
are parallel.

Note that orbits in the real codimension 1 stratum have stabilizer in
GL2(R) conjugated to the subgroup

[
1 ∗
0 ∗

]
and the stratum is partitioned

into a real 1-parameter family of GL2(R)-orbits. The invariant of an orbit
is the ratio of lengths of the two collinear saddle connections, and the orbit
itself is naturally identified with C×.



22 SIMION FILIP

Let M1,1[2] denote the moduli space of genus 1 Riemann surfaces with
one marked point, and a choice of nontrivial point of order 2 (with respect
to the marked point). This is a degree 3 cover of M1,1, and a quotient by
an involution of the the space with a full marking on Z/2-homology. It has
two cusps and one orbifold point of order 2, at the “square” torus. We have
a forgetful map

ΩM1(2,−2)→M1,1[2]

that takes (X, ω) to the underlying Riemann surface of genus 1, with origin
as the zero, and the pole as a non-trivial point of order 2. Indeed, the
difference between the zero and pole of ω in the group structure is 2-torsion,
since the divisor of zeros and poles of ω must induce the trivial line bundle,
because this line bundle has a nontrivial section (ω itself) and has degree 0.

With respect to the stratification of ΩM1(2,−2) described above, we note
that the real codimension 1 stratum maps to the locus of Riemann surfaces
with a real structure, and for which the marked 2-torsion is also real; on
M1,1[2] this consists of one hyperbolic geodesics connecting one of the cusps
with itself. This geodesic cuts M1,1[2] into two components, one of which
contains the orbifold point.

3.3.6. A non-algebraic linear manifold. It was observed by Bakker &
Mullane [BM23] that strata of meromorphic differentials can contain R-
linear, but non-algebraic manifolds, in contrast to Theorem 4.5.10. Consider
ΩM1(2,−2, 0, 0), the stratum of meromorphic 1-forms on a genus 1 surface
with a zero and a pole of order 2, and two marked points (with all 4 points
distinct). The natural forgetful map

ΩM1(2,−2, 0, 0)→ ΩM1(2,−2)

is algebraic and induces an algebraic structure on its fibers. Let us fix one
elliptic curve with meromorphic differential (X0, ω0), for instance the one
corresponding to z = w = 1 in Figure 3.3.5, and call p0, p−1 ∈ X0 the
zero and the pole. All our constructions will be equivariant for the C×-
action by scaling. Then the fibers of the forgetful map are identified with
(X0 \ {p0, p−1})(2), the set of distinct pairs of points on X0 avoiding p0, p−1.
We now proceed to describe the linear structure.

Besides the two periods z, w, we also have z1, z2 ∈ C as per Figure 3.3.7,
subject to the constraints that ensure all points are distinct. Note that
say when p1 passes through one slit, we have z1 7→ z1 + z or z1 7→ z1 + w
(depending on the slit) and similarly for p2.

We now set L to be preimage in ΩM1(2,−2, 0, 0) of the locus given in
period coordinates by the linear equations z = w and w = z2. We can
intersect L with the algebraic locus where p1 is fixed (and Im z1 ̸= 0), and
the other two periods are fixed to z = w = 1, and find that it will intersect
this complex 1-dimensional set in countably many points that in period
coordinates are equal to p1 + k with k ∈ Z \ {0}.
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Figure 3.3.7. Left: a surface in ΩM1(2,−2, 0, 0). Middle:
The two marked points move, with one of them crossing a
branch cut. Right: One point crossed the branch cut, the
marked period between them changed.

3.4. Compactifications
We will use in this section the term (smooth) “algebraic curve” as a substitute
for “compact Riemann surface”, and more generally the language of algebraic
geometry as it makes the discussion more streamlined.

3.4.1. Some context. The moduli space Mg of genus g algebraic curves
carries a natural algebraic structure, i.e. it is covered by charts contained in
some Cn and cut out by algebraic equations. This can rarely be made explicit,
especially for large g, but nonetheless puts strong finiteness conditions on
the geometry of Mg. The space is not compact and a natural smooth
compactification is available: the Deligne–Mumford compactification [DM69]
denoted Mg. Besides smoothness, its other essential property is that the
universal family of curves overMg extends toMg; fibers over the boundary
are stable, of arithmetic genus g.

The universal family overMg allows one to study the compactified moduli
space in the same way as the original space: by considering the geometry of
the curves, instead of looking for explicit equations of the moduli space.

Analogous constructions for the strata ΩMg(κ) have been developed in
[BCG+18, BCG+19b] and this section provides a brief survey of some of this
work.

3.4.2. Warm-up: Marked stable curves. By definition, a marked stable
curve (X, Z) consists of an algebraic curve X, with irreducible components
smooth curves Xi so X = ∪Xi, and with finitely many marked and labeled
points Z ⊂ X that are distinct from the nodes of X. The nodes of X = ∪Xi

are the points of the components Xi where the map
∐

Xi → X is not
injective. Finally, the stability requirement is that for every irreducible
component we have

2 · genus(Xi)− 2 + #(points on Xi) > 0

where points refers to nodes and marked points.
The dual stable graph ΓX of a stable curve is defined to have vertices the

set of irreducible components, with a vertex denoted [Xi] and labeled by the
genus ofXi, and with half-edges given by the nodes or marked points. The
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half-edges corresponding to opposite nodes are glued to give a full edge, the
half-edges of marked points are labeled by the index of the corresponding
marked point.

3.4.3. The Deligne–Mumford compactification. A more detailed dis-
cussion is in the foundational work of Deligne & Mumford [DM69, Thm. 5.2].
We will describe set-theoretically the strata MΓ of the compactification
Mg,n. Each possible dual stable graph Γ gives a stratum, with a point on
that stratum described as follows. Each vertex v of Γ, with label gv and
valency deg v, gives a genus gv Riemann surface Xv with deg v marked points.
The marked points corresponding to nodes are glued accordingly to give the
stable curve X = ∪Xv with the remaining marked points.

The open stratumMg,n corresponds to one vertex of genus g, with n half
edges coming out of it. The codimension of any stratum is the number of
full edges of the corresponding dual stable graph. Up to finite automorphism
groups we have

MΓ ≈
∏
Mgv ,deg v

For example, connected trivalent graphs with 3g − 3 edges, or equivalently
2g − 2 vertices, parametrize the deepest points of Mg.

3.4.4. Incidence variety compactification. To proceed we define a stable
differential ω on a stable curve X to be the datum of meromorphic differ-
entials ωi on each irreducible component Xi, with poles only allowed at the
nodes of Xi, such that the poles are simple and residues at opposite nodes
add up to zero. The bundle of holomorphic differentials over the moduli
space Mg is denoted ΩMg, and it extends over the Deligne–Mumford com-
pactificationMg as a rank g vector bundle denoted ΩMg and parametrizing
stable differentials. It pulls back naturally to Mg,n and denoted ΩMg,n.

For a given configuration of zeros κ = (k1, . . . , kn) and stratum ΩMg(κ),
there is a natural map assigning to a differential its divisor of zeros:

ΩMg(κ)→ ΩMg,n

(X, ω) 7→ (X, ω, z1, . . . , zn) where (ω) =
∑

kizi

The incidence variety compactification ΩMinc
g,n(κ) is defined to be the closure

of the image of this (injective) map. The main result of [BCG+18, Thm. 1.3]
is a characterization of the stable differentials in the compactification, to
which we now proceed.
3.4.5. Definition (Twisted κ-differentials). Let (X, z1, . . . , zn) be a stable
curve X = ∪Xi with n marked and labeled points. For κ = (k1, . . . , kn), a
twisted κ-differential is:

(i) A meromorphic differential ωi on Xi, with zeros and poles allowed
only at the nodes and marked points, and furthermore required to
satisfy ordzj ωi = kj .
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(ii) At opposite nodes q1, q2 on components Xi1 , Xi2 require the pole or
vanishing orders to satisfy:

ordq1 ωi1 + ordq2 ωi2 = −2.

If furthermore ordq1 ωi1 = ordq2 ωi2 = −1, then require also the
residues to satisfy:

Resq1 ωi1 + Resq2 ωi2 = 0.

The extra datum on the dual graph ΓX is a partial order ⪰, such that
any two elements are comparable but in general [Xi] ⪰ [Xj ] and [Xi] ⪯ [Xj ]
does not imply [Xi] = [Xj ], in other words the partial order is not strict.
Such a partial order is equivalent to a real-valued function on the vertices,
which we will always assume takes values in Z≤0 and the different levels
are ordered by this function; for l ∈ Z≤0 we will denote by X>l and Xl the
subsets of X whose irreducible components are at level strictly above l, and
level l respectively. Edges will be called horizontal and vertical according
to how they go between levels, and the enhancement to a partial order on a
graph Γ will be denoted Γ.

Given a twisted κ-differential on a stable curve X, a partial order on ΓX

is called compatible if, for opposite nodes qj ∈ Xij , j = 1, 2 we have

[Xi1 ] ⪰ [Xi2 ] ⇐⇒ ordq1 ωi1 ≥ ordq2 ωi2 .

Note that the last condition is equivalent to ordq1 ωi1 ≥ −1. Furthermore,
we impose the following Global Residue Condition: for every level l, and for
every connected component X ′ of X>l that does not have a prescribed pole,
we have: ∑

node qi∈X>l∩Xl

Resq−
i

ωXi = 0.

For a node q ∈ Xi∩Xj we denote by q− the node that lives on the component
at the lower level. The condition of not having a prescribed pole is vacuous
if all ki ≥ 0, and otherwise it means for no zi ∈ X ′ we have ki < 0.

We can now state a characterization of points that belong to the incidence
variety compactification [BCG+18, Thm. 1.3]:
3.4.6. Theorem (Characterization of limits). A marked stable curve (X, Z)

with stable differential ω belongs to ΩMinc
g,|κ|(κ) with |Z| = |κ| if and only

if:
• There exists a level graph structure on the dual graph ΓX , such that

the top vertices of ΓX corresponds to components where ω ̸≡ 0.
• There exists a twisted κ-differential η on X, compatible with ΓX ,

such that on the top components we have ω = η.

It turns out that the incidence compactification ΩMinc
g,n(κ) is not smooth,

even in the orbifold sense. To address this, the authors of [BCG+19b] have
introduced a larger moduli space, which has a lot of desirable properties.
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We outline the structures and results, referring to the original text for the
details.
3.4.7. Definition (Multiscale differential). A multiscale differential of type
κ on (X, Z) ∈Mg,n is the datum of:

(i) An enhanced level structure on ΓX .
(ii) A twisted κ-differential ω on (X, Z) compatible with the enhanced

level structure.
(iii) A prong-matching condition for every pair of opposite nodes on X.

We refer to [BCG+19b, §2] for the precise definitions of these notions. The
main results are Thms. 1.2-1.4 in loc. cit.:
3.4.8. Theorem (Moduli space of multiscale differentials). There exists a

complex-analytic orbifold ΞMg,n(κ) parametrizing a universal family of
multiscale differentials, with the following additional properties:

(i) The stratum ΩMg,n(κ) is open and dense.
(ii) The boundary is a simple normal crossing divisor.
(iii) The space ΞMg,n(κ) admits a free C×-action whose quotient is com-

pact.
3.4.9. Theorem (GL2(R) action on bordification). There exists a real-

oriented blowup of ΞMg,n(κ) denoted ΞM̂g,n(κ), which is an orbifold with
corners parametrizing a universal family of real multiscale differentials,
with the following additional properties:

(i) The map ΞM̂g,n(κ) → ΞMg,n(κ) is proper and the fibers are iso-
morphic to (R/Z)N over a multiscale differential with N + 1 levels.

(ii) The action of GL2(R) on the open subset ΩMg,n(κ) extends contin-
uously to ΞM̂g,n(κ).

Let us note that while we have restricted our discussion to start with holo-
morphic differentials ΩMg(κ), the authors of [BCG+19b] allow more general
meromorphic strata as in §3.3.

4. Orbit closures
Outline of section. In this section we describe a series of rigidity properties
of orbit closures of the GL2(R)-action. These turn out to be orbifolds with
interesting geometric and arithmetic properties. Their measure-theoretic and
topological properties are outlined in §4.1. In Example 4.1.10 we illustrate
a situation where the orbit closure has self-intersections when immersed in
the ambient stratum. After some preliminaries from Hodge theory in §4.3,
we describe in §4.4 complex-analytic rigidity features of orbit closures. One
application of these rigidity properties is to prove that orbit closures have
natural algebraic structures, and can in fact be characterized by arithmetic
properties of the Jacobian varieties of the underlying Riemann surfaces. This
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is explained in §4.5. Further consequences of the Hodge-theoretic rigidity
results are contained in Section 5, which describes finiteness results for orbit
closures. We end with an overview of some examples of orbit closures in
§4.6, including some linear manifolds which are not orbit closures but are of
independent interest.

4.1. Measure and Topological Rigidity
In this section we describe the measure-theoretic and topological rigidity
results obtained by Eskin, Mirzakhani, and Mohammadi [EMM15, EM18].
These results were motivated and inspired by Ratner’s rigidity theorems
for unipotent flows, which established Raghunathan’s conjectures [Rat91].
The unipotent flow on strata exhibits a more complicated behavior com-
pared to homogeneous spaces (see the constructions of Chaika–Smillie–Weiss
[CSW20]), so the techniques are rather different and are based on the low
entropy method of Lindenstrauss [Lin06, EL08], [EL10, §10], as well as the
work of Benoist–Quint [BQ11, BQ13].

4.1.1. Setup. Fix a stratum ΩMg(κ) of translation surfaces and recall from
§3.1.9 that on its universal cover we have period coordinates, equivalently a
developing map which is a local biholomorphism:

Dev: Ω̃Mg(κ)→ H1(X0, Z0;C)

for some reference translation surface (X0, ω0).
4.1.2. Definition (Linear Immersed Submanifold). A linear immersed sub-
manifold of ΩMg(κ) is a manifold Ma together with a proper immersion
ι : Ma → ΩMg(κ), such that for any sufficiently small open set U ⊂Ma, the
following holds: take the image ι(U) ⊂ ΩMg(κ) and lift it to the universal
cover as ˜ι(U) ⊂ Ω̃Mg(κ), then the image under Dev inside H1(X0, Z0;C)
is an open set inside a linear subspace. We will denote the image of the
immersion ι byM := ι(Ma) ⊂ ΩMg(κ) and frequently omitMa and ι from
the notation.

For a subfield k ⊂ C, if the local linear equations of the charts ι(U) can be
taken with coefficients in k, we will say thatM is k-linear. For convenience,
we will say k-linear submanifold instead of k-linear immersed submanifold.

We will typically be interested in linear submanifolds that are at least R-
linear, so we make that assumption from now on. Note that in this case, the
submanifold is invariant under the action of GL2(R). A converse is provided
by an observation of Kontsevich: any complex submanifold of ΩMg(κ) that
is invariant under GL2(R) must be R-linear (see [Möl08, Prop. 1.2] and
assume irreducibility).

4.1.3. The basic exact sequence. When discussing linear submanifolds,
we will refer only to M ⊂ ΩMg(κ) and omit from notation the “abstract”
manifoldMa that maps toM. However, most objects are naturally defined
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onMa. Of these, the most important ones are the local systems that describe
the tangent space of M. Specifically, let TM denote the tangent bundle of
M, viewed as a vector bundle on Ma. Since charts of Ma are locally cut
out by linear equations, the bundle TM is a local subsystem of H1

rel. Then
in analogy with the short exact sequence in Eqn. (3.1.13), we have one on
the tangent space of M:

0→W0(TM) ↪→ TM
p
−↠ H1(TM)→ 0(4.1.4)

Note that the local system W0 on the entire stratum has finite monodromy
and can be trivialized on a finite cover that labels the marked points. There-
fore, the same is true of W0TM, and in particular it carries a monodromy-
invariant positive-definite inner product.

4.1.5. Cylinder and Torsion Corank. The two basic numerical invariants
of an orbit closure M are its rank (or cylinder rank), introduced by Wright
[Wri15a, Def. 1.11] and defined to be 1

2 dim H1(TM), as well as its torsion
corank defined to be dim W0(TM); we will refer to dim W0/ dim W0(TM)
as the torsion rank ofM. We will see in Theorem 4.5.7 the relation between
W0 and torsion, and the connection between cylinders and H1(TM) in §6.1.

The cylinder rank is always an integer, as follows from the next basic
result regarding the tangent space TM that was proved by Avila, Eskin, and
Möller [AEM17, Thm. 1.4-1.5]:
4.1.6. Theorem (TM is symplectic). For an R-linear manifold M admit-

ting an SL2(R)-invariant probability measure, the symplectic form obtained
from the topological cup product is nondegenerate on H1(TM).

4.1.7. Volume normalizations. For a linear manifold M ⊂ ΩMg(κ),
denote by M1 ⊂M the subset of area 1 translation surfaces, so the natural
map M1 × R>0 →M is a bijection. Note also that SL2(R) preserves M1.
The natural Lebesgue measures on M and M1 are constructed in charts, in
analogy with Masur–Veech measure from §3.2.4. A key input is that TM is
symplectic, in the sense of Theorem 4.1.6.

We can now state the main results of Eskin, Mirzakhani, and Mohammadi.
For convenience we will state them on the subset of area 1 surfaces, and in
particular ΩMg(κ)1 denotes the subset of the stratum of surfaces normalized
in this way.
4.1.8. Theorem (Measure and Topological Rigidity). Let P ⊂ SL2(R)

denote the upper-triangular matrices and fix a stratum ΩMg(κ)1.
Measure rigidity: [EM18, Thm. 1.4] For any P -ergodic invariant

probability measure µ on the stratum, there exists an R-linear im-
mersed submanifold M such that µ is the Lebesgue measure on M1

described in §4.1.7. In particular µ is SL2(R)-invariant.
Topological rigidity: [EMM15, Thm. 2.1] For any (X, ω) in the stra-

tum, there exists an R-linear immersed submanifold M which is its
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P -orbit closure, i.e. M1 = P · (X, ω). Furthermore, M1 admits a
finite SL2(R)-invariant measure.

Equidistribution: [EMM15, Thm. 2.3] The space of P -invariant er-
godic probability measures on the stratum is sequentially compact
for the weak-* topology.

Isolation: [EMM15, Thm. 2.3] For any sequence of linear immersed
submanifolds Mi admitting a finite P -invariant measure µi, after
passing to a subsequence still denoted {Mi, µi}, there exists another
linear immersed submanifold M, with finite measure µ, and i0 ≥ 1
such that for i ≥ i0 we have Mi ⊂M and µi ⇀∗ µ.

4.1.9. Remark (On rigidity).

(i) The equidistribution theorem has its name justified by the follow-
ing reformulation: any sequence of P -invariant ergodic probability
measures converges weakly along a subsequence to another such.

(ii) The statements for the upper triangular group P imply the anal-
ogous ones for SL2(R). Part of the result is that any finite P -
invariant measure is also SL2(R)-invariant, since Lebesgue measure
on an R-linear submanifold is SL2(R)-invariant. However, since P
is amenable, one can more easily construct P -invariant probability
measures.

We end with a cautionary example that illustrates the necessity of allowing
self-intersections.
4.1.10. Example (Self-intersections of an orbit closure). Denote by M⊂
ΩM3(2, 2) the locus of surfaces that are unramified (Z/2)-covers of surfaces
in ΩM2(2). Note that we have an “abstract” finite coverMa → ΩM2(2) and
a map Ma →M ⊂ ΩM3(2, 2). We will next verify that inside ΩM3(2, 2),
the invariant subvariety M has self-intersections along a locus R ⊂M that
we now describe in more detail.

Specifically, let ΩM1(0) denote the translation surfaces of genus 1 with one
marked point. Set R to be a finite (unramified) cover of ΩM1(0), consisting
of translation surfaces (X, ω) ∈ ΩM3(2, 2) with an action of the permutation
group on 3 elements S3, such that the cyclic subgroup of S3 fixes the zeros
of ω and transpositions exchange the zeros. Note that R is contained in
M, but that elements (X, ω) ∈ R map to some (X ′, ω′) ∈ ΩM2(2) in three
distinct ways, one for each transposition in S3.

Concretely, the tangent space T(X,ω)ΩM3(2, 2) = H1
rel(X, Zω) has an

action of S3 and using this action splits as H1(X)⊕ H̃0(Zω), where Zω ⊂ X
are the two zeros of ω. We claim, and will verify shortly, that H1(X) as
an S3-representation consists of the trivial representation with multiplicity
two, and the unique 2-dimensional representation also with multiplicity two.
In fact we have H1(X) = H1(X/S3) ⊕ TX where X/S3 is the torus with a
marked point, and TX = VX ⊗MX, where VX is a rank 2, weight 1 Hodge
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structure on which S3 acts trivially, and MX is a 2-dimensional vector space
on which S3 acts in its unique irreducible of dimension 2.

The three branches of M that pass through (X, ω) ∈ R are parametrized
by the choice of transposition σ ∈ S3 and have as their tangent spaces:

T(X,ω),σM = H1(X/S3)⊕ [VX ⊗ (Mσ
X)] = H1(X/σ)

where Mσ
X denotes the σ-fixed line inside MX . Note that the first factor

H1(X/S3) is simply the tangent space of R at (X, ω).
It remains to verify the assertion about the decomposition of H1(X)

into S3-representations. This can be seen from the Chevalley–Weil for-
mula (see e.g. [Ara22]) or more elementarily as follows. Triangulate X

as X(0) ∐
X(1) ∐

X(2) where the 0-dimensional piece X(0) consists of the
two zeros. The action of S3 on X(1) and X(2) is free, so the characters
on the corresponding groups that compute the homology are x1

6 χreg and
x2
6 χreg, where xi = #X(i) and χreg denotes the character of the regular

representation (note that 6 = #S3 so that the ranks match). Finally on
the zero-dimensional group the character is the sum of the trivial and sign
representations 1 + χsg. We know that after taking homology, H0 and H2

are 1-dimensional and S3 acts trivially on them, so it follows that we must
subtract the corresponding pieces from the character on H1:

χH1(X) = x1
6 χreg −

(
x2
6 χreg − 1

)
− χsg

= x1 − x2
6 χreg + 1− χsg

= χreg + 1− χsg

= 2 (1 + χρ)

where we have used that x1 − x2 = 2 · genus(X) = 6 since 2 − x1 + x2 is
the Euler characteristic of X, that for any finite group G the Peter–Weyl
theorem yields χreg =

∑
irrep ξ dim ξ ·χξ, and ρ denotes the unique irreducible

of S3 of dimension 2.

4.2. Aside: On the proof of measure rigidity
This section provides an overview of some of the ingredients appearing in
the proof of the measure rigidity result of Eskin–Mirzakhani stated in Theo-
rem 4.1.8. Many substantial technical challenges are omitted and throughout
we assume familiarity with basic notions in dynamics. Measurable cocycles
under group actions are treated in Zimmer’s book [Zim84], entropy and
leafwise measures in the lectures of Einsiedler–Lindenstrauss [EL10], and a
general reference on non-uniformly hyperbolic dynamics is in the book of
Barreira–Pesin [BP07].

An account of the proof with more details is provided by Quint [Qui16]
and the full details are in the original text [EM18]. An exposition of some
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of the ideas in the context of homogeneous dynamics is in the paper of
Eskin–Lindenstrauss [EL20].
4.2.1. Setup. Suppose that µ is3 an ergodic P -invariant measure on a
stratum. We will denote a point on the stratum by x, and abbreviate the
fibers of cohomology by H(x) := H1

rel(Xx, Zx;R) assumed to be taken with
real coefficients.

Recall that P = AN where A denotes the diagonal matrices and N
the upper-triangular unipotents, whose elements will be denoted gt and
us respectively. Associated to µ is the Lyapunov spectrum and Oseledets
decomposition for gt on H, namely

H(x) =
⊕
λi

Hλi(x) 1 = λ1 > λ2 > · · · > −λ1 = −1

for µ-a.e. x. Recall that H±1(x) correspond to the real and imaginary parts
of the 1-form at x, and that the spectral gap inequality 1 > λ2 is due to
Forni [For02, Thm. 0.1].
4.2.2. Stable/Unstable manifolds. The tangent space at x ∈ ΩMg(κ)
decomposes as

TxΩMg(κ) = W −(x)⊕W +(x)
where each of W ±(x) is naturally identified with H(x). However, the induced
cocycle for the gt-action on the tangent space is isomorphic to W ±(x) =
H(x)⊗ R (±1) where R(λ) denotes the 1-dimensional cocycle where gt acts
as eλt.

For a (measurable) subbundle L(x) ⊂ H(x) we will denote by L±(x) ⊂
W ±(x) the corresponding subbundles in the stable/unstable direction. Note
that any one of L,L+,L− determines the others. In Proposition 4.2.8, we
will define L− and associate to it L+.
4.2.3. Measurable connections. The Oseledets filtration H≤λi(x) is in-
variant under the Gauss–Manin connection along the stable manifoldsW−[x]
and hence induces a flat connection on the associated graded cocycle. Using
the (measurable!) Oseledets decomposition, we can identify the associated
graded cocycle with the original bundle and hence obtain another connection
P −(x, x′) defined for x′ ∈ W−[x] and which is only measurable. Analogously
one defines a measurable connection P + along W+. These will be essential
in obtaining extra invariance of measures.
4.2.4. Conditional and leafwise measures. Denote byW±[x] the locally
linear immersed submanifolds in the stratum associated to the subspaces
W ±(x). Recall that to define the leafwise measures µ+[x], one first fixes a
µ-measurable partition B+ which is subordinated to the unstable foliation
(i.e. at the level of atoms B+[x] ⊂ W+[x]) and is expanded by the dynamics,
i.e. gtB

+[x] ⊃ B+[gtx] for t ≥ 0. Then µ admits conditionals with respect
to B+, and µ+[x] is assembled out of these conditionals and the expanding

3In [EM18] this measure is called ν.



32 SIMION FILIP

dynamics. We will view µ+[x] as a measure on W+[x] and denote by µ+(x)
the corresponding measure on W +(x) obtained after the identification

exp+
x : W +(x)→W+[x] 0 7→ x.

Note that if x′ ∈ W+[x] then we obtain by construction (namely, as
(
exp+

x′

)−1
◦

exp+
x ) an affine map

τ(x, x′) : W +(x)→W +(x′) and τ(x, x′)∗µ+(x) ∝ µ+(x′)(4.2.5)

where ∝ denotes equality of measures up to a scaling factor. This propor-
tionality, rather than equality, arises since in general µ+[x] and µ+[x′] on
W+[x] =W+[x′] agree up to a scaling factor only.

Note that invariance of µ under gt implies equivariance of µ+ (again, up
to scaling).

4.2.6. Unipotent subgroups. To establish that µ is a nice measure, one
key step is to show that the family µ+(x) is itself of Lebesgue class on some
subspace. This is accomplished by showing that it is invariant under a group
of unipotent transformations.

The relevant transformations are inside G+(x) := W +(x) ⋊ Q+(x) where
Q+(x) ⊂ GL(H(x)) is the group of unipotent transformations preserving
the Oseledets filtration H≥•(x). Note that G+(x) is a unipotent algebraic
group and it naturally acts by affine transformations on W+(x), where the
factor W +(x) acts by translations. The induced Lie algebra cocycle g+(x)
has positive Lyapunov exponents under gt.

For a connected subgroup U+(x) ⊂ G+(x), we will denote by u+(x) its
Lie algebra (which determines U+(x)) and by U+[x] := U+(x) · x ⊂ W+[x]
its orbit in the unstable manifold. If we set U+

x (x) to be the stabilizer of x
inside U+(x), then U+[x] ∼= U+(x)/U+

x (x). We will only consider the case
when U+(x) is the largest subgroup of G+(x) preserving the subset U+[x]
and U+[x] will carry a unique up to scale measure which is U+(x)-invariant,
which we will call its homogeneous measure.

4.2.7. Measurable family of subgroups. With assumptions and notation
as above, we will consider a measurable family of subgroups U+(x) ⊂ G+(x)
with the following properties:

(i) The family of Lie algebras u+(x) ⊂ g+(x) is gt-equivariant.
(ii) The subsets U+[x] ∩B+[x] form a µ-measurable partition U+.
(iii) The leafwise measure µU+ [x] is proportional to the homogeneous

measure on U+[x].
We will denote by µU+(x) and µU+ [x] the corresponding leafwise measures
on W +(x) and W+[x] respectively.

The orbit of the upper unipotent subgroup of SL2(R) gives a line through
every x and we assume that U+[x] always contains that line (equivalently,
that U+(x) contains the real part of the coordinate at x). The mechanism
that ensures homogeneity of µ+(x) is contained in the next result:
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4.2.8. Proposition (Extra invariance). Let L−(x) ⊂ W−(x) denote the
smallest affine subspace through x that contains the support of µ−(x), de-
fined for µ-a.e. x. Let L+(x) ⊂W +(x) be the corresponding subbundle in
the unstable subspace, with L+[x] ⊂ W+[x] the immersed affine subspace.
If L+[x] has dimension larger than U+[x] for µ-a.e. x, then there exists
a measurable family of subgroups U+

new ⊋ U+ satisfying the properties of
§4.2.7 and of dimension strictly larger than U+.

4.2.9. Entropy balancing. Assuming for the moment Proposition 4.2.8,
let us explain how to deduce that the leafwise measures µ−(x) are of Lebesgue
class, and a bit more generally: there exists an SL2(R)-invariant subbundle
L ⊂ H such that the leafwise measures µ−(x) are supported on L−(x) and
L−(x)-invariant. Note that the positive time semigroup gt is conjugated
inside SL2(R) to the negative time one, so the corresponding statement for
µ+ is a consequence of SL2(R)-invariance. It also follows that µ itself is
SL2(R)-invariant.

To deduce the desired claim, let L ⊂ H be the minimal measurable
subbundle such that µ−(x) is supported on L−(x); this bundle is P -invariant.
Proposition 4.2.8 implies that µ+(x) is L+(x)-invariant.

As a consequence of techniques of Forni, for any P -invariant subbundle of
H, its Lyapunov spectrum {λi} counted with multiplicities satisfies

λ1 + · · ·+ λn ≥ 0.

Note that this property would be automatic if we knew, for instance, that
the image of L in absolute cohomology is a symplectic subspace.

Now the Ledrappier–Young formula for the entropy h(g1; µ) of the time-1
flow, computed using the unstable foliation and using that conditionals are
Lebesgue, gives:

h(g1; µ) =
n∑

i=1
(1 + λi) .

Applying the same argument, but now to the stable foliation, gives only an
inequality since we do not yet know that conditionals are Lebesgue:

h(g1; µ) ≤
n∑

i=1
(1− λi) .

The last two expressions, combined with
∑

λi ≥ 0, imply that equality must
hold in the last inequality. By the equality case of the Ledrappier–Young
formula, it follows that µ−(x) is L−(x)-invariant.

Since L−(x) contains the opposite unipotent, it follows that µ and L are
invariant by it as well and hence SL2(R)-invariant.
4.2.10. Endgame. Suppose now that µ is SL2(R)-invariant, and further-
more the unstable leafwise measures µ+(x) are supported on L+(x) and
L(x)-invariant for the corresponding SL2(R)-invariant subbundle L ⊂ H.
The locally affine structure of µ is deduced in [EM18, §14-16] using argu-
ments similar to those in §4.2.15 below, but technically easier because of
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SL2(R)-invariance. We will not reiterate them here, but note for compar-
ison that Ratner’s theorems for SL2(R)-invariant measures are technically
easier compared to those for unipotent-invariant measures, see Einsiedler
exposition [Ein06].
4.2.11. Leafwise measures, again. Assume we are in the setting of Pro-
position 4.2.8. We will give a simplified account of some of the constructions
necessary to establish extra invariance, omitting some key technical difficul-
ties.

First, associated to the family U+ one constructs a measurable partition
Cij (whose atoms contain U+[x] ∩ B+[x]) and with leafwise measures de-
noted fij(x). The measures fij(x) are U+(x)-invariant by construction and
eventually will be shown to have extra invariance.
4.2.12. Simpler case: start of induction. To illustrate some of the ideas,
we will refer throughout to the “start of induction” as the situation in Pro-
position 4.2.8 when U+(x) = N is just the unipotent subgroup. Note that
then U+(x) = W +,λ1(x) is the maximally stretched direction.

The stable conditions measures µ−(x) are nontrivial by the entropy argu-
ment above. If µ−(x) is contained in a 1-dimensional subspace of W −(x),
then the arguments below ensure that it must be the opposite unipotent
and the claim is established. Either way, the measure fij(x) is defined as a
leafwise measure along

(
W +,λ1 ⊕W +,λ2

)
(x) modulo the N -invariance (so

it can be viewed on W +,λ2(x)). We assume, for simplicity, that the maximal
divergence (modulo N) of W +-related points that are generic for the mea-
sure occurs along W +,λ2 , otherwise we just replace λ2 by the corresponding
Lyapunov exponent λi. In general, restricting to a further subspace Eij

inside W +,λi might be necessary.
4.2.13. Extra invariance of conditionals. For every δ > 0 there exists a
compact set K of measure 1− δ such that all the ergodic theorems (for the
relevant observables) involved in the argument hold for points of K uniformly.
Furthermore, the leafwise measures fij(x) vary continuously when x ∈ K
(in an appropriate topology, which we can assume for simplicity comes from
a metric). Then, it is shown that, for some constant C := C(K) and any
ε > 0, there exist (many) points q̃ ∈ K satisfying

fij(q̃) ∝ ϕ∗ (fij (q̃)) for some ϕ ∈ G+(q)

with ε

C
≤ distG+(x)/U+(x) ([e], ϕ) ≤ Cε

where [e] denotes the identity coset in G+(x)/U+(x). In other words, the
conditional measure is invariant under a sequence of transformations that
approach the identity, but transversely to U+.

This last invariance is, in turn, accomplished by constructing q̃′ ∈ W+[q̃]
such that

fij(q̃′) = P +(q̃, q̃′)∗fij(q̃) with P +(q̃, q̃′) : W +(q̃)→W +(q̃′)



TRANSLATION SURFACES: DYNAMICS AND HODGE THEORY 35

the identification obtained from the measurable connection P + (see §4.2.3).
The map ϕ is then obtained by composing P + with the map τ(q′, q)−1 from
Eqn. (4.2.5). Said more intrinsically, the measure µ+[q̃] onW+[q̃] is invariant
(up to scaling) by the transformation ϕ.

Figure 4.2.14. The
Y -diagram.

4.2.15. Exponential drift. The points q̃, q̃′ with
q̃′ ∈ W+[q̃] are obtained as a limit of a sequence
of points q2, q′

2 ∈ K depending on a parameter ℓ
tending to +∞, and with the desired properties true
approximately, but more and more so as ℓ→ +∞.
For the correct order of choices of parameters (in
particular, note that q1 is chosen before q), see for
example [EL20, §6].

Choose q, q′ ∈ K with q′ ∈ W−[q] and d(q, q′) ≤
1, and set q1 := gℓq, q′

1 := gℓq
′ for an ℓ > 0 to be sent

to +∞. We then make the following constructions,
with defining properties of the parameters to be
specified below:

• Choose u ∈ U+(q1), u′ ∈ U+(q′
1) of size

in the range
[

1
C1

, 1
]

for some constant C1
depending on K.
• For t2 > 0 set q2 := gt2uq1 and q′

2 =
gt2u′q′

1.
• For t3 > 0 set q3 := gt2q1 and q′

3 = gt3q′
1.

Then q̃, q̃′ are obtained as accumulation points of q2, q′
2 as ℓ→ +∞ subject

to the requirements below. To present them, we will refer to a “simplest
case” when U+ = N is the unipotent subgroup, and for measure-generic
points x, x′ that are on the same unstable manifold we will assume that their
N -orbits diverge in the W +,λ2-direction. We also make some comments on
the general case.

4.2.16. The requirements on u. At the start of induction (see §4.2.12),
the choice of u, u′ is such that if we write

u′q′
1 − uq1 = v+ + v− with v± ∈W ±(uq1)

and we write the Lyapunov decomposition v+ =
∑n

i=1 v+
i with v+

i ∈W +,λi ,
then

v+
1 = 0 and

∥∥∥v+
2

∥∥∥
∥v+∥

≥ 1
C(K)

for some constant C(K) depending on the compact set K. Explicitly, if

q′
1 = q1 +

[
0
v

]
then usq′

1 = usq1 +
[
s · v

v

]
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Note that ∥v∥ ≈ e−λℓ for some λ > 0, while s is chosen to be of size O(1).
We expect the Lyapunov decomposition of the component v ∈ H(usq1) to
vary generically with s, so the condition on

∥∥∥v+
2

∥∥∥ /
∥∥v+∥∥ can be fulfilled.

By an exponentially small adjustment of u′ := us′ we can then achieve the
vanishing of the component v+

1 (by a unique choice of s′ with |s− s′| ≲ e−λℓ)
since we already have invariance in that direction.

In the general case, the displacement vector v+ above belongs to the
fiber E(uq1) of a linear cocycle E that admits an equivariant injection
G+(q)/U+(q) ↪→ E(q) so it can be used to track the relative divergence
of U+-orbits.

4.2.17. The requirement on times. The time t2 is chosen so that
∥∥gt2v+∥∥ =

ε, where at the start of induction v+ measures the unstable separation
of uq1, u′q′

1, while in the general case it measures the unstable separation
of the orbits U+[uq1], U+[u′q′

1]. The choice of u, u′ ensures that q′
2 =

q2 + v2 + O(e−δ1ℓ) where v2 ∈ W +,λ2(q2) and ∥v2∥ ≈ ε at the start of
induction, and in the general case v2 belongs to a certain subspace E[ij],bdd

along which divergence occurs for typical U+-perturbations of stably-related
points.

The time t3 is chosen so that (at the start of induction) the amount of
expansion in W +,λ2 from uq1 to q2 = gt2uq1 is equal to that from q1 to
q3 = gt3q1. In the general case, an analogous requirement is imposed on a
certain gt-invariant subspace E[ij],bdd.

4.2.18. Comparison of measures. With these choices in place, and as-
suming they can be made so that q•, q′

• all belong to K, we can now compare
leafwise measures. Denote by A : E(q3)→ E(q2) the composition of cocycle
maps gt2 ◦ u ◦ g−t3 and analogously for A′ : E(q′

3) → E(q′
2). The choices of

times are such that both maps are of bounded norm, and furthermore when
restricted to E[ij],bdd they are intertwined by the measurable connections
P +, P −. Specifically, for q′+

2 ∈ W+[q2], and with q′+
2 → q′

2 as ℓ → +∞ we
have A′ ◦ P −(q3, q′

3) ≈ P +(q2, q′+
2 ) ◦A.

Applying this identity to the measures fij(q3), fij(q′
3), with appropriate

trivializations of the bundles and using that d(q3, q′
3)→ 0 and d(q′+

2 , q′
2)→ 0,

as well as the equivariance of measures under A, A′, we find that

fij(q̃′) = P +(q̃, q̃2
′)∗fij(q̃)

which was the desired conclusion.

4.2.19. Times are bilipschitz-related. Compared to other measure rigid-
ity proofs, a key aspect of this method is that the time windows t2, t3 under
which the points can be “stopped” and examined are prescribed within O(1),
since points diverge exponentially. To ensure that at those times the points
are in the good set K, it is crucial that t2, t3 and ℓ are related by certain
biLipschitz bounds, see [EM18, §7]. These bounds depend only on the Lya-
punov spectrum of gt. In particular, by varying ℓ and using that the Birkhoff
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theorem holds at set of times of density close to 1, it is possible (though
challenging) to ensure that all points in Figure 4.2.14 are in the good set K.

4.3. Hodge Theory
This section provides the background in Hodge theory necessary to describe,
and establish, the results in §4.4. The information contained in the coho-
mology groups H1 and H1

rel is equivalent to that contained in their duals,
the homology groups Ȟ1 and Ȟ1,rel. For many constructions, the homology
groups provide a more convenient geometric interpretation, for instance the
Jacobian (see §4.3.7) is most easily described using homology. Speaking
informally, one can think of the structures in cohomology as encoding the
tangent space data to an orbit closure inside a stratum, while structures in
homology describe the linear equations cutting out the orbit closure inside
a stratum.

4.3.1. Setup. Let k ⊂ R be a subring, for instance Z,Q, or a number field,
and let H be a free k-module of finite rank. We will denote by HR the
extension of scalars from k to any ring R containing k.
4.3.2. Definition (Pure Hodge structure, Polarization). A weight n Hodge
structure on H is a decomposition of the complexification

HC = Hn,0 ⊕ · · ·Hp,q ⊕ · · ·H0,n p + q = n

such that Hp,q = Hq,p for all p, q with p + q = n.
The Hodge filtration is defined by F pH := ⊕i≥pH i,j and it is decreasing,

i.e. F pH ⊇ F p+1H. The Hodge decomposition can be reconstituted by
Hp,q = F pH ∩ F qH. The Weil operator is defined on HC first by Cx :=√
−1p−q if x ∈ Hp,q, and it descends to H since Cx = Cx.
A polarization of the Hodge structure is a k-bilinear form I(−,−) on H

such that the bilinear form Q(x, y) := I(x, Cy) is symmetric and positive-
definite on HR.
Note that since C2 = (−1)n, it follows that I is (−1)n-symmetric.
4.3.3. Definition (Mixed Hodge structure). A mixed Hodge structure on H
is the data of an increasing filtration W•H on H, called the weight filtration,
and a decreasing filtration F •H on HC, called the Hodge filtration, such that
for any n, the quotient grW

n H := WnH/Wn−1H with its induced Hodge
filtration is a pure weight n Hodge structure.

For a ring R ⊂ C containing k, we will say that the mixed Hodge structure
is R-split if HR with its induced mixed Hodge structure is isomorphic to the
direct sum ⊕n∈Z grW

n HR.
4.3.4. Example (Compact Riemann surfaces). Let X be a compact Rie-
mann surface of genus g. Then its integral cohomology H := H1(X;Z) is
a free Z-module of rank 2g and admits a pure weight 1 polarized Hodge
structure.
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The complexification HC has the Hodge decomposition

HC = H1,0 ⊕H0,1

with H1,0 spanned by cohomology classes of holomorphic 1-forms on X.
Indeed, a holomorphic 1-form on X defines a cohomology class by integrating
it along 1-cycles. The space H0,1 is defined as the complex-conjugate of H0,1.
The symplectic form given by cup product I(x, y) := x ∪ y has a positivity
property for a holomorphic 1-form ω, namely

√
−1[ω] ∪ [ω] > 0. The reason

is that cup product on 1-forms is given by integration on X and in local
coordinates on X, if ω = f(z)dz then

√
−1ω ∧ ω = 2|f(z)|2dx ∧ dy.

Let us also note that it is possible to describe the entire Hodge filtration
using complex-analytic objects. The first term F 1H is just the space of
holomorphic 1-forms, while F 0H = HC can also be described as follows. Fix
a point x ∈ X and let Zx denote the (infinite countable dimension) vector
space of meromorphic 1-forms on X with a pole allowed at x only. Since
there’s at most one pole, and the sum of all residues must vanish, such a
meromorphic 1-form has vanishing residue at x. Let also Bx denote the
vector space of all meromorphic 1-forms on X that arise as differentials
of meromorphic functions on X, with poles allowed only at x. There is a
natural map Zx → HC, since a meromorphic 1-form on X with vanishing
residues also gives a cohomology class. The kernel consists precisely of Bx,
and the map can be verified to be surjective.
4.3.5. Example (Marked points on Riemann surfaces). Let now X be a
compact Riemann surface and S ⊂ X a finite set of points. Let us describe
the mixed Hodge structure on H1

rel := H1(X, S;Z) with nontrivial pieces in
weights 0 and 1. Using the short exact sequence in Eqn. (3.1.6) but with
integral coefficients, we set W0H1

rel := H̃0(S) and W1 to be all of H1
rel. The

only non-trivial piece of the Hodge filtration is F 1H1
rel and again this is

defined as the image of the holomorphic 1-forms on X, since these give not
just absolute, but also relative cohomology classes by integration.

Note that the extra data in the mixed Hodge structure is that of a lift of
F 1H from absolute to relative cohomology.
4.3.6. Linear algebra operations on Hodge structures. The standard
operations on vector spaces or free Z-modules, such as duality, tensor prod-
uct, and Hom-spaces, are defined in the natural way for Hodge structures.
Perhaps the shortest way to define these operations is by viewing a Hodge
structure on a real vector space as a representation of the abelian R-algebraic
group S := ResCR Gm which is called the Deligne torus; it’s R-points are iden-
tified with C×. We also extend the notion of a pure Hodge structure of
weight n to allow arbitrary integral indexes with p + q = n, and allow the
weight n to be negative as well.

Duals and tensor products of mixed Hodge structures are defined in the
natural way. Note that mixed Hodge structures form an abelian category, a
nontrivial fact since for example filtered vector spaces do not form one. For
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a (mixed) Hodge structure H, its dual will be denoted by Ȟ; its weights are
the negatives of those of the original. Let us finally note that a mixed Hodge
structure is always R-split, and we will see an example below in Eqn. (4.3.12).
For an R-split mixed Hodge structure, we have a decomposition HC = ⊕Hp,q

such that WnH = ⊕p+q≤nHp,q and F pH = ⊕i≥pHp,q.
4.3.7. Jacobians. We now specialize to weight 1 and describe a geometric
interpretation of the above linear-algebraic data. Suppose that H carries a
weight 1 Hodge structure over Z, and we denote by HZ the corresponding
Z-module of rank 2g. Denote by Ȟ the dual Hodge structure, which has
weight −1 and Hodge decomposition

ȞC = Ȟ0,−1 ⊕ Ȟ−1,0 Ȟp,q :=
(
H−p,−q)∗

The nontrivial piece of the Hodge filtration is F 0Ȟ = Ȟ0,−1, which can also
be described as

Ȟ0,−1 ∼= {ξ : H → C : ξ|H1,0 ≡ 0}.
The Jacobian associated to this Hodge structure is defined to be the compact
complex torus

Jac(H) := F 0Ȟ\ȞC/ȞZ
∼= Hom(H1,0,C)

/
Hom(HZ,Z)(4.3.8)

which has complex dimension g. When H admits a polarization, the torus
Jac(H) can be holomorphically embedded in a projective space and is an
abelian variety.

This somewhat roundabout definition, via the dual Hodge structure, has
the advantage that it is more readily connected to geometry. Indeed, when
H = H1(X) for a Riemann surface X and x0 ∈ X is a basepoint, we can
holomorphically map X to Jac(H) by taking a point x ∈ X to the functional´

γ(x0,x) : H1,0 → C where γ(x0, x) is some path connecting x and x0. If
we replace the path γ(x0, x) by another one, their difference is a closed
cycle [δ] ∈ H1(X;Z) and hence we must quotient by this ambiguity. Note
that all the information of the geometry of the Jacobian is contained in the
embedding of the lattice H1(X;Z) into Hom

(
H1,0;C

)
.

4.3.9. Points on Jacobians as extensions. Suppose now that Hrel carries
an integral mixed Hodge structure of weights 0 and 1, with weight 1 quotient
denoted H. Suppose that the weight 0 part has rank r and the weight 1
part has rank 2g. We will show that such mixed Hodge structures are in
bijection with a collection of r points on the torus Jac(H). For convenience
we will work with the dual mixed Hodge structure Ȟrel, which suffices since
applying duality twice returns the initial structure.

We have the short exact sequence, where for brevity we set P̌ := grW
0

(
Ȟrel

)
:

0← P̌ ↞ Ȟrel ←↩ Ȟ ← 0(4.3.10)

and where Ȟ ∼= grW
−1 Ȟrel is the weight −1 Hodge structure dual to the

weight 1 Hodge structure H. Note also that in our situation P̌ ∼= (W0H)∗.
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Figure 4.3.11. Location of Hodge numbers and ranks.
Crosses denote the support of Hrel and circles that of Ȟrel;
they are exchanged by duality.

We also have the nontrivial piece of the Hodge filtration F 0Ȟrel ⊂ Ȟrel,C,
which induces on Ȟ a weight −1 Hodge structure by F 0Ȟ := Ȟ ∩ F 0Ȟrel.

Let us check that Ȟrel is R-split, in the sense of Definition 4.3.3. Set
Ȟ0,0

rel := F 0Ȟrel ∩ F 0Ȟrel, which is a rank r real subspace of Ȟrel. We then
have a natural splitting of the short exact sequence in Eqn. (4.3.10) over R
by setting

σR : P̌R−̃→Ȟ0,0
rel .(4.3.12)

While this map is not guaranteed to be defined over the corresponding
Z-modules, we can pick an arbitrary

σZ : P̌Z ↪→ Ȟrel,Z(4.3.13)

such that composing with the projection back to P̌ yields the identity map.
Since σR has the same property, we find that their difference must land in
ȞR:

κ := σZ − σR : P̌Z → ȞR

Now the map σZ was not canonical, but only well-defined by the addition of
an arbitrary element in Hom(P̌Z, ȞZ), so we have a well-defined class

[κ] ∈ Hom(P̌Z, ȞR/ȞZ)

Note that the target abelian group is a compact torus of real dimension 2g,
and it can be alternatively described using the isomorphism

ȞR ∼= ȞC/F 0Ȟ

and we see that it is by definition isomorphic to the Jacobian of the original
Hodge structure H.

To summarize, we have obtained (see also [Car80, §3]):
4.3.14. Proposition (Extensions classified by points). Let H be a pure

weight 1 Hodge structure over Z, and let P be a free Z-module viewed as
a trivial weight 0 Hodge structure. Then we have an isomorphism

Ext1
MHS(H, P ) ∼= HomZ(P̌ , Jac(H))

where Ext1
MHS denotes the (group of) extensions in the category of mixed

Hodge structures over Z, and P̌ := Hom(P,Z) is the dual Z-module.
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If we select a basis of P̌ , say with cardinality r, the right-hand side above
can be identified with a choice of r points on Jac(H).
4.3.15. Torsion and Q-splittings. It is natural to ask what happens if the
image of P̌ above lands in the torsion subgroup of Jac(H). By following the
above constructions, one can verify that this is equivalent to the existence
of a map σQ analogous to σZ in Eqn. (4.3.13), but all groups with scalars
extended to Q, such that σQ after tensoring with R becomes an isomorphism
between P̌R and Ȟ0,0

rel . An explicit example, in the case of elliptic curves, is
worked out in [Fil16b, Ex. 3.8].
4.3.16. Endomorphisms. Given a complex torus, say obtained as a Ja-
cobian Jac(H) = ȞC/

(
F 0Ȟ + ȞZ

)
, an endomorphism is a holomorphic

map T from Jac(H) to itself that is also a group homomorphism. Such a
holomorphic map can be lifted to the universal cover of Jac(H), which is
naturally identified with the complex vector space ȞC/F 0Ȟ. It will preserve
the image of the lattice ȞZ, and conversely any linear map of the complex
vector space, that also preserves the lattice, will lead to an endomorphism.

The simplest endomorphisms are the ones that any abelian group has,
namely for any n ∈ Z we have x 7→ n ·x. If we have a Z-splitting compatible
with the Hodge structures H = H1⊕H2, then we can act by pairs of integers
(n1, n2) individually. For example (0, 1) will correspond to projecting to the
second factor. More generally, if there is a Q-splitting, then a subring of
Z ⊕ Z will act by endomorphisms. One refers to the Hodge structures in
the splitting as factors of the original, and similarly for their corresponding
Jacobians.

We will work exclusively with polarized Hodge structures, so the complex
tori are also abelian varieties. The endomorphism rings of Jac(H) will be
denoted by EndZ(H) and EndQ(H) respectively, depending on whether we
take integral of rational coefficients. Since the polarization is given by a
symplectic form denoted I(x, y) on HZ, we will call an endomorphism T
symmetric if I(Tx, y) = I(x, Ty), and will typically restrict to the subal-
gebra of symmetric endomorphisms. The general endomorphism algebra
EndQ(Jac(H)) is a semisimple Q-algebra, see [BL04, 5.3.7-8], and Ch. 5 of
loc. cit for more on endomorphism rings of abelian varieties.
4.3.17. Real multiplication. We now specialize to the case of interest
in the analysis of linear immersed submanifolds that arise as GL2(R)-orbit
closures. Specifically, we assume that we have a totally real number field
k, of degree d over Q, embedded in the rational endomorphism algebra of a
polarized Hodge structure of weight 1 on the free Z-module H. By passing
to a rational factor of H (see [BL04, 5.3.7]), we can and will assume that
k = EndQ(Jac(H)).

We can thus view HQ as a vector space over k, say of rank r, so dimQ HQ =
r · d. Then the real vector space HR = HQ ⊗Q R splits as

HR = Hι1 ⊕ · · · ⊕Hιd
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where {ιj} are the distinct embeddings ιj : k ↪→ R. Indeed, recall that we
have an isomorphism of R-algebras k ⊗Q R ∼= ⊕ιjR, i.e. after extension of
scalars to R, k becomes isomorphic as an algebra to a product of d copies of
R. The subspace Hιj ⊂ HR can be characterized by the property that the
action of k on it is via its embedding ιj , namely

v ∈ Hιj ⇐⇒ ∀a ∈ k, a · v = ιk(a)v

where av̇ denotes the action of the element a on the vector v.
A vector v ∈ H1,0

ιj
will be called an eigenform for real multiplication. When

necessary, we will also emphasize that it is an eigenform for the particular
embedding ιj .

An interesting example of real multiplication is described in §4.6.13.

4.3.18. Real multiplication and orders. Keeping the assumptions and
notations as above, we now consider the integral constraints on real multi-
plication. The algebra O := EndZ(Jac(H)) is a subring of k, with a unit,
of Z-rank equal to d, so it is (by definition) an order in k. The simplest
order is the ring of integers Ok ⊂ k, and any order is contained in Ok. In
the analogy between number fields and algebraic curves, the ring of integers
corresponds to a smooth model of the curve, while an order corresponds to
a singular model.

The structure of an O-module on HZ can be more complicated to de-
scribe, but once O is fixed, there are only finitely many possibilities up to
isomorphism.

4.3.19. The Hodge metrics. Returning to Example 4.3.4, the first coho-
mology of a compact Riemann surface X admits a polarized weight 1 Hodge
structure:

H1(X;C) = H1,0(X)⊕H0,1(X)

The polarization, coming from cup product in cohomology or equivalently
integration of differential forms, induces natural positive-definite inner prod-
ucts on the real and complex cohomology, that we will refer to as the “Hodge
metrics”.

In the relative case, as in Example 4.3.5, for a finite set of points Z ⊂ X,
the cohomology group H1

rel(X, Z) admits a mixed Hodge structure in the
sense of Definition 4.3.3. It is R-split, see Eqn. (4.3.12), so over R we have a
natural isomorphism

H1
rel(X, Z;R) ∼= H1(X;R)⊕ H̃0(Z;R).

We can equip the first summand with its Hodge metric, and the second one
with almost any natural metric, for instance descending the metric from
H0(Z;R) for which every point is of norm 1 and orthogonal to the others.
We will continue to refer to this construction as the Hodge metric on H1

rel.
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4.3.20. Variations of Hodge structure, weight 1. Let us now describe
what happens when we allow the Riemann surface X to vary holomorphically,
say over a complex manifold B. The cohomology groups H1(X;C) form a
vector bundle denoted H1 equipped with a flat connection called the Gauss–
Manin connection and denoted ∇GM . A local flat frame can be given by
fixing a basis of the integral cohomology H1(X;Z) at one basepoint, and
moving in to nearby fibers continuously. This characterizes ∇GM uniquely.

The subbundle H1,0 with fibers H1,0(X) ⊂ H1(X;C) varies holomorphi-
cally, but it is typically not flat. Note that the complex-conjugate fibers
H0,1(X) vary anti-holomorphically, but the quotient H1(X;C)/H1,0(X) does
have a holomorphic structure and is naturally in bijection with H0,1(X); the
corresponding bundle is denoted H0,1 := H1/H1,0.

Differentiating H1,0 by the Gauss–Manin connection, and taking the quo-
tient by H1,0, yields a holomorphic, fiberwise linear, map of bundles called
the second fundamental form:

σ : H1,0 → H0,1 ⊗ Ω1
B

where Ω1
B is the holomorphic cotangent bundle of the base B.

4.3.21. Variations of Hodge structure, higher weight. The above
discussion generalizes to Hodge structures of higher weight. The Gauss–
Manin connection is defined in the same manner on the bundle H, and the
holomorphic subbundles are given by the Hodge filtration FpH ⊂ H, so the
Hodge bundles are

Hp,q := FpH/Fp−1H

and are typically neither subbundles nor quotients of H. The second funda-
mental form generalized to the maps

σp : Hp,q → Hp−1,q+1 ⊗ Ω1
B

using the essential Griffiths transversality property that ∇GM (FpH) ⊂
Fp−1H. A crucial calculation (see e.g. [Gri84, Ch. II, Prop. 4] [Fil16a,
Prop. 4.12]) expresses the curvature of the Hodge bundles with the Hodge
metric in terms of the second fundamental forms:

ΩHp,q = σ†
p ∧ σp + σp+1 ∧ σ†

p+1(4.3.22)

where † denotes the adjoint for the metric given by the intersection pairing;
this metric agrees, up to sign, with the Hodge metric on Hp,q.

A useful consequence of the above curvature formula is that it implies
the curvature of the “rightmost” bundle H0,n is nonpositive. Bundles with
nonpositive curvature tend not to have global sections, because the norm
of a section is a plurisubharmonic function. In particular it satisfies the
maximum principle so must be constant when the base B is compact.
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4.4. Hodge-theoretic rigidity

4.4.1. Setup. We now return to the setting of the GL2(R)-action on a
stratum ΩMg(κ), fix an orbit closure M with SL2(R)-invariant probability
measure µ onM1. Our goal is to describe some of the results of [Fil16a] that
relate dynamics with the Hodge theory of the Riemann surfaces parametrized
byM. In fact, some of the results are proved without knowledge of the orbit
closure M and make use only of the invariant probability measure µ.

4.4.2. The Kontsevich–Zorich cocycle. The cohomology groups H1(X;C)
and H1

rel(X;C) give local systems over ΩMg(κ), that will be denoted H1

and H1
rel respectively. The action of SL2(R) on ΩMg(κ) induces a parallel

transport map, say if g ∈ SL2(R) and (X, ω) is a translation surface with
g · (X, ω) = (X ′, ω′), then we have a map H1(X;C) → H1(X ′;C). Note
that SL2(R) is not simply-connected, but there is a natural trivialization
for the action of the maximal compact SO2(R), since k(X, ω) ∼= (X, λkω)
where k ∈ SO2(R) and λk ∈ C is the corresponding unit norm complex
number. So the action is well-defined, and the local systems descend to the
quotient ΩMg(κ)1/ SO2(R) ∼= ΩMg(κ)/C×. This space no longer has an
action of SL2(R), but instead is foliated by the quotient orbits, which are
isomorphic to the hyperbolic plane H ∼= SL2(R)/ SO2(R). We will refer to
these hyperbolic planes as Teichmüller discs.

The Hodge structures on H1(X;C) and H1
rel(X;C) also descend to the

quotient space, and restricted to each leaf H yield a variation of (mixed)
Hodge structures.

4.4.3. Invariant subbundles. We will be interested in subbundles of H1,
or those obtained from H1 by standard operations of linear algebra (duals,
tensor products, quotients). For one such local system E, and an SL2(R)-
invariant ergodic probability measure µ, a measurable SL2(R)-invariant
subbundle is the data of a measurable family of subspaces S′(x) ⊂ E(x),
defined for µ-a.e. x ∈ ΩMg(κ), such that gS′(x) = S′(gx) for any g ∈
SL2(R).
4.4.4. Theorem (Hodge compatibility, pure case). Let µ be an SL2(R)-

invariant probability measure on ΩMg(κ), and let S be a measurable
SL2(R)-invariant subbundle of the local system E obtained from H1 by
standard linear algebra operations.
Then, denoting by C(x) the Weil operator of the Hodge structure on E(x)
(see Definition 4.3.2), the measurable subbundle with fibers C(x)S(x) is
also SL2(R)-invariant. As a consequence, the Hodge-orthogonal S⊥ of
S is also an SL2(R)-invariant subbundle, and the fibers S(x) and S⊥(x)
admit Hodge decompositions, compatibly with that on E(x).

This result is a restatement of [Fil16a, Thm. 1.1], which additionally describes
a semisimple decomposition of E, compatible with the underlying Hodge
structures, from which any SL2(R)-invariant subbundle can be obtained.
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4.4.5. Proof outline. The first step in the proof is to obtain from an
invariant subbundle S ⊂ E an invariant section of some other subbundle TE
constructed by linear-algebraic operations from E. For instance, this could
be the coordinates of the subbundle in an exterior power representation, so
we’d take ΛkS ∈ ΛkE =: TE where k = rk S, or a projector onto S inside
End(E).

The proof then proceeds to show that an SL2(R)-invariant section ϕ of
a bundle equipped with a polarized Hodge structure must be invariant by
the Weil operator. Equivalently, each (p, q)-component ϕp,q of the section
must also be SL2(R)-invariant. In Hodge theory, statements of this flavor
go under the name “Theorem of the Fixed Part”, see [Fil16a, Thm. 6.3].

The proof of this last statement proceeds by induction, starting with the
“rightmost” component ϕ0,n. The formula for the curvature of the Hodge
bundle as calculated in Eqn. (4.3.22) shows that log

∥∥ϕ0,n
∥∥ is subharmonic

when restricted to each Teichmüller disc. The geometric interpretation
of subharmonicity is that on a finite area disc, the value at the center is
bounded above by the average over the disc. In general, there are plenty of
subharmonic functions on a single copy of H, but using the finite invariant
measure µ and an appropriate version of the ergodic theorem, one can show
that the value at the center of a.e. disc is bounded by the average of the
function for the measure µ, thus concluding that log

∥∥ϕ0,n
∥∥ is constant. A

local calculation in differential geometry implies that ϕ0,n is flat, and then
the argument is repeated by starting with the flat section ϕ − ϕ0,n and its
rightmost Hodge component ϕ1,n−1.

We have omitted some technical points in the above outline and refer to
[Fil16b, §5] for the details.

4.4.6. The mixed case. We now return to the basic exact sequence of
Eqn. (3.1.13) and recall that H1

rel and H1 are the local systems of relative
and absolute cohomology. Fix a measurable SL2(R)-invariant subbundle
Srel ⊂ H1

rel with projection to H1 denoted S := p(Srel), and with kernel
denoted W0S. Recall that by Theorem 4.4.4, the subbundle S carries µ-a.e.
an induced pure weight 1 Hodge structure from H1.
4.4.7. Theorem (Hodge compatibility, mixed case). With notation as above,

assume the bundle S admits no SL2(R)-invariant section.
Then the subbundle Srel carries a mixed Hodge structure, induced compat-
ibly from H1

rel. Namely, setting S1,0
rel := Srel,C ∩

(
F1H1

rel

)
, we have on a set

of full µ-measure that

Srel,C ∼= W0S
⊕ (

S1,0
rel ⊕ S1,0

rel

)
and the last two terms map to S compatibly with its pure weight 1 Hodge
structure.

A version of this result was proved in [Fil16b, Thm. 4.2], but for a special
class of invariant subbundles S coming from the tangent space TM of an
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orbit closure. In fact the more general statement above holds, although I do
not know how to construct other SL2(R)-invariant subbundles.

4.4.8. Proof outline. To establish Theorem 4.4.7, we quotient first all the
bundles by W0S and so can assume that W0S = {0}, i.e. p is an isomorphism
between Srel and S. Let

σS : S→ Srel ⊂ H1
rel

be the inverse map. Since S carries a pure weight 1 Hodge structure, and
and we saw in Example 4.3.5 that mixed Hodge structures of weight 1 are
R-split (see §4.3.9 and Eqn. (4.3.12)), we also have an R-splitting

σR : S→ p−1(S) ⊂ H1
rel.

The difference ϕ := σS − σR is a map from S to H1
rel which, when composed

with p, yields the zero map, so we can view it as a map

ϕ : S→W0.

On a finite cover of ΩMg(κ) where the marked points are trivialized, the piece
W0 can be assumed trivial, i.e. isomorphic to some Rk with a trivial weight
0 Hodge structure. Each coordinate of the map ϕ can then be verified to be
holomorphic on a Teichmüller disc, after identifying SR ∼= SC/S1,0 =: S0,1.
We can again use the negative curvature property of S0,1 and find that
log ∥ϕ∥ is subharmonic, and prove that it must be SL2(R)-invariant as in
the proof of Theorem 4.4.4 outlined in §4.4.5. By assumption, the section
vanishes and so Srel carries a compatible mixed Hodge structure. □

We have again omitted several technical points in the above outline. The
most important adjustment is that to complete the argument, one must
introduce a modified Hodge norm on H1, see [Fil16b, §4.4] and [EMM15,
§7.2].
4.4.9. Remark (On splittings).

(i) For simplicity, we have stated both Theorem 4.4.4 and Theorem 4.4.7
under the assumption that the subbundles in question are real. Anal-
ogous results hold also for complex subbundles, with the appropriate
notion of complex Hodge structure.

(ii) The assumption that S has no invariant sections can fail only in the
case of the Forni subspace of H1, by definition the SL2(R)-invariant
piece on which parallel transport is by isometries for the Hodge
metric. See [AEM17, §1] for more about the Forni subspace.

The Hodge-theoretic rigidity properties established in Theorem 4.4.4
and Theorem 4.4.7 are also used to strongly constrain measurable GL2(R)-
invariant bundles. We return to these questions in §5.3, where these tools
turn out to be useful in establishing finiteness results for orbit closures.
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4.5. Algebraicity: Real Multiplication and Torsion
We can now collect concrete consequences for orbit closures from the abstract
results regarding bundles and their compatibility with Hodge structures. The
main results are Theorem 4.5.2, which shows that a factor of the Jacobian has
real multiplication, and Theorem 4.5.7, which shows that certain combina-
tions of the zeros (or marked points) have to be torsion on the corresponding
factor of the Jacobian. Together, these results are used to establish that
orbit closures are (quasi-projective) algebraic subvarieties of a stratum.

Let us note that in the case of Teichmüller curves, which are the lowest-
dimensional orbit closures and automatically algebraic, the real multiplica-
tion and torsion results were first obtained by Möller [Möl06b, Möl06a]. The
proofs below are based on different principles and are used to characterize
algebro-geometrically the orbit closures.

4.5.1. Setup. We now proceed to apply Theorem 4.4.4 and Theorem 4.4.7
on the compatibility of the SL2(R)-invariant bundles with the Hodge struc-
ture to the particular case of the tangent bundles TM and p(TM) of an
orbit closure M. As before, we fix M and its invariant probability measure
µ.

Let k ⊂ R be the smallest field over which M is k-linear in the sense of
Definition 4.1.2; it is a number field by [Wri14, Thm. 1.1]. In the case of
absolute cohomology, we obtain (see [Fil16a, Thm. 1.6]):
4.5.2. Theorem (Real multiplication). Every (X, ω) ∈M has a factor of

the Jacobian that admits real multiplication by k, with ω as an eigenform.
In particular, k is a totally real number field.
Furthermore, the factors with real multiplication vary holomorphically
over M.

In the case of Teichmüller curves (see §4.6.3), this result was first established
by Möller [Möl06b, Thm. 2.7].

4.5.3. Proof outline. The real multiplication result is a direct consequence
of Theorem 4.4.4 applied to the local system H1(TM) := p(TM) and its
Galois conjugates, see Eqn. (4.1.4) for its definition. First, since H1(TM) is
a local system defined over the number field k, we can act on it by the Galois
group of Q by viewing it inside the local system with all algebraic entries
H1(TM) ⊂ H1

Q. We obtain a finite collection of local systems that we will
denote H1

ι that are indexed by embeddings ι : k → C, with one distinguished
embedding ι0 : k → R corresponding to H1(TM).

Now Theorem 4.4.4 implies that each H1
ι underlies a weight 1 variation

of Hodge structures, and that they are all pairwise Hodge-orthogonal. By
definition, see §4.3.17, this yields the real multiplication result. □

4.5.4. Twisted torsion. To state the result in the relative case, we need
some notation. Let JM→M denote the bundle of factors of the Jacobian
that admit real multiplication by Theorem 4.5.2, and let O ⊂ k be the largest



48 SIMION FILIP

order which acts on every fiber. Consider also the local system H1
M := ⊕ιH1

ι ,
and taking its preimage under p we have a short exact sequence of local
systems underlying a variation of mixed Hodge structure:

0→W0 → H1
M,rel → H1

M → 0

analogous to Eqn. (4.1.4). Note that in weight 1 we have H1(TM) ⊆ H1
M

with equality if and only if k equals Q. Similarly, in weight 0 we have
W0(TM) ⊆W0 with equality if and only if the torsion corank ofM is equal
to the number of marked points.

Recall that W̌0 := Hom(W0,Z) is the dual local system. Now W0(TM) =
W0,k ∩ TM is a local system defined after extension of scalars to k, and
dualizing we will consider W0(TM)⊥

k , which consists of those functionals
that vanish on W0(TM). To shorten notation, we will set

Λ := W0(TM)⊥
k ∩ W̌0,O

to be the intersection with the O-lattice.
Note that dimk W0(TM)⊥

k = n−t where n is the number of marked points
and t is the torsion corank of M (see §4.1.5). Geometrically, denoting by
Z ⊂ X the marked points, since W0 = H̃0(Z) is the reduced cohomology, it
follows that W̌0 = H̃0(Z) is the reduced homology, i.e. it consists of Z-linear
combinations of marked points, with coefficients adding up to 0. Then Λ
is a free Z-module of rank (n− t) · degQ k and a projective module over O
of rank (n− t); it consists of O-linear combinations of marked points with
coefficients adding up to 0.
4.5.5. Twisted Abel–Jacobi map. The usual Abel–Jacobi map assigns to
any Z-linear combination of points [δ] on a Riemann surface X a point on the
abelian variety Jac(X) by choosing a 1-chain [γ] with ∂[γ] = [δ] and mapping
[δ] to the functional of integration along γ, i.e.

´
γ ∈ Hom

(
H1,0(X);C

)
. For

the finite set Z ⊂ X of marked points we thus have the map
AJ : H̃0 (Z;Z)→ Jac(X).

We can project to the factor JM(X) admitting real multiplication by the
order O, then extend scalars to O, and extend the Abel–Jacobi map equiv-
ariantly for the O-action:

AJO : H̃0 (Z;O)→ JM(X).(4.5.6)
We will refer to it as the twisted Abel–Jacobi map. Using it, we can now
state the key result constraining the mixed Hodge structure on H1

rel(X, Z)
(see [Fil16b, Thm. 1.3]):
4.5.7. Theorem (Twisted torsion). For every (X, ω) ∈M, the restriction

of the twisted Abel–Jacobi map to the submodule Λ:
AJO : Λ→ JM(X)

lands in the torsion subgroup of the abelian variety. In particular, a finite
index subgroup of Λ maps to the origin.
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In the case of Teichmüller curves (see §4.6.3), this result was first established
by Möller [Möl06a, Thm. 3.3].

4.5.8. Proof outline. The above result is a consequence of Theorem 4.4.7,
applied to the tangent bundle TM⊂ H1

rel and to its Galois conjugates TMι.
Indeed, the theorem implies that the sequence

0→W0,k/W0(TM)→ p−1
(
H1(TM)

)
/W0(TM) p−→ H1(TM)→ 0

is a k-split variation of mixed Hodge structures. A splitting of local systems
over k is provided by TM/W0(TM), and the content of Theorem 4.4.7 is
that this splitting is compatible with the mixed Hodge structures.

The same argument applies to the Galois conjugates of TM, with anal-
ogous short exact sequences. Following through the analogue of Proposi-
tion 4.3.14, but in the presence of real multiplication on the Jacobian yields
Theorem 4.5.7. □

4.5.9. Putting the pure and mixed together. Recall that by Theo-
rem 4.1.8, the orbit closure M is a complex manifold, locally in period
coordinates described by k-linear equations. We now proceed to explain the
various algebraic restrictions placed by the real multiplication and torsion
results. The reader can refer to the diagram Eqn. (5.1.12) for some of the
spaces that appear in the discussion below (with the difference that the
diagram uses instead of O,S, Λ′ the scalars r, d, t).

Theorem 4.5.2 implies that there exists an order O ⊂ k, and a splitting
S on H1

Q with appropriate O-module structure on one of the factors, with
the following property. Denote by EAO,S ⊂ Ag the subvariety of the moduli
space of dimension g principally polarized abelian varieties with a splitting
S and real multiplication by O of prescribed type. Then under the Torelli
map ΩMg(κ)→ Ag, the image of M is contained in EAO,S .

Now let Ag,n → Ag be the universal family of n-tuples of marked points
(not necessarily distinct, but labeled) on the abelian variety, and denote
its restriction to EAO,S by EAO,S,n. Pass to a finite cover of ΩMg(κ) on
which the marked points are also labeled, and let ΩMO,S ⊂ ΩMg(κ) be
the algebraic subset that’s the preimage of EAO,S under the Torelli map.
Then the twisted torsion Theorem 4.5.7 implies that there exists a submodule
Λ′ ⊂ H̃0(Z;O) (recall that this local system is globally trivialized on the finite
cover), such that under the augmented Torelli map ΩMO,S → EAO,S,n, M
is contained in the algebraic locus where Λ′ maps to the origin of the abelian
variety. Denote the corresponding algebraic loci by EAO,S,Λ′ ⊂ Ag,n and its
preimage ΩMO,S,Λ′ , so the two main results imply that M⊂ ΩMO,S,Λ′ .

Finally, we need to impose the eigenform condition so we set ΩAg,n →
Ag,n to be the bundle of holomorphic 1-forms on the parametrized abelian
varieties. Over EAO,S,Λ′ , we have the further algebraic sublocus where
the corresponding 1-form is an eigenform of real multiplication, denoted
EΩAO,S,Λ′ . Let EM ⊂ ΩMg(κ) be the preimage of ΩAO,S,Λ′ in the stratum.
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So Theorem 4.5.2 and Theorem 4.5.7 together imply that M ⊂ EM. A
local calculation with period coordinates shows that M must coincide with
an irreducible component of EM, so we conclude (see [Fil16b, Thm. 1.1]):
4.5.10. Theorem (Algebraicity). An orbit closure M is an algebraic sub-

variety of ΩMg(κ), defined over Q. Its algebraic Galois conjugates are
also orbit closures.

4.5.11. Remark (On algebraicity).
(i) The analysis in §4.5.9 shows that ifM exists, then it agrees with the

algebraic locus described by real multiplication and twisted torsion.
In general, one can make a choice order O, splitting S, and lattice
Λ′, but the locus EM obtained in this manner will typically have
lower dimension than required for it to be GL2(R)-invariant. We
will return to the calculation of the expected dimension of EM in
§5.1 and compare it with that ofM. Orbit closures for which these
dimensions agree will be called typical, and otherwise atypical.

(ii) A theorem of Möller [Möl05, Thm. 5.4] shows that the action of the
Galois group of Q is already faithful on orbit closures of square-tiled
(aka origami) translation surfaces. See §4.6.4 for a discussion of this
class of examples.

We end with a few questions regarding the above constructions.
4.5.12. Question (Galois structure of the field of linear definition). Let
k be the field of affine definition of an orbit closure M. For the following
questions, one can consider more generally k-linear immersed submanifold
in a stratum of (possibly meromorphic) differentials, possibly of order higher
than 1.

Can there be examples ofM with k which is not cyclotomic, or contained
in a cyclotomic, extension of Q? Can there be examples when k is not Galois
over Q?

Note that there is an abundance of examples with k a quadratic extension
of Q, discovered by Calta [Cal04] and McMullen [McM03]. These arise by a
construction that generalizes to (relatively) typical examples, as described in
Theorem 5.1.7 below. Arbitrary cyclotomic fields occur in the Veech [Vee89]
and Bouw–Möller examples [BM10], see §4.6.9 below.

4.6. Examples
The list of examples below is far from exhaustive, we have selected only
some (of many) representative examples and refer the reader to the original
papers for more details.
4.6.1. Setup. Let us first remark that a standard technique in ergodic
theory, the Hopf argument, implies that the action of the diagonal subgroup
gt ⊂ GL2(R) is ergodic on any connected component of a stratum. Therefore,
a “generic” orbit closure of GL2(R) is dense.
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For most classification questions, one is only interested in primitive orbit
closures, i.e. ones that are not obtained from an orbit closure in lower
genus by taking a (possibly ramified) covering construction of the underlying
translation surfaces. This also indicates one of the difficulties of classification:
any argument has to be able to distinguish the many different imprimitive
orbit closures in a stratum. Even the simplest imprimitive ones, the torus
covers (see §4.6.4 below) can pose substantial classification challenges.
4.6.2. Remark (On primitivity). It is a theorem of Möller [Möl06a, Thm. 2.6]
that for every translation surface (X, ω) there exists a translation cover
(X, ω) π−→ (X ′, ω′) (so π∗ω′ = ω) such that the genus of X ′ is minimal, and
furthermore if this genus is not 1, then the cover is unique and will be called
canonical. Under the same assumption, the canonical cover of translation
surfaces is GL2(R)-equivariant and induces a finite map of orbit closures.
4.6.3. Teichmüller curves: generalities. The first examples of nontrivial
orbit closures were discovered by Veech [Vee89] and described below in §4.6.8.
The corresponding class of orbit closures are called Teichmüller curves, while
the underlying translation surfaces are called Veech surfaces.

Teichmüller curves have cylinder rank 1, torsion corank 0, but can have
a field of affine definition k larger than Q. The degree of k is an essential
invariant of the Teichmüller curve: if it is equal to the genus, the curve is
called algebraically primitive.

4.6.4. Square-tiled surfaces. Consider a translation surface (X, ω) such
that its period point has rational coordinates, i.e. [ω] ∈ H1(X, Z;Q[

√
−1]) ⊂

H1(X, Z;C). By appropriately choosing N ∈ N, we can and will assume
that the period coordinates are in 1

N Z[
√
−1]. Choosing one reference point

p0 ∈ Z, we therefore have a well-defined map

X → C
/(

Z +
√
−1Z

)
p 7→ N ·

ˆ p

p0

ω

which is a covering of the square torus with degree N2[ω] ∩ [ω]. The points
in Z map to torsion points on this torus.

The orbit GL+
2 (R) · (X, ω) is a Teichmüller curve, with field of affine

definition Q. Indeed, the stabilizer of (X, ω) is a finite index subgroup of
SL2(Z), in fact any finite index subgroup of the congruence subgroup Γ(2),
containing ±1, arises in this way by a theorem of Ellenberg–McReynolds
[EM12, Thm. 1.2].

Appropriate sequences of such Teichmüller curves equidistribute in any
stratum, by Theorem 4.1.8. An illustration is provided in Figure 4.6.5.

Let us finally note that square-tiled surfaces are typical in the sense of §5.1
and also imprimitive, since they are obtained from a covering construction
on an orbit closure in smaller genus, namely the stratum of genus 0 surfaces
with 1 marked point ΩM1(0).
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Figure 4.6.5. Left: A square-tiled surface with 3 squares.
Right: A square-tiled surface with many squares. The two
surfaces are nearby in moduli space, but have substantially
different orbit closures.

4.6.6. Torus covers. A bit more generally, suppose that the period point
[ω] when projected to absolute cohomology H1(X;C) has coordinates in
Q(
√
−1). The same construction as before gives a map of the translation

surface (X, ω) to a torus, but now some of the points in Z might not map
to torsion points on the torus, call those points Z ′ ⊂ Z. The orbit closure of
(X, ω) will consist of translation surfaces covering a torus, and such that the
ramifications under Z ′ move freely on the torus. This orbit closure, denoted
H|Z|,|Z′|(κ′) has cylinder rank 1, torsion corank |Z ′|, and torsion rank |Z \Z ′|,
and κ′ encodes the ramification profile.
4.6.7. Hurwitz spaces and isoperiodic foliation. Let us note that the
orbit closure described above has a natural map to the moduli space of
tori ΩM1(0). The fibers of this map are no longer orbit closures, and in
fact locally their tangent space is a subbundle of W0H1

rel
∼= H̃0(Z). This

subbundle induces on a stratum a foliation, called the isoperiodic, or relative,
or just rel, foliation. So fibers of H|Z|,|Z′|(κ′) → ΩM1(0) give examples of
algebraic subvarieties of the stratum, which are furthermore affine-linear in
period coordinates (extending Definition 4.1.2 to allow for affine equations).
Note that these fibers are not GL2(R)-invariant.
4.6.8. The orbit closure of the regular n-gon. A rich class of examples
of translation surfaces whose orbit closures are Teichmüller curves was dis-
covered by Veech [Vee89]. To illustrate it, we continue with the example of
the regular n-gon from Example 2.1.6 and Example 2.2.4, with n = 2g + 1
odd. We will see that the action of GL2(R) on XP has a large stabilizer,
namely the preimage inside SL2(R) of the lattice ∆(2, n,∞) ⊂ PSL2(R)
generated by reflections in the sides of an ideal hyperbolic triangle with
angles π/2, π/n, 0 (where an angle of 0 means the point is on the ideal
boundary). We can again be quite explicit and describe both the lattice,
and the corresponding family of algebraic curves in the moduli space.

It is clear that the rotation by an angle of 2π/n, denoted R ∈ GL2(R),
fixes the translation surface XP . Indeed, in the polygonal representation, we
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can chop the reflected copy of the regular n-gon into n triangles and attach
them to the sides of the original copy (to make it look like a cartoon of
the sun). Then the asserted rotation visibly preserves the polygon and the
gluing.

The second stabilizer that we can exhibit is a unipotent one. Note that
XP decomposes into g = n−1

2 horizontal cylinders, each cylinder glued out of
two trapezoids. The heights hk and widths wk of these cylinders are readily
computed, for instance by placing the origin at the center of the regular
n-gon and using the n-th root of unity ζ := e2π

√
−1/n:

hk =
∣∣∣Re

(
ζk − ζk+1

)∣∣∣ = 1
2

∣∣∣ζk + ζ−k − ζk+1 − ζ−k−1
∣∣∣

= 1
2

∣∣∣ζ−1/2 − ζ1/2
∣∣∣ ∣∣∣ζk+1/2 − ζ−k−1/2

∣∣∣
and for the widths:

wk = 2
∣∣∣Im (

ζk + ζk+1
)∣∣∣ =

∣∣∣ζk − ζ−k + ζk+1 − ζ−k−1
∣∣∣

=
∣∣∣ζ−1/2 + ζ1/2

∣∣∣ ∣∣∣ζk+1/2 − ζ−k−1/2
∣∣∣

We thus see that the ratio is independent of the cylinder:
wk

hk
= 2 cos(π/n)

sin(π/n) = 2 cot(π/n)

and so the transformation T :=
[
1 2 cot(π/n)
0 1

]
also preserves the surface.

This is a cylinder twist, see §6.1.6. Note that the group generated by
R, T ⊂ PSL2(R) has an “accidental” relation (RT )2 = 1 ∈ PSL2(R), hence
leads to the asserted triangle group ∆(2, 5,∞).

It is also possible to explicitly describe the family of algebraic curves that
constitute the orbit closure of the regular n-gon, see [Loc05, Prop. 5.8]. First,
consider the family of hyperelliptic curves

y2 =
n∏

k=1

(
x−

(
ζk + tζ−k

))
over P1.

Equip each member of the family with the 1-form dx
y , to obtain a family

of translation surfaces. The dihedral group action on P1 via t 7→ 1/t and
t 7→ ζt lifts to the family, and the quotient is precisely the Teichmüller curve
in Mg giving the orbit closure of the regular n-gon.

4.6.9. Bouw–Möller examples. Generalizing Veech’s construction, Bouw
and Möller [BM10] discovered a two-parameter family of Teichmüller curves
BMm,n, with Veech groups Γm,n commensurable to triangle reflection groups
∆(m, n,∞). Interestingly, the inspiration for their construction and proof
had its origin in the geometry of variations of Hodge structure. Polygonal
models generating some of the Teichmüller curves were found in [BM10] (for
m = 4, 5) and in general by Hooper [Hoo13].
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4.6.10. Intersecting Hilbert modular surfaces. A general construction
of McMullen, pioneered in [McM03], shows that an orbit closure M with
cylinder rank 2, arbitrary torsion corank, and with field of linear definition
Q, contains an infinite family of suborbit closuresMD ⊂M of cylinder rank
1 and torsion corank same as that of M, and with field of linear definition
Q(
√

D). Namely, MD is obtained by intersecting M with the eigenform
locus over a Hilbert modular surface, under an appropriate period map
to an automorphic vector bundle over a moduli space of abelian surfaces.
Examples of M are furnished by the strata in genus 2, as well as the Prym
examples discussed in §4.6.11 below.

We will return to this class of examples when discussing the typical–
atypical dichotomy in §5.1. Incidentally, note that various topological in-
variants of MD can be computed since it is obtained as an intersection of
varieties, with intersection of the expected dimension (as opposed to larger).

4.6.11. Prym loci. Moving on to higher rank orbit closures, McMullen
identified in [McM06a], in genus g = 2, 3, 4 Prym loci Pg ⊆ ΩMg(2g−2) that
are of cylinder rank 2 and with linear field of definition Q. By construction,
every (X, ω) ∈ Pg is the canonical double cover of a quadratic differential
(X0, qω) with genus(X0) = g − 2. From the Riemann–Hurwitz formula, we
find that there are 2(5 − g) ramification points on X0, and Pg covers a
stratum of quadratic differentials

Pg → QMg−2
(
−19−2g, 2g − 3

)
.

Note that the case g = 2 yields an entire stratum, which simply means that
the stratum ΩM2(2) consists of hyperelliptic translation surfaces that cover
a quadratic differential with some poles on P1. Applying the construction
described in §4.6.10 leads to infinite families of “Weierstrass” Teichmüller
curves Wg,D ⊂ ΩMg(2g − 2) for g = 2, 3, 4.

4.6.12. Gothic and related loci. Further examples of primitive orbit clo-
sures Ga ⊂ ΩMg(κ), for quadruples of integers a = (a1, a2, a3, a4) parametriz-
ing rational-angled quadrilaterals, or covers of P1, were recently discovered
in [EMMW20], with genus going up to 6. These are atypical in the sense
of Definition 5.1.3 and some of them provide further examples of infinite
families of Teichmüller curves.

4.6.13. Twisted torsion. Kumar and Mukamel found in [KM16, Thm. 3]
an example of an orbit closure KM, with field of linear definition Q(

√
5),

where the “twisted torsion” predicted by Theorem 4.5.7 is realized with
coefficients in the field, in other words the weight 0 bundle W0TKM is
defined over Q(

√
5) and not Q. This is an atypical example in the sense of

Definition 5.1.3.
The orbit closure KM is in ΩM2(1, 1, 0), in other words the stratum of

genus 2 surfaces with a differential with two zeros and one marked point. It
has cylinder rank 1 and torsion corank 1, so it has dimension 3, but it also
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has torsion rank 1, i.e. there is one nontrivial torsion condition. Concretely,
KM parametrizes pairs (X, ω, z1, z2, p) with the following properties:

• The zeros of ω are z1, z2 ∈ X.
• The Jacobian Jac(X) has real multiplication by Z[γ] with γ2−γ−1 =

0, with endomorphism Tγ : Jac(X)→ Jac(X).
• The 1-form ω is an eigenform for real multiplication: T ∗

γ ω = 1+
√

5
2 ω.

• We have the relation between degree 0 divisors on the Jacobian
(p− z1) = Tγ · (z2 − z1).

Note that under the above conditions, we automatically have also the relation
(p− z2) = Tγ′ · (z1 − z2) where γ′ = 1− γ.

It is also possible to give a pleasant flat-geometric description of this relation,
see Figure 4.6.14 and [KM16, §7]. The translation surfaces in this orbit
closure are obtained by gluing along a slit a torus with a golden-ratio rescaling
of it, such that the relation above between the points z1, z2, p holds on the
surface.

Figure 4.6.14. Two proportional slit tori, with a marked
point.

4.6.15. m-differentials. There is another class of interesting linear sub-
manifolds in the sense of Definition 4.1.2, whose field of linear definition
is not real, and hence which do not arise as orbit closures. We refer to
[BCG+19a] for more details.

Fix m ∈ N and consider strata of m-differentials, namely the bundle
over Mg of sections of the m-th tensor power of the canonical bundle ω⊗m

X .
This bundle has degree m(2g − 2), and for any µ = (m1, . . . , mn) with∑

mi = m(2g− 2) we can consider a stratum ΩmMg(µ) of such differentials.
Locally on a Riemann surface X with m-differential ρ, we can write it as
ρ(z) = f(z)dz⊗m, and there is a canonical m-fold cover

Xρ
π−→ X such that π∗ρ = ω⊗m
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for a holomorphic 1-form ω on Xρ. It follows that we have an embedding
ΩmMg(µ) ↪→ ΩMgµ(κµ)

for an appropriate genus gµ and configuration of zeros κµ. One can then
verify that the image is a linear submanifold in period coordinates, with
field of linear definition the cyclotomic field Q

(
m
√

1
)
. Therefore, as soon as

m ≥ 3, these are not GL2(R)-invariant subvarieties.

5. Finiteness results
Outline of section. In this section we establish sharp finiteness results for
orbit closures. The key dichotomy, in analogy with problems of unlikely
intersections, is between typical and atypical orbit closures. We will see that
typical ones are dense and equidistribute towards an ambient orbit closure,
while the atypical ones are always finite in number.

The finiteness and abundance statements, as well as definitions of typical
and atypical, are contained in §5.1. To establish finiteness, and to reformulate
(a)typicality, a crucial tool is the algebraic hull of a cocycle, introduced in
§5.2. Rigidity properties of algebraic hulls are established in §5.3, using the
Hodge-theoretic rigidity properties from §4.4. The finiteness results are then
proved in §5.4.

5.1. Typical vs. Atypical
5.1.1. Setup. We continue in this section with the notation of Section 4.
Suppose M⊂ ΩMg(κ) is an orbit closure in a stratum of genus g Riemann
surfaces with |κ| marked points, and set n = |κ| − 1 for convenience of
notation. We will define an invariant δ(M) valued in nonnegative integers
that measures how atypical the orbit closure is.

We will denote by r := rkM the cylinder rank, and by t the torsion corank
of M (see §4.1.5). Let also d denote the degree of M, i.e. the degree of the
number field defining the linear equations of M, see Theorem 4.5.2. The
next inequalities follow from the definitions, and the fact that the numbers
in question are ranks of local systems with corresponding inclusions:

1 ≤ r · d ≤ g 0 ≤ t ≤ n.

5.1.2. Equations cutting out M in a stratum. Denote by c1(M) the
codimension of the appropriate moduli space of mixed Hodge structures
admitting real multiplication, as well as torsion and eigenform properties
as those of M, inside the moduli space of all such mixed Hodge structures
with a marked 1-form. This sub-moduli space is described by Theorem 4.5.2
and Theorem 4.5.7, and depends only on fixed topological invariants of M.
Denote also by c2(M) the codimension of M inside its ambient stratum
ΩMg(κ). We then set δ(M) := c1(M)− c2(M), and an elementary analysis
shows that δ(M) ≥ 0. This invariant can be computed by an elementary
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if tedious calculation, and we do so below in a simplified situation, see
Eqn. (5.1.14) for the final answer.
5.1.3. Definition (Typical and Atypical Orbit closure). Call M typical
inside ΩMg(κ) if δ(M) = 0, and atypical otherwise.

If N is another orbit closure and M ⊂ N , call M typical inside N if
δN (M) = 0, where δN refers to the invariant calculated in Eqn. (5.1.14) by
plugging in the corresponding ranks of N .

We can now state the main result of this section, obtained in [EFW18]:
5.1.4. Theorem (Finiteness of Atypical). In any stratum ΩMg(κ), there

are only finitely many maximal atypical orbit closures.
More generally, in any orbit closure N there are only finitely many atypical
relative to N orbit closures.

In the statement, “maximal” means with respect to inclusion. The method
of proof, which will be described in the following sections, is dynamical and
goes by contradiction. It is therefore natural to ask:
5.1.5. Question (Effective finiteness). Can one make the bound on the
number of atypical orbit closures effective?

More generally, can one effectively bound their numerical invariants (rank,
torsion corank) and arithmetic invariants (discriminant of order of number
field, index of lattice)?

See §6.2.2 for an approach using finiteness results on mixed Shimura
varieties which could potentially make the results effective.
The Finiteness Theorem 5.1.4 is complemented by an elementary calculation,
which we will do at the end of this section:
5.1.6. Proposition (Typical in a stratum). Suppose M ⊊ ΩMg(κ) is

typical in a stratum of genus g surfaces with n zeros. Then we have the
following possibilities for the triple (r, d, t) of rank, degree, and torsion
corank of M:

Torus cover: (r, d) = (1, 1), and t is arbitrary; M parametrizes ram-
ified covers of elliptic curves; some ramification points move freely
on the elliptic curve, others are fixed over torsion points.

Hilbert modular surface: (r, d) = (1, 2) with g = 2, and t = n = 1;
M parametrizes genus 2 surfaces with 1-form ω an eigenform of
real multiplication on the Jacobian.

Weierstrass curve: (r, d) = (1, 2) with g = 2, and t = n = 0; M
parametrizes genus 2 surfaces whose 1-form ω with a double zero is
also an eigenform of real multiplication on the Jacobian.

The first possibility occurs in any stratum ΩMg(κ), the second in the
stratum ΩM2(1, 1), and the third in ΩM2(2).
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The Weierstrass curve examples were first discovered by Calta [Cal04] and
McMullen [McM03], and the Hilbert modular surfaces, as well as further “rel-
atively typical” examples (see §5.1.16) of Weierstrass curves were developed
by McMullen [McM06a].

As a complement, we can also establish that typical orbit closures arise in
large numbers. For the statement, we will group together the last two cases
of Proposition 5.1.6 and call them “real quadratics”:
5.1.7. Theorem (Abundance of typical). Suppose M is an orbit closure,

with field of affine definition Q, of cylinder rank g and torsion corank n.
Then in the following cases, and only in them, we have typical suborbit
closures:

Torus covers: Orbit closures with field of affine definition Q, of cylin-
der rank 1, and arbitrary torsion corank t ∈ [0, n] are dense in M.

Real quadratics: If g = 2 and n is arbitrary, then orbit closures
defined over a real quadratic field k, of cylinder rank 1 and torsion
corank n, are dense in M as k ranges over all real quadratic fields.

In the last case already for a fixed real quadratic field k the suborbit closures
will be dense and involve the infinitely many orders in k.

We postpone the proof of this result to §5.4.8, when we will have a
more direct and less cumbersome way to describe atypical suborbit closures
provided by Theorem 5.4.5, in terms of algebraic hulls.

5.1.8. The target moduli space. We now explain the formal calcula-
tion of the invariant δ(M). For simplicity of exposition, we assume that
the complement to the factor of the Jacobian with real multiplication is
“Hodge-generic” in the corresponding moduli space, or equivalently that the
monodromy on that piece is the full symplectic group.

Denote by Ag the moduli space of g-dimensional of (principally polarized)
abelian varieties, and let let Ag,n → Ag denote the fibration whose fiber
over A ∈ Ag is Sym[n] A, the unordered n-tuples of points in A. Then Ag,n

parametrizes mixed Hodge structures as described in Proposition 4.3.14.
Let also ΩAg,n → Ag,n denote the rank g vector bundle of differentials on
the corresponding abelian varieties (the vector bundle ΩAg,n is pulled back
from Ag). We have the following elementary dimension and codimension
calculations, where codimension refers to the dimension of fibers of the
corresponding morphism, or equivalently actual codimension, by embedding
the smaller space into the larger by a tautological zero section:

dimAg = g(g + 1)
2 codimAg,n Ag = g · n codimΩAg,n Ag,n = g(5.1.9)

so in particular, the dimension of ΩAg,n is the sum of the three displayed
numbers.

We have a natural tautological map

ΩM(κ)→ ΩAg,n
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mapping (X, ω) to the associated mixed Hodge structure and differential ω
on the Jacobian, and our next goal is to calculate the dimension of the locus
in which, in view of the Algebraicity Theorem 4.5.10, the image of the orbit
closure M should lie.

5.1.10. Expected sub-moduli space. Let EΩAr,t,d ⊂ ΩAg,n be defined
as the (algebraic) locus of points that have “the same structures as on M”,
which we now make more precise. Let EAr,d ⊂ Ag be the locus of abelian
varieties that have real multiplication on a factor, with the same data (order
in number field, lattice structure) as points in M. Then

dim EAr,d = d · r(r + 1)
2 + (g − dr)(g − dr + 1)

2
where the first term accounts for d pieces of the Hodge structure with real
multiplication, and the second term accounts for the freedom to choose the
remaining factor of the abelian variety.

Next, let EAr,d,t ⊂ Ag,n be the bundle over EAr,d consisting of n-tuples
of points that satisfy the same torsion conditions as those on M. The
dimension of the fibers EAr,d,t → EAr,d is

t · g + (n− t) · (g − rd)

where the first factor term accounts for the t points that move freely on
the entire abelian variety, and the second factor accounts for the remaining
points that in an (rd)-dimensional factor must be locked in a torsion position,
but otherwise move freely in the remaining factor.

Finally, we set EΩAr,d,t ⊂ ΩAg,n to be the bundle of 1-forms over EAr,d,t

that live in a distinguished subbundle of the factor admitting real multipli-
cation, so the dimension of the fibers of EΩAr,d,t → EAr,d,t is r.

An elementary (and only mildly tedious) calculation with the above num-
bers then gives the codimension:

codimΩAg,n EΩAr,d,t = rd(g − r)− r2 · d(d− 1)
2

+ (n− t)rd + (g − r).
(5.1.11)

The diagram of spaces and maps between them is illustrated in Eqn. (5.1.12).

(5.1.12)

M

EAr,d EAr,d,t EΩAr,d,t

ΩMg(κ)

Ag Ag,n ΩAg,n

Torelli

Torelli
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5.1.13. Degree of atypicality. The codimension of M inside ΩMg(κ) is
computed, in a more elementary fashion, to be 2(g − r) + (n − t), and we
define the degree of atypicality of M inside ΩMg(κ) to be the difference in
codimension:

δ(M) := codimΩAg,n EΩAr,d,t − codimΩMg(κ)M

= rd
2

[
(g − rd) + (g − r)

]
− (g − r)+

+ (rd− 1)(n− t)

(5.1.14)

The final expression has the terms arranged so as to emphasize the contri-
bution coming from the weight 1 and the weight 0 parts of the cohomology.
The terms in each of the last two rows are nonnegative, by the elementary
inequalities in §5.1.1.

When N is an orbit closure with linear field of definition larger than Q,
the preceding calculations need to be modified in order to define typicality
relative to N . We will not expand on this, since a simpler description of
relative atypicality can be given in terms of algebraic hulls. The statement
of Theorem 5.4.5 can be taken as the definition of atypical, in terms of the
algebraic hull.

Let us note that covering constructions would lead to atypical invariant
subvarieties in the corresponding stratum. This is compatible with the
Finiteness Theorem 5.1.4 below, since one can perform only finitely many
covering constructions to land in a fixed stratum.

It is now an elementary calculation to determine the typical subvarieties
of a stratum:

5.1.15. Proof of Proposition 5.1.6. From the expression for δ(M) in
Eqn. (5.1.14), it is clear that setting it equal to zero implies rd ∈ {1, 2}.
So we have the possibilities for (r, d) as (1, 1), (1, 2) and (2, 1). The case
r = d = 1 puts no restriction on the torsion and corresponds to torus covers.
When rd = 2, we must also have g−rd = 0 so g = 2. Then we must also have
t = n. The case r = 2, d = 1 and t = n implies that M is the corresponding
stratum ΩM2(κ) with κ = (1, 1) or (2), and the cases r = 1, d = 2 lead to
the final two possibilities on the list. □

5.1.16. Relative typicality. As suggested by Definition 5.1.3, once an
orbit closure N has been found in some stratum, it is meaningful to ask
for typical subvarieties inside of it. For instance, it is proved in [EFW18,
Thm. 1.7] that if N has rank 2 and defined over Q (with torsion corank
n), then we automatically have a large supply of invariant subvarieties with
(r, d) = (1, 2) and t = n analogously to the last two cases of Proposition 5.1.6.
Such examples were first found by McMullen and there are also more recent
ones, see §4.6.12.

The formulation of the Finiteness Theorem 5.1.4 using the typical–atypical
dichotomy is inspired by the work of Baldi, Klingler, and Ullmo [BKU21],
who prove a similar kind of result for the Hodge locus of a variation of Hodge
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structure. The “equidistribution of algebraic hulls” method that is behind
the proof, explained in Theorem 5.4.2 below, was also used by Bader, Fisher,
Miller, and Stover to prove that (real or complex) hyperbolic manifolds
are arithmetic if they contain infinitely many totally geodesic submanifolds
[BFMS21, Thm. 1.1].

5.2. Algebraic Hulls
This section contains some general constructions that play a key role in
the statements, and proofs, of the general finiteness results in §5.4. Many
of the proofs are based on the tension between ergodic actions of general
groups with complicated orbit structure, and actions of algebraic groups on
algebraic varieties, which have much simpler orbit structure.

5.2.1. Setup. In what follows, we will abbreviate “affine algebraic group
defined over R” to simply “algebraic group”. Much of what we say works in
greater generality, for instance by replacing R with other local fields. Much
of what we need, and more, is contained in [Zim84, §3].

Two results are fundamental for our purposes. The first one allows us
to translate many questions about affine algebraic groups to their linear
representations.
5.2.2. Theorem (Chevalley Stabilizer Theorem). Let G be an affine alge-

braic group over a field k, and let H ⊂ G be a k-subgroup. Then there
exists a linear representation ρ : G→ GL(V) over k and a vector v ∈ V(k)
such that H is the stabilizer of v in G.

The second result implies a useful property of quotients by algebraic group
actions. Namely, it is immediate to check that if a group G acts on a
Hausdorff topological space X with locally closed orbits, then the quotient
X/G with its induced topology satisfies the T0-separation axiom: for any
two points, there exists an open set that contains one, but not the other.
Such actions are called tame in [Zim84].
5.2.3. Theorem (Locally closed orbits). Let G be an affine algebraic group

acting algebraically on a variety X, all defined over k.
Folklore: For every x ∈ X(k), the orbit G ·x is a locally closed subset

of X in the Zariski topology.
Borel–Serre: If k is a local field (with its “analytic” topology) and

x ∈ X(k) is a point, the orbit G(k) · x is locally closed in X(k) with
its analytic topology.

Margulis/Zimmer: If k is a local field and µ is a Radon probability
measure on X(k), then its orbit under G(k) in the space of finite
Radon measures M(X(k)) is locally closed in the weak-* topology.

For the last assertion, see [Zim84, Thm. 3.2.6]; note that the case of general
X can be reduced to the one of proper projective X by reducing to affine
charts, then taking projective closures, and then removing the piece of the
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measure supported on X\X. We let C0(X(k)) denote the space of continuous
functions vanishing at ∞ on X(k) (the last condition is only relevant if X is
not proper) equipped with the sup norm, and M(X(k)) is the space of finite
mass Radon measures on X(k), which is the Banach space dual of C0(X(k))
and has, in particular, a weak-* topology.

5.2.4. Group actions. Suppose now that a group G acts on a space X.
The group G could be discrete, or a Lie group, while the space X could
be a manifold, a topological or measure space. We fix a regularity α ∈
{0−, 0,∞, ω, . . .} i.e. measurable, continuous, smooth, real-analytic, etc.
and assume that all objects below have at least this regularity. In the case
of measurable actions, a quasi-invariant measure µ is also assumed.

We also assume an appropriate form of ergodicity: a scalar-valued Cα

function on X invariant under G must be constant. If the action is continuous,
the existence of one dense orbit suffices, and in the case of measurable actions
ergodicity is in the usual sense of measure theory.
5.2.5. Definition (Cocycles). A cocycle for the action of G on X is a Cα

vector bundle E → X with a Cα-lift of the action of G from X to E, by
fiberwise linear transformations. Maps of cocycles, and subcocycles, are
defined in the natural way.

For ease of notation, we will typically omit mentioning the group G when
referring to a cocycle over X. The fiber of E over a point x ∈ X will be
denoted E(x).

5.2.6. Linear algebra constructions on cocycles. Starting from one
G-cocycle E → X, we can apply successively the standard operations of
linear algebra: duality, ⊗, taking quotients or subcocycles. Let TE denote
the category of all G-cocycles over X that can be obtained in this way, with
morphisms given by maps of G-cocycles over X. Then TE carries the natural
structure of a “rigid tensor category” in the sense of [DM82, Def. 1.7] and
furthermore by ergodicity, it satisfies the assumption End(1) = R of [DM82,
Thm. 2.11], where 1 denotes the trivial 1-dimensional cocycle4. Therefore
there is a natural R-algebraic group5 associated to a “fiber functor” on TE .
Such fiber functors exist, and it will be in fact convenient to define the group
directly, as suggested by Chevalley’s Theorem 5.2.2. Note that in particular,
we find that TE is a neutral Tannakian category, in the sense of [DM82,
Def. 2.19]. It is also useful to keep in mind that although categories of vector
bundles are typically not abelian, under the ergodicity assumption the rank
of morphisms (and hence of kernels and cokernels) is constant on a “large”
invariant set (full measure, or dense open, according to the regularity).

4Incidentally, this essential assumption was missing from an earlier treatment [SR72]
of Tannakian categories.

5In general, only a pro-algebraic group, but our Tannakian category has a tensor
generator, namely E itself, so automorphisms of fiber functors are affine algebraic groups.
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Recall that we can think of the cocycles in TE as obtained by taking a
linear-algebraic construction LE on E and considering G-invariant subcocy-
cles L′ ⊂ LE. For every fiber E(x), the group GL(E(x)) naturally acts on
the fiber LE(x).
5.2.7. Definition (Algebraic Hull). The algebraic hull of the cocycle E →
X is the family of subgroups H(x) ⊂ GL(E(x)) defined as the intersection of
stabilizers of L′(x) ⊂ LE(x), ranging over all linear-algebraic constructions
LE on E and G-invariant subcocycles L′ ⊂ LE.

Let us stress again that all cocycles are assumed to have the fixed regularity
α. For example, in the measurable setting, the groups H(x) are defined on a
set of full measure only, in a continuous setting on a dense open, and in both
settings the set is dynamics-invariant. Note also that by the Noetherian
property of algebraic groups, finitely many linear-algebraic constructions
and subcocycles suffice to define the algebraic hull.
5.2.8. Proposition (Elementary properties of algebraic hulls). Suppose

G acts on X and E → X is a G-cocycle, all with regularity α. Let
H(x) ⊂ GL(E(x)) denote the α-algebraic hull.

(i) If α′ is a lower regularity than α and H ′(x) is the corresponding
α′-algebraic hull, then H ′(x) ⊂ H(x) for a.e. x ∈ X.

(ii) If α is continuous or better, and Y ⊂ X is a closed G-invariant
subset with a dense orbit and admitting a notion of α-regularity,
then the α-algebraic hull of E|Y is contained in H(y) for every
y ∈ Y .

We will need part (ii) in the situation when α is given by a collection of
locally polynomial functions on the spaces in question.

Proof. Part (i) is immediate since if L ⊂ T are a cocycle and subcocycle of
regularity α, then they are also of regularity α′, so the conditions cutting
out the α-algebraic hull also apply to the α′-algebraic hull.

Part (ii) also follows immediately for the same reasons, since continuous
cocycles and subcocycles can be restricted to a closed subset. □

5.3. Rigidity of Algebraic Hulls over Orbit Closures
5.3.1. Setup. We now specialize to the case of the action of GL2(R) on
an orbit closure M. When convenient or necessary, we will restrict to the
action of SL2(R) on the unit area subsetM1 ⊂M, so that the group action
preserves a finite measure. For questions related to the algebraic hull, the
two situations are equivalent.

We start with the statement of the main result of this section, and explain
the terminology in the coming paragraphs. The theorem below strongly
constrains the behavior of algebraic hulls in this setting and is established in
[Fil16a, Thms. 1.3-1.5] in the pure case, and [EFW18, App. A] in the mixed
case:
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5.3.2. Theorem (Rigidity of Algebraic Hulls). Let M be an orbit closure
of the GL2(R)-action.

(i) The measurable and polynomial in period coordinates algebraic hulls
coincide. Equivalently, any measurable GL2(R)-invariant subbundle
of H1

rel (or its tensor powers) overM can be described in local period
coordinates with polynomial functions.

(ii) The algebraic hull of H1 or H1
rel is compatible with the Hodge struc-

ture, i.e. any GL2(R)-invariant subbundle of H1 or H1
rel (or their

tensor powers) carries pointwise an induced (mixed) Hodge structure,
compatible with that on the ambient bundle.

5.3.3. Remark (On Hodge structures and Algebraic Hulls).
(i) Part (i) implies that the algebraic hulls in the highest and low-

est possible regularities agree, so after its proof we will speak of
“the” algebraic hull, without specifying the regularity. However, for
proofs it is necessary to establish (ii) first, for measurable invariant
subbundles.

(ii) Part (ii) in the case of the cocycle H1 can be equivalently reformu-
lated to say that the Deligne torus giving at each x ∈M the Hodge
structure is contained in the algebraic hull.

5.3.4. Allowed polynomials and the area function. We now describe
the “polynomial functions” that appear in the statement of Theorem 5.3.2.
Fix a basis of relative integral cohomology ai, bi, i = 1 . . . g and cj , j =
1 . . . n, with corresponding complex coordinates zk, k = 1 . . . 2g + n and
zk = xk +

√
−1yk. Assume the standard normalization for the symplectic

pairing ai ∪ bj = δij and let the period coordinate of the holomorphic 1-form
be

ω =
g∑

i=1
ziai + zg+ibi +

n∑
j=1

z2g+jcj .

Then the area function A(x, y) is defined to be:

A(x, y) =
g∑

i=1
xiyg+i − yixg+i(5.3.5)

which is (up to a real scalar) equal to
√
−1[ω] ∪ [ω].

From now on, “polynomial functions in period coordinates” will refer to
rational functions of the form P (x, y)/A(x, y)k where P (x, y) is a homoge-
neous polynomial in the variables xi, yi and k ∈ Z≥0. Such functions have a
natural degree of homogeneity, and to be invariant by scalings (which is a
subgroup of GL2(R)), the degree of homogeneity should be 0.

5.3.6. Invariant subbundles. The assertion that a bundle S ⊂ H is “poly-
nomial in period coordinates” will mean that in a local flat trivialization of
H (or H1

rel), the Plücker coordinates of ΛkS (with k = rk S) can be chosen
to be polynomial in the sense above.
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The simplest example of an SL2(R)-invariant subbundle over M is one
that is also flat, i.e. invariant under parallel transport on all of M (rather,
one should work on the abstract finite cover Ma, see Definition 4.1.2, but
we will continue to omit this from the discussion). Useful examples are the
tangent bundle TM⊂ H1

rel and its projection p(TM) ⊂ H1. Here is a more
interesting, and equally important, one:
5.3.7. Example (Tautological Plane). At each p = (X, ω) ∈M, we have the
tautological 2-dimensional subspace T(p) := span (Re ω, Im ω) ⊂ H1(p) and
analogously for Trel ⊂ H1

rel. This is visibly a GL2(R)-invariant subbundle,
but it is not flat. Let us see how it can be described by polynomial functions
(for ease of notation, we restrict to H1).

In local period coordinates, we have the tautological section ω(p) ∈ H1
C

given by

ω(p) =
g∑

i=1
ziai + zi+gbi = x +

√
−1y.

Then its Plücker coordinate of the tautological 2-plane can be taken to be√
−1ω ∧ ω/A(x, y), which is visibly a polynomial function as defined earlier.
Equally natural is to take the operator πT of projecting H1 onto T along

the symplectically (and Hodge) orthogonal decomposition H1 = T ⊕ T⊥.
Then on a vector v ∈ H1, as a function of (x, y) in period coordinates, the
projector is

πT(x, y)(v) = A(v, y)
A(x, y)

g∑
i=1

(xiai + xi+gbi) + A(x, v)
A(x, y)

g∑
i=1

(yiai + yi+gbi)

where we recall that zi = xi +
√
−1yi. Indeed, note that πT(x, y)(x) = x

and similarly for y, and it annihilates any vector symplectically orthogonal
to either of x, y.

Note that the Plücker coordinate is only defined up to an arbitrary scaling,
while the projector is naturally normalized.
5.3.8. Proof of Hodge compatibility in Theorem 5.3.2. The assertion
that invariant subbundles have compatible Hodge structures is, in the case
of H1, a restatement of Theorem 4.4.4. Note that this last result applies to
tensor constructions on H1, whereas Theorem 4.4.4 only addresses H1

rel. In
general the algebraic hull of H1

rel is a subgroup of the semidirect product
Sp(H1) ⋉ Hom(H1, W0), and as such it has a naturally defined unipotent
radical, which is a subgroup of Hom(H1, W0).

It is immediate to check that the only difference between the algebraic
hulls on H1 and H1

rel is in the unipotent radical. Note that Hom(H1, W0)
has the structure of an abelian unipotent group (as automorphisms of H1

rel)
and so any GL2(R)-invariant subspace could be the unipotent radical of the
algebraic hull. This is controlled by the GL2(R)-invariant decomposition
of H1 = ⊕H1

i . The property that the unipotent radical intersects the piece
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Hom(H1
i , W0) in Hom(H1

i , W0,i) is equivalent to the existence of a GL2(R)-
invariant subbundle isomorphic to H1

i inside the bundle p−1(H1
i )/W0,i. By

Theorem 4.4.7 this subbundle must be compatible with the Hodge structure,
as asserted. We refer to [EFW18, Lemma A.2] for more details.

5.3.9. Measurable implies polynomial for invariant bundles. We now
sketch the steps in the proof of the rigidity part in Theorem 5.3.2. The proof
uses a number of dynamical ideas. We outline the steps and then explain
what each means, and how it is accomplished; for more details see [Fil16a,
§7].

Suppose then that E ⊂ H is a GL2(R)-invariant subcocycle over an orbit
closure M (where H could be H1 or some tensor power construction on
it). We know that its Hodge orthogonal F := E⊥ is also GL2(R)-invariant,
and will use in the proof that the Hodge metric is real-analytic in period
coordinates.

Step 1: On a.e. local stable leaf, show that E varies real-analytically;
same for the unstable.

Step 2: On a.e. local stable leaf, show that E varies polynomially;
same for the unstable.

Step 3: Conclude that E varies polynomially on M.

The diagonal subgroup gt :=
[
et 0
0 e−t

]
acts in period coordinates by expand-

ing the x-coordinate and contracting the y-coordinate. A local stable leaf
is, in period coordinates, an open subset of the x = const piece, so under gt

two points in the same stable leaf approach each other exponentially fast.

5.3.10. Proof of Step 1. Real-analyticity of the bundles is proved with
the help of the Lyapunov filtration H≤λi , which consists of vectors that
grow at rate at most etλi under gt (for more on Lyapunov exponents see
[Fil19]). It is proved by induction on the index of the Lyapunov exponent,
starting from the smallest, that E≤λi varies real-analytically on the stable
leaf; when reaching the last piece E one concludes step 1. This follows from
two ingredients: the Lyapunov filtration on H≤λi is real-analytic, in fact flat
along the stable leaves, and the decomposition H≤λi = E≤λi ⊕F≤λi which is
orthogonal for the real-analytic Hodge metric. Now each new exponent falls
either into E or into F, and can be described as the orthogonal complement
for a real-analytic metric of a bundle known to be real-analytic, inside a flat
bundle. A special situation arises when λi occurs in both E and F, and this
is treated using the Ledrappier invariance principle [Led86].

5.3.11. Proof of Step 2. To go from real-analyticity to polynomiality,
one makes use of the gt-action again. This time, Taylor-expanding the real-
analytic functions in question, combined with the exponential contraction
of the flow, shows that only terms up to a certain order (bounded in terms
of the Lyapunov exponents of H) can occur.
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5.3.12. Proof of Step 3. The final step combines the polynomiality prop-
erty on individual stable and unstable manifolds. It is based on an elementary
lemma proving that if a measurable function f(x, y) is polynomial for a.e.
x and a.e. y, then it is in fact a polynomial.

5.3.13. Computation of the algebraic hull. The rigidity properties es-
tablished in Theorem 5.3.2 can be used to determine the algebraic hull over
the orbit closure M. To describe it, let Gmon be the R-Zariski closure of
the monodromy group on H1, and similarly Gmon

rel for H1
rel. Note that just

like the algebraic hull, this can be viewed as a family of groups, one for each
point ofM (viewing that point as the basepoint for the fundamental group).

Let now GT and GT
rel be the subgroups of Gmon

• stabilizing the tautological
plane T (see Example 5.3.7), viewed either in H1 or H1

rel. Then we have (see
[EFW18, Thm. 1.1]):
5.3.14. Theorem (Algebraic Hull and Monodromy). The algebraic hull for

the GL2(R)-action on H1 is GT, and similarly GT
rel on H1

rel.
This result is complemented by the next one, which is established beforehand
and in fact necessary for the proof (see [Fil17, Cor. 1.7] for the pure case
and [EFW18, Prop. 4.7] for the mixed case):
5.3.15. Theorem (Monodromy on tangent space). Over the orbit closure
M, the monodromy on H1(TM) is R-Zariski dense in the symplectic
group Sp(H1(TM)). On TM, the monodromy is R-Zariski dense in
Sp(H1(TM)) ⋉ Hom(H1(M), W0(TM)).

The bundles H1(TM) and W0(TM) are defined in terms of the tangent
space TM by the short exact sequence in Eqn. (4.1.4).

5.3.16. Proof sketch of Theorem 5.3.14. It is clear that the algebraic
hull is contained in the monodromy group Gmon, and since the tautological
plane is also GL2(R)-invariant, the algebraic hull is contained in GT

• . It
remains to prove the converse.

In local period coordinates on M, the space of GL2(R)-orbits is an open
subset of Gr◦(2; TMR), the Grassmannian of real 2-dimensional planes in
TMR, with ◦ denoting that we require the projection to H1(TM) to be
nondegenerate for the symplectic pairing. This Grassmannian is equiva-
lently a homogeneous space for the algebraic group H := Sp(H1(TM)) ⋉
Hom(W0(TM), H1(TM)), with stabilizer of a point the subgroup HT sta-
bilizing a (tautological) 2-plane.

By Theorem 5.3.2 we know that GL2(R)-invariant bundles are described,
in local period coordinates, by polynomial functions. Combined with the
above local description of the space of GL2(R)-orbits, we obtain on open
patches in H/HT, algebraic bundles. Analytically continuing the construc-
tion along loops in M, we obtain bundles that are equivariant for the mon-
odromy Γ, and since the bundles are algebraic, they must be equivariant for
the R-Zariski closure ΓZar =: Gmon.
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Now by Theorem 5.3.15, the group Gmon surjects onto H. From the charac-
terization of algebraic H-equivariant bundles on H/HT as HT-representations,
Theorem 5.3.14 follows. □

We can now combine Theorem 5.3.14 with Theorem 5.3.15 to evaluate
the algebraic hull on TM:
5.3.17. Corollary (Algebraic Hull on tangent space). Over an orbit closure
M, the algebraic hull on the weight 1 part of its tangent space H1(TM)
is the stabilizer of the tautological plane inside Sp(H1(TM)). On the
full tangent space, it is the stabilizer of the tautological plane inside
Sp(H1(TM)) ⋉ Hom(H1(TM), W0(TM)).

Concretely, if the orbit closure has cylinder rank r, degree d, and tor-
sion corank t, then on the weight 1 part the algebraic hull is SL2(R) ×
Sp2(rd−1)(R), while on the absolute part it has additionally a unipotent rad-
ical isomorphic to Rt×2rd. Note also that this theorem applies, in particular,
to the strata ΩMg(κ) and will be useful for the finiteness results of §5.4.

We have not discussed Lyapunov exponents in this survey, but let us note
that once the algebraic hull has been identified, and established to be rigid,
it is natural to ask:
5.3.18. Question (Simple Lyapunov spectrum). Is the Lyapunov spectrum
as simple as possible, given the algebraic hull? Concretely, each semisimple
factor of the algebraic hull has a split Cartan subalgebra, and the Lyapunov
vector is an element of its dual. Then the Lyapunov vector should not lie on
any of the walls of the Weyl chamber.

The characterization of zero Lyapunov exponents is obtained in [Fil17].
For this more general question, it is likely that the methods introduced by
Bader–Furman [BF14, §5] will be useful.

5.4. Finiteness

5.4.1. Setup. We are now ready to prove the finiteness of atypical orbit
closures stated in Theorem 5.1.4. With the tools and notions we have
developed, it is in fact easier to prove a slightly stronger result. Recall that
by Theorem 4.1.8, whenever Mi and µi is a sequence of orbit closures with
their natural probability measures, there exists another orbit closureM and
with measure µ, and a subsequence of the original still denotedMi, µi, such
that Mi ⊂M and µi ⇀∗ µ.
5.4.2. Theorem (Equidistribution of Algebraic Hull). LetM, µ be an orbit

closure with corresponding measure µ, and let Mi ⊂M be a sequence of
orbit closures with corresponding measures satisfying µi ⇀∗ µ. Let A be
the algebraic hull of M and Ai of Mi on H1

rel.
Then Ai ⊂ A and there exists i0 ≥ 0 such that for i ≥ i0, we have that
Ai and A differ at most by a compact factor and finite index.
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5.4.3. Remark (On compact factors and finite index).

(i) On the case of H1, the algebraic hulls are semisimple by Theo-
rem 4.4.4 and Theorem 5.3.14. The assertion that Ai and A agree
up to finite index and compact factors can then be stated at the
level of Lie algebras: they have the same noncompact factors in the
Lie algebra decomposition. Note in particular that both might have
compact factors, but the inclusion might be strict.

(ii) We will restrict the discussion below to the case of H1, the case of
H1

rel being analogous, and the algebraic hulls acquiring a unipotent
radical. The assertion of the theorem then includes the property
that for sufficiently large i, the groups Ai and A will have the same
unipotent radical.

(iii) In Theorem 5.4.2 we use the words “the same” to assert a point-
wise statement, for every point in the orbit closure, for which the
algebraic hull is well-defined, and the groups Ai(x) and A(x) are
viewed inside GL(H1(x)).

5.4.4. Proof outline of Theorem 5.4.2. The containment Ai ⊂ A follows
from Mi ⊂M and Theorem 5.3.2 (combined with Proposition 5.2.8), since
the measurable and continuous algebraic hulls coincide.

For any semisimple R-algebraic group G, we set G+◦ ⊂ G to be the smallest
normal algebraic subgroup such that G/G+◦ is compact. Equivalently, it is
the Zariski closure of the exponential of the noncompact part of the Lie
algebra of G. The property of G+◦ that we will use is that if G(R) preserves
a measure on some projective space P(VR) for a G-irreducible representation
VR, then G+◦ acts trivially on VR (see [Zim84, Cor. 3.2]).

For the two semisimple groups Ai ⊆ A to be “the same up to compact
factors”, it suffices to show that A+◦

i = A+◦. To do so, we will construct an
A-representation V such that, on the one hand Ai can be defined as the
stabilizer of a line Li ⊂ V , and on the other hand for any V ′ ⊂ V which is
A-irreducible, A preserves a measure on P(V ′). This last property implies
A+◦ acts trivially on V and yields the conclusion.

We already know that A+◦
i ⊂ A+◦, and suppose by contradiction that along

some subsequence the containment is strict. An argument with algebraic
groups (see [EFW18, §5.1,pg. 297]) shows that there exists one representation
V and cocycle V (independent of i) such that there exists a family of lines
Li ⊂ V and subcocycles Li ⊂ V, such that Ai is defined as the stabilizer
of Li. For any A-invariant decomposition V = V′ ⊕ V′′, with V′ being A-
irreducible, we can assume that Li is not contained in V′′, otherwise we can
pass to a subsequence and work with V′′ in what follows, and still obtain a
contradiction.

Denote by L′
i ⊂ V′ the projection of Li to V′. The measure µi on Mi

admits a unique lift µ̃i on P(V′) with the property that it projects to µi, and
the fiberwise measures are δ-masses on P(L′

i). Note that the measures µ̃i are
SL2(R)-invariant for the lifted action to P(V′), since the bundles Li are.
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Since the fibers of P(V′) →M are compact, we can take a weak-* limit
of the µ̃i, denoted µ̃, and since µi ⇀∗ µ we also have that µ̃ projects to µ.
Invariance under SL2(R) is preserved.

We now claim that A preserves the disintegrations µ̃(x) on the fibers
(with x ∈ M), and this will conclude the proof. Let S(x) ⊂ PGL(V′(x))
be the group stabilizing the measure µ̃(x); these form a measurable family
of subgroups, and are algebraic by [Zim84, Thm. 3.2.4]. The family of
subgroups is also SL2(R)-equivariant, and in fact µ-a.e. x, y the groups
S(x), S(y) can be conjugated by an isomorphism of the fibers. Indeed,
we have a measurable map M → M1(P(V ′))/ PGL(V ′) from M to the
space of probability measures on the projective space P(V ′), modulo linear
transformations. The space of such orbits is T0 by Theorem 5.2.3, so µ-a.e.
the image lies in one orbit. It follows again by Chevalley’s theorem that
there is some representation W of PGL(V ′), and associated cocycle W, with
1-dimensional line bundle K ⊂W, such that S(x) is the stabilizer of K(x).
The family of lines K is SL2(R)-invariant, hence stabilized by the algebraic
hull A by its definition, so we conclude that A ⊂ S. □

We can finally conclude the asserted finiteness results, in a slightly stronger
form. Recall that the algebraic hull of an orbit closure is a pointwise defined
family of algebraic groups, all conjugate to each other.
5.4.5. Theorem (Finiteness).

(i) An orbit closure M is typical inside a stratum if and only if its alge-
braic hull coincides with that of the stratum, and atypical otherwise.

(ii) Every stratum has finitely many atypical orbit closures which contain
all other atypical orbit closures.

(iii) Analogously, an orbit closure M contained in another one N is
typical inside it if the algebraic hull of M coincides with that of N
up to compact factors, and atypical otherwise.

(iv) Every orbit closure N contains finitely many atypical orbit closures
which contain all other atypical orbit closures (all relative to N ).

Proof. Given an orbit closure N , let us see first why orbit closures inside it
with strictly smaller (up to compact factors) algebraic hull must be contained
in a finite set of smaller orbit closures. Indeed, if there was such an infinite
sequence Mi ⊂ N , up to passing to a subsequence there is N ′ containing
all of them, with Mi equidistributed in N ′ (by Theorem 4.1.8). Because
of equidistribution we must have N ′ ⊆ N , and by the assumption on the
algebraic hulls and Theorem 5.4.2 we must have N ′ ⊊ N .

It remains to establish (iii) (which clearly implies (i)), i.e. compare the
definition of atypical in terms of codimensions and in terms of algebraic hulls.
We will first treat the splitting of H1 and eigenform conditions together, and
then the torsion part. Note that the contribution to the codimension “defect”
from the absolute cohomology and the weight 0 part are both nonnegative,
so for a typical suborbit closure, it will suffice to equate both contributions
to 0. All dimensions computed below are over C.
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For any orbit closure N let AN ⊂ Ag denote the subvariety parametrizing
abelian varieties with the same splitting as on N . This is determined by
the Zariski closure of monodromy over N , denoted MN , and a lattice inside
its real points. Let also ΩAN → AN denote the bundle of eigenforms of
the same type as on N , it has fiber dimension equal to the rank rN of
N . Let also ΩAu

N → ΩAN denote the bundle parametrizing the mixed
Hodge structures of the same type as on N . Again, this is determined by
the monodromy over N , and if we denote by Mu

N ⊂ MN the unipotent
radical, then the dimension of the fibers is 1

2 dim Mu
N . Indeed, the unipotent

radical is a direct sum of pieces of the form Hom
(
H1

α, W0,α′
)
, where H1

α

is some (symplectic) factor of H1 and W0,α′ is some factor of W0. But
the corresponding parameter space consists of points on the abelian variety
(by Proposition 4.3.14) corresponding to H1

α, which has complex dimension
1
2 dim H1

α.
Now the dimension of N is 2rN + tN , where tN is the dimension of

W0(TN ). It follows that the (formally computed) codimension of N in
ΩAu

N is

dimAN +rN +1
2 dim Mu

N−(2rN +tN ) = (dimAN − rN )+
(

1
2 dim Mu

N − tN
)

.

To connect the calculation to the algebraic hull AN , we recall that we have
AN ⊂MN . We can define the associated symmetric space for the algebraic
hull ÃHN which is the quotient of AN (R) modulo its maximal compact.
We now note that dimAN = dim ÃHN + (rN − 1), since the only difference
in the symmetric spaces (once we pass to the universal cover of AN ) is that
a Siegel space factor of rank rN splits as a product of a rank 1 and a rank
(rN − 1) Siegel spaces, and the dimension of a Siegel space of rank r is
1
2r(r + 1).

Analogously, let Au
N ⊂Mu

N denote the unipotent radical of the algebraic
hull. Then dim Au

N = dim Mu
N − 2tN , corresponding to the requirement

that Au
N must act trivially on the rank 2 tautological bundle in the tangent

space directions, which have dimension tN .
Putting the last two calculations together, it follows that we can rewrite

the above formal codimension as(
dim ÃHN − 1

)
+ 1

2 dim Au
N .

If M ⊂ N is a suborbit closure, we have by Theorem 5.3.2 that AM ⊂
AN and similarly for unipotent radicals Au

M ⊂ Au
N . But M is typical

inside N if and only if its formal codimension equals that of N , which
by the above calculation implies Au

M = Au
N , and dim ÃHM = dim ÃHN .

However, the semisimple parts are nested, and to have equality of dimension
in the corresponding symmetric spaces, the groups must agree up to compact
factors. □

5.4.6. Monodromy and Lyapunov spectrum of square-tiled sur-
faces. Although the main application of the Algebraic Hull Equidistribution
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Theorem 5.4.2 is to finiteness questions, it turns out that it gives interesting
information about the monodromy and Lyapunov spectrum of orbit closures.
A natural class of examples to which the result applies is square-tiled surfaces
in a stratum which generate a sequence of Teichmüller curves Ti ⊂ Mg(κ)
that also equidistribute inside the stratum. On the one hand, the algebraic
hull of a stratum on H1 is SL2(R) × Sp2g−2(R), by Corollary 5.3.17. For
sufficiently large i, the algebraic hull of Ti is the same (since there are no
compact factors). This implies, by the relation between algebraic hulls and
monodromy from Theorem 5.3.14, that the monodromy of H1 over Ti has
Zariski closure equal to SL2(R)× Sp2g−2(R). We conclude:
5.4.7. Theorem (Monodromy of square-tiled surfaces). For all square-tiled

surfaces in a stratum ΩMg(κ) outside of a finite set of proper atypical
suborbit closures, the Zariski closure of monodromy over the corresponding
Teichmüller curve is SL2(R)× Sp2g−2(R).
In particular, the Lyapunov spectrum of the geodesic flow is simple.

Proof. The first assertion was explained above. It remains to justify the
claim on Lyapunov exponents. By the Eskin–Matheus coding-free simplicity
criterion [EM15, Thm. 1.1], it follows that on the factor that’s not the
tangent space of the Teichmüller curve, the spectrum is simple. Since on the
SL2-factor the exponents are 1,−1, by Forni’s spectral gap property 1 > λ2,
see [For02, Thm. 0.1], the claim follows. □

This gives an extension to all strata of some results of Matheus, Möller,
and Yoccoz [MMY15, §1.2] on the simplicity of the Lyapunov spectrum. Let
us also note that the finitely many exceptions are necessary, as illustrated
by the examples in [FFM18, Thm. 1.1].

Note also that an alternative route to the above result is via [BEW20,
Thm. 2.8] of Bonatti–Eskin–Wilkinson, which shows that in the setting of
the SL2(R)-action on strata, the Lyapunov spectrum is “continuous”: if a
sequence of ergodic SL2(R)-invariant measures µi equidistributes to another
such measure µ, then the Lyapunov exponents of µi converge to those of µ.
Combined with the simplicity of the Lyapunov spectrum on strata established
by Avila–Viana [AV07, Thm. 1.1], the result follows.

5.4.8. Proof of Abundance of Typical, Theorem 5.1.7. We now tie
on loose end and characterize the orbit closures that can possibly admit an
infinite family of typical suborbit closures, and show that they in fact do
contain them.

To characterize orbit closures that could admit an infinite family of typical
suborbit closures, we will use Theorem 5.4.5. Suppose M is such an orbit
closure, with suborbit closures Mi equidistributing to it; we can assume
by Theorem 5.4.2 that they have the same algebraic hulls, up to compact
factors. Let H1

M be the projection to absolute cohomology of the tangent
bundle of M, say of rank 2g. Using Corollary 5.3.17, the algebraic hull
of M on it is SL2(R) × Sp2g−2(R), and using it again we find that either
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Mi has cylinder rank 1, or H1
Mi

= H1
M. In the second case, if we assume

that g > 1, then we find that the unipotent part of the algebraic hull of M
strictly contains that for Mi, unless they also have the same torsion corank,
which means they are equal.

In the first case, if Mi has linear field of definition Q as well, then it
parametrizes torus covers and this gives the first possibility in Theorem 5.1.7.
Otherwise, the field of linear definition must necessarily be quadratic, so
that 2g − 2 = 2 and so g = 2, leading to the second case. Note that in this
last case, the agreement of unipotent parts of the algebraic hull forces the
torsion coranks of M and Mi to agree.

It remains to prove abundance, i.e. density of typical orbit closures in
the above two cases. For torus covers, this is clear since points in M with
necessary rationality conditions are dense. For the degree 2 case, see [EFW18,
§6.2].

6. Classification of orbit closures
Outline of section. The question of classifying orbit closures can be un-
derstood in many ways and in this section we describe some of them, as well
as progress so far. Methods based on the cylinder deformation theory of
Wright are discussed in §6.1. The algebro-geometric and arithmetic points
of view are taken up in §6.2, where we discuss the connection to problems
of unlikely intersections, as well as an algebro-geometric point of view on
the cylinder deformation theorem. We end with a discussion of algorithmic
questions, both practical and theoretical, in §6.3.

6.1. Topological methods

We outline some recent progress on the classification of orbit closures, using
as an essential tool the Cylinder Deformation Theorem [Wri15a, Thm. 1.1]
of Wright. After describing this result and some of its consequences in
the initial paragraphs, we include a few (of many) classification theorems
obtained using these methods.

6.1.1. The basic exact sequences, in homology. We will continue to
denote by Z ⊂ X the zeros of ω. The geometric version of the basic exact
sequence from Eqn. (6.1.2) and its dual will provide a natural setting for the
arguments below:

(6.1.2)
0 H̃0(Z) H1(X \ Z) H1(X) 0

0 Hred
0 (Z) H1(X, Z) H1(X) 0
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The second row is naturally identified, via the pairing between homology
and cohomology, with the dual of the tangent space to the stratum ΩMg(κ).
So it encodes the cotangent bundle. The Poincaré duality pairing between
the first row and the second then identifies naturally the first row with the
tangent bundle of the stratum.
6.1.3. Relative deformations. Note that while in the second row, the
group Hred

0 (Z) denotes formal linear combinations of points in Z with coeffi-
cients adding up to zero (the “reduced” cohomology), in the first row H̃0(Z)
denotes the group of all formal linear combinations of points in Z, modulo
the element which takes each point in Z with coefficient 1.

The deformations of (X, ω) corresponding to a point z ∈ Z, and its class
[z] ∈ H̃0(Z), are called relative deformations. Specifically, [z] denotes the
homology class in H1(X \ Z) going once clockwise around z and moving in
ΩMg(κ) by t[z] amounts to adding to each relative period [γ] the quantity
t([z] ∩ [γ]).
6.1.4. Definition (Horizontal cylinder). A horizontal cylinder of a transla-
tion surface (X, ω) is a connected open subset C ⊂ X, saturated by closed
leaves of the foliation induced by ker Im ω, and maximal with this property.
Any closed leaf will be called a core curve of C.

Note that any core curve has an appropriate neighborhood foliated by
core curves, and we take the maximal connected neighborhood with this
property. The boundary ∂C = C \ C consists of finitely many zeros of ω
connected by horizontal saddle connections. Note that the boundary might
be connected as a subset of X but it has two natural maps from a core curve,
obtained by “pushing” up or down the core curve. A core curve also has a
natural orientation, specified by requiring ω to have positive integral over
positively oriented subsets of the core curve.
6.1.5. Geometry of a cylinder. The homology class [γC ] of any core curve
γC is independent of choices. We will denote by [γC ] its homology class in
H1(X \ Z), so it will give tangent vectors, and by [γ∗

C ] its homology class in
H1(X, Z), so it will give cotangent vectors.

The circumference, or width, of a cylinder C is defined to be
´

[γ∗
C ] ω, i.e.

the length of any of the core curves, and will be denoted wC . To define the
height of C, denoted hC , let α ⊂ C be any oriented path connecting two zeros
on the boundary, and such that [α] ∩ [γ∗

C ] = 1. Then we set hC := Im
´

α ω,
and with our orientation convention on γC this gives hC > 0. Note that
the imaginary part of the integral is independent of the homotopy class of
α, since changing the homotopy class amounts to adding the width (a real
number) to the integral.
6.1.6. Cylinder deformations. To every horizontal cylinder C ⊂ (X, ω)
we associate the tangent vector vC ∈ T(X,ω)ΩMg(κ) equal to hC [γ∗

C ] ∈
H1(X \Z;R). The deformation of (X, ω) along vC will be denoted uC

t (X, ω),
and corresponds to cutting out C, applying the horocycle flow ut only to
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C, and then gluing it back in. By a cutting and pasting, it can be directly
verified that this transformation is periodic, with period wC

hC
. The frequency,

i.e. the inverse period, is called the modulus of the cylinder and denoted
mC := hC

wC
. A cylinder deformation is illustrated in Figure 6.1.7.

Figure 6.1.7. Left: A cylinder on the double heptagon sur-
face. Right: A cylinder deformation applied only to the
cylinder.

6.1.8. Definition (Horizontally periodic surface). We will say that (X, ω) is
horizontally periodic if it is covered by (the closures of) horizontal cylinders.

A fundamental result of Smillie–Weiss [SW04, Thm. 5] describes the min-
imal sets for the horocycle flow in terms of horizontally periodic surfaces. A
key ingredient in the proof is a recurrence result for the horocycle flow ob-
tained previously by Minsky–Weiss [MW02, §1]. We now proceed to describe
these orbit closures.

6.1.9. Tori of horizontally periodic surfaces. Suppose that (X, ω) is
covered by cylinders C1, . . . , Ck and is therefore horizontally periodic. Each
of them determines a vector vCi in the tangent space at (X, ω), and their
sum is the vector giving the horocycle flow. Let L ⊂ H1(X \ Z) denote the
span of these vectors. Note that the vectors are linearly independent, since
the core curves are, since for each core curve there is a saddle connection
intersecting only it. Note also that L is isotropic for the intersection pairing
when projected to absolute homology.

We can apply independently any of the flows uCi
t to (X, ω), each with its

own period, and hence obtain a k-dimensional torus in ΩMg(κ). The torus
is naturally isomorphic to

∏ (
RvCi/Z

vCi
mCi

)
, and we shall call it the “full

torus” supporting (X, ω). Now the orbit ut(X, ω) will stay in this torus, and
its orbit closure will equal the subtorus cut out by the following equations:

If
k∑

i=1
aimCi = 0 with ai ∈ Z then require

k∑
i=1

ai
vCi

mi
= 0.

Note that we view vCi
mi

= wCi [γCi ] as the generators of the lattice under
which the flows uCi

t are periodic. Note also that the orbit closure of the flow
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in the direction of the vector (1, . . . , 1) on
∏

(R/Z 1
mi

) is equivalent, under
a diagonal linear transformation, to the orbit closure of (m1, . . . , mn) on∏

(R/Z).
For future reference, observe that if m1, . . . , ml are Q-linearly independent

from ml+1, . . . , mk (meaning that their Q-linear spans intersect only at {0}),
then the orbit closure of (m1, . . . , mk) on (R/Z)k is equal to the product of
orbit closures of (m1, . . . , ml, 0, . . . , 0) and (0, . . . , 0, ml+1, . . . , mk).

6.1.10. M-parallelism. Suppose now that the horizontally periodic surface
(X, ω) is contained in an orbit closure M. We have already described the
horocycle orbit closure in §6.1.9, but it can be the case that M intersects
the full torus in a larger set.
6.1.11. Definition (M-parallel cylinders and saddle connections). Suppose
that [α∗] , [β∗] ∈ H1(X, Z;Z) denote the classes of a core curve of a horizontal
cylinder, or of a horizontal saddle connection, on (X, ω). Call the cylinders
or saddle connections α and β M-parallel if their images in T ∗MR are
proportional by a (possibly real) scalar.

Note that we have a natural map H1(X, Z;R)→ T ∗MR, i.e. every relative
homology class gives a cotangent vector. In fact, because of the local triviality
of the bundles involved, any relative homology class gives a well-defined
function on a stratum, and by restriction onM, whose differential is precisely
the cotangent vector just described. The property of M-parallelism is then
equivalent to (local on M) proportionality of the two functions.
6.1.12. Remark (On M-parellism). We collect some elementary remarks:

(i) Being M-parallel is an equivalence relation, and the definition in-
cludes the possibility that a cylinder could beM-parallel to a saddle
connection.

(ii) The property of M-parallelism depends on the cohomology class
in H1(X, Z) of a core curve of a cylinder, while the conclusion of
Theorem 6.1.13 below refers to the class in H1(X \ Z).

(iii) The smaller an orbit closure M, the more likely are two horizontal
cylinders to be M-parallel. For instance, if M has cylinder rank 1,
then all horizontal cylinders on (X, ω) must beM-parallel since their
span is an isotropic subspace. It will follow from Theorem 6.1.13
that in fact if there is at least one horizontal cylinder, then (X, ω)
must be horizontally periodic.

We can now state Wright’s result, [Wri15a, Thm. 1.1, Thm. 5.1]:
6.1.13. Theorem (Cylinder deformation theorem). Denote by C1, . . . , Ck

the horizontal cylinders on (X, ω) ∈M, and let C1, . . . , Cl denote their par-
tition into equivalence classes of M-parallel cylinders. Define the vector
vCi :=

∑
C∈Ci

vCi in the tangent space at (X, ω) to the stratum.
(i) Suppose that (X, ω) is horizontally periodic. Then T(X,ω)M contains

all the vectors vCi.
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(ii) The same holds more generally, even if (X, ω) is not horizontally
periodic.

Note that while the second assertion is visibly stronger than the first, the
proof requires the weaker statement first. We also have an immediate con-
sequence, which does not assume apriori knowledge of the ambient orbit
closure:
6.1.14. Corollary (Getting tangent vectors). Let C1, . . . , Ck be all the

horizontal cylinders of (X, ω). Then

vC1 + · · ·+ vCk

is in the tangent space to any orbit closure M containing (X, ω).
If (X, ω) is horizontally periodic then this is simply the tangent vector to
the horocycle orbit, but otherwise one obtains a vector which is not tangent
to the local GL2(R)-orbit of (X, ω).

Before sketching the proof of Theorem 6.1.13, we need some further pre-
liminaries.

6.1.15. Real deformations. Recall that the local period coordinates are
valued in the complex vector space H1(X \Z;C) which has a decomposition
into real and imaginary parts. The orbit closure M is determined by a
real subspace TMR ⊂ H1(X \ Z;R), and the orbit closure itself is locally
described by the complexification. The local product structure into real and
imaginary coordinates coincides with the unstable/stable foliation for the
Teichmüller geodesic flow.

We define a real deformation of (X, ω) to be one which stays entirely in
the real direction, in other words only the real parts of periods are changed,
and not the imaginary parts. For example, the matrices[

et 0
0 1

]
,

[
1 t
0 1

]
as well as the vectors vCi

give real deformations.

6.1.16. Real deformations and horizontal cylinders. Observe that a
sufficiently small real deformation does not destroy a horizontal cylinder C,
since its core curve γC continues to have a real period and furthermore the
height remains unchanged. A horizontally periodic surface continues to be
horizontally periodic under sufficiently small real deformations.

The modulus mC = hC
wC

can change only through the quantity wC =
´

[γC ] ω.
Therefore, if C1, C2 areM-parallel, then the ratio mC1/mC2 stays unchanged
under real deformations staying in M, essentially by the definition of M-
parallelism. Conversely, if C1, C2 are not M-parallel, then by an arbitrarily
small real deformation one can make their moduli Q-linearly independent.
A bit more generally, one can accomplish the same for any collection of
cylinders which are not pairwise M-parallel, see [Wri15a, Lemma 4.9]
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Proof of Theorem 6.1.13. Let us sketch the basic ideas in the proof. Start
with a horizontally periodic surface (X, ω), with cylinders C1, . . . , Ck, and
suppose C = {C1, . . . , Cl} is an equivalence class of M-parallel ones. By
the discussion on §6.1.16, a sufficiently small real deformation of (X, ω),
staying within M, can arrange the moduli of cylinders in C to be Q-linearly
independent from the rest. By the discussion in §6.1.9, the ut-orbit closure
of (X, ω) in its associated full torus in the stratum has vC as tangent vector,
and therefore so does M.

For a general surface (X, ω) which has some cylinders C1, . . . , Ck, but is not
horizontally periodic, the theorem of Smillie–Weiss ensures that there exists
a horizontally periodic (X ′, ω′) ∈M and a sequence of times ti → +∞ such
that uti(X, ω)→ (X ′, ω′). By taking ti sufficiently large, we can assume that
uti(X, ω) is within a sufficiently small period coordinate chart at (X ′, ω′)
such that the intersection of M with the chart is a linear space passing
through (X ′, ω′) and uti(X, ω).

Note that the horizontal cylinders on (X, ω) and uti(X, ω) are naturally
in bijection. Denote by C ′

1, . . . , C ′
k′ the horizontal cylinders on (X ′, ω′). Any

local path in M connecting (X ′, ω′) to uti(X, ω) must necessarily involve
some imaginary directions as well, since one surface is horizontally periodic
but the other one isn’t. We can arrange the path to be first purely imaginary,
then purely real, and therefore obtain a natural correspondence between the
cylinders on (X, ω) and a proper subset of those at (X ′, ω′). We claim that
this correspondence respects the M-parallelism equivalence relation, and so
the assertion about the tangent vector at (X, ω) follows from that at (X ′, ω′).

If two cylinders on (X ′, ω′) areM-parallel, under any small deformation of
(X ′, ω′) (either real or complex) they will either stay horizontal together, or
cease to be horizontal together. Since the condition defining M-parallelism
is locally invariant under flat parallel transport, the needed assertion follows.

□

6.1.17. Some further consequences. Suppose that C1, . . . , Cl are cylin-
ders on (X, ω), that are furthermore an M-parallel equivalence class C for
an orbit closure M containing (X, ω). Let hi, wi be their respective heights
and widths, and denote the moduli by mi = hi/wi, and core curves γi. We
have the following properties:

(i) Any ratio of moduli mi/mj is in Q.
(ii) Any ratio of widths wi/wj is in the field of linear definition kM of
M.

(iii) The set of ratios 1, w2/w1, w3/w1, . . . , wl/w1 generate the field kM.
The first assertion follows from the fact that the orbit closure of uC

t is 1-
dimensional, when considered on a full torus associated to a horizontally
periodic horocycle flow limit (X ′, ω′) of (X, ω).

The second assertion follows from the identity wi[[γ∗
j ]] = wj [[γ∗

i ]] where [[γ]]
denotes the projection of [γ] to T ∗MR. This identity is verified at (X, ω) since
we know the projected cohomology classes are proportional, and the constant
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of proportionality can be evaluated by pairing against the holomorphic 1-
form ω. It follows that wi[γ∗

j ]−wj [γ∗
i ] is a (local) equation forM. Rewriting

the equation as [γ∗
j ]−

wj

wi
[γ∗

i ] and using that [γ∗
i ], [γ∗

j ] can be made part of a
Q-basis of homology, the assertion follows.

For the last assertion, we note that the vector
1
h1

vC = [γ1] + h2
h1

[γ2] · · ·+ hl

h1
[γl]

is in the tangent space TMR by Theorem 6.1.13 and belongs to homology
with coefficients in Q(w2/w1, . . . , wl/w1) since hi/h1 = (mi/m1) · (wi/w1)
and the ratios of moduli are rational. Now the monodromy of π1(M) acts
with integer coefficients and irreducibly on the absolute cohomology part
TM by [Wri14, Thm. 5.1] so the orbit of the above vector spans TM. It
follows that kM ⊂ Q({wi/w1}li=1).

6.1.18. Applications to orbit closure classification. The above results,
and their further extensions in [Wri15a], indicate an approach to classifying
orbit closures. We indicate some techniques and papers that use them, and
the reader can find a wealth of additional references in these works.

Start from a horizontally periodic surface (X, ω). We would like to find its
orbit closure and at the start, we only have the GL2(R)-directions. There
are cylinders in other directions on (X, ω), and one can always arrange this
other direction to be vertical by applying an element of GL2(R). If the
surface is not vertically periodic, then Corollary 6.1.14 gives a new tangent
vector to the orbit closure. One can then deform the surface in this direction
and see if the moduli of cylinders change, or new cylinders in other directions
emerge. If on the other hand the surface (X, ω) is completely periodic, i.e.
if there is a cylinder in one direction then it is covered by cylinders in that
direction, indicate that the orbit closure is of cylinder rank 1. Again one can
try to search and play with the cylinders and their moduli, and determine
also the torsion corank of the orbit closure. This outline has been carried
out effectively in many cases in low genus, see for instance [ANW16] for one
of the first implementations of this approach.

One can refine this approach by adding an inductive technique: degenerate
the translation surface (X, ω) and reduce to lower genus. In order to do
so, it is useful to have a compactification of strata and the orbit closures in
them. For the methods based on the cylinder deformation theorem, one such
useful compactification was introduced by Mirzakhani and Wright [MW17]
and subsequently used to establish the following classification result:
6.1.19. Theorem (Orbit closures of full cylinder rank, [MW18]). If the

cylinder rank of an orbit closure M equals the genus of the ambient con-
nected component of a stratum ΩMg(κ), then either M is that connected
component, or it is a sublocus of hyperelliptic translation surfaces.

Apisa [Api18] showed that in hyperelliptic strata, orbit closures of dimension
4 or more are necessarily branched covers of lower-dimensional hyperelliptic
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strata. One of the latest refinements of these techniques is due to Apisa–
Wright [AW21], who show that if the cylinder rank of M is at least g

2 + 1,
then M is either a connected component of a stratum, or it is a locus of
covers of a stratum of quadratic differentials.

6.2. Algebro-Geometric and Arithmetic Methods

In this section we give an overview of some of the results towards classification
of orbit closures that are based on methods from algebraic geometry and
arithmetic.

For the first few paragraphs, we will freely use the language of Shimura
varieties to give a flavor of the relation between finiteness questions for orbit
closures, and finiteness questions considered in that context.

6.2.1. Unlikely intersections. It follows from the results explained in §5.1
that the problem of classifying orbit closures reduces to understanding the
atypical ones. This terminology is suggested by a broad circle of arithmetic
and geometric problems that go under the umbrella term “unlikely intersec-
tions”. An introduction to this class of problems is provided by Zannier’s
lectures [Zan12], see also [ACZ20] for some related techniques.

In these questions, one has an ambient algebraic variety A, a fixed sub-
variety Ω ⊂ A, and a family of “special” subvarieties Si indexed by some
arithmetic or combinatorial data, but usually a countable set without moduli.
To simplify the discussion, assume that A is the smallest special subvari-
ety containing Ω, otherwise replace A be the “special hull” HΩ, the small-
est special subvariety containing Ω. Additionally, suppose the inequality
dim Ω + dimSi < dimA for all Si considered, and so by dimensional con-
siderations one expects the intersection to be empty. The typical type of
conclusion one would like to draw is that if Ω intersects nontrivially infinitely
many of the Si, then this must be accounted for by some special subvari-
ety CΩ ⊂ Ω. Usually, the pattern of intersections of special subvarieties is
“known”, i.e. described by some arithmetic or combinatorial data.

6.2.2. Zilber–Pink type problems. One can extend the above discussion
to the case when we do expect intersections for dimension reasons, and the
exceptional intersections are those that have dimension larger than expected.
A detailed exposition can be found in Ullmo’s article [HRS+17, Ch. 1].

With notation as above, for a special subvariety Si, call an irreducible
component V of the intersection Si∩Ω atypical if dimV > dim Ω−codimA Si.
Then a Zilber-type conjecture is that all atypical intersections are contained
in a proper subvariety of Ω.

6.2.3. Application to Orbit Closures. As explained in §5.1, from The-
orem 4.5.10 it follows that atypical orbit closures can be characterized as
atypical intersections of the image of the stratum ΩMg(κ) in an automorphic
vector bundle over a mixed Shimura variety.
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In fact, the case of positive-dimensional unlikely intersections on pure
Shimura varieties has been established by Baldi, Klingler, and Ullmo [BKU21,
Thm. 2.1] (in fact the authors establish a more general statement). Extending
their result to mixed Shimura varieties, and including automorphic vector
bundles, would imply the finiteness results in Theorem 5.1.4. It is also
possible that these proofs could be made effective and hence answer Ques-
tion 5.1.5.

6.2.4. Implementations of the unlikely intersections approach. We
now proceed to describe works which have effectively used the above “unlikely
intersections” approach to obtain classification results. Let us note that
these methods have so far been complementary to those described in §6.1,
both in technique but also in which flavors of orbit closures are covered.
The methods described below are most powerful for analyzing Teichmüller
curves, the lowest-dimensional orbit closures, whereas methods based on
flat geometry are especially effective for analyzing large-dimensional orbit
closures.

6.2.5. The decagon. In the stratum ΩM2(1, 1) a Teichmüller curve which
is not generated by a square-tiled surface (i.e. which is primitive) is atypical.
McMullen proved in [McM06b, Thm. 1.1] that the only such orbit closure
is the one generated by the regular decagon. The extra constraint which
makes such a Teichmüller curve atypical comes from the torsion condition,
see Theorem 4.5.7, which in the case of Teichmüller curves is due to Möller
[Möl06a, Thm. 3.3].

To classify the primitive Teichmüller curves in ΩM2(1, 1), the first obser-
vation is that such a curve is noncompact and necessarily has cusps. Taking
the limit in the Deligne–Mumford compactification, one obtains a stable
differential (X, ω) with X ∈ M0,4. The real multiplication property on
Jac(X) ∼= G2

m, the eigenform condition on ω, and the torsion property all
have their analogues in this context. They translate to the existence of
α, β ∈ Q such that sin(πα)

sin(πβ) ∈ Q(
√

D) for some D > 0. The finitely many
possibilities are then classified in [McM06b, Thm. 1.5]. Of these, all but
the one corresponding to the regular decagon are excluded by a further test
coming from ratios of moduli of cylinders..

An analogous result was recently established by Winsor [Win22b, Thm. 1.1],
showing that the regular 14-gon generates the unique algebraically primitive
(i.e. with cubic field of linear definition) Teichmüller curve in ΩM3(2, 2). It
is natural to ask:
6.2.6. Question (Uniqueness for regular n-gons). Do the regular n-gons
generate the unique primitive and atypical Teichmüller curves in their re-
spective strata?

More generally, are the Bouw–Möller examples the unique primitive and
atypical Teichmüller curves in their respective strata?
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6.2.7. Cusps of Teichmüller curves. Pursuing the strategy initiated by
McMullen in [McM06b], it is natural to investigate which stable curves occur
in the boundary of the locus of curves which admit real multiplication on the
Jacobian, perhaps on a factor. This has been studied by Bainbridge–Möeller
in [BM12], who give a characterization in genus 3 in Thm. 1.1, and §5 of
loc.cit. contains necessary conditions in higher genus. These techniques
combined with methods from the theory of unlikely intersections are used in
[BHM16, Thm. 1.1] to give an effective finiteness statement for algebraically
primitive Teichmüller curves, for most strata in genus 3.
6.2.8. Degree of atypicality. Since atypical orbit closures M have a de-
gree of atypicality δ(M) defined in Eqn. (5.1.14), it might be meaningful to
organize the classification of atypical subvarieties by their degree of atypical-
ity. Note that the formula for the degree of atypicality frequently simplifies:

δ(M) = (r − 1)
[
(g − r) + (n− t)

]
if M is linearly defined over Q.

At the opposite extreme, for algebraically primitive Teichmüller curves we
have

δ(T ) = (g − 1)
[

g

2 + n− 1
]

.

6.2.9. Question (Classification of very atypical). Let us say that a primitive
orbit closure M is very atypical if δ(M) is larger than the dimension of the
ambient stratum. Can one classify all the very atypical orbit closures?

Note that the Veech–Bouw–Möller family of examples is very atypical.
6.2.10. The cylinder package. We end the discussion of algebro-geometric
methods with another look at the Cylinder Deformation Theorem 6.1.13,
following Benirschke, Dozier, and Grushevsky [BDG22].

First, let us note that one gets simultaneously several pieces of information
on the orbit closure M containing (X, ω) with horizontal cylinders Ci in an
M-equivalence class C, with core curves γCi :

(i) A tangent vector vC ∈ T(X,ω)M with

vC =
∑

Ci∈C
hi[γCi ] ∈ H1(X \ Z;R).

(ii) Equations for M of the form
wj [γ∗

Ci
]− wi[γ∗

Cj
] ∈ H1(X, Z;R).

(iii) Monodromy transformations for loops on M:

TC([α]) = [α] +
∑

([α] ∩ [γCi ]) · ni · [γCi ] for [α] ∈ H1(X, Z;Z)

where ni ∈ N are determined from taking the smallest t0 > 0 such
that uC

t0(X, ω) = (X, ω) and we thus have the relation between
heights and widths of cylinders: thi = niwi. Recall that the ratios
of moduli of M-parallel cylinders are in Q, see §6.1.17.

We will refer to the above list of properties as a “cylinder package”.
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6.2.11. Cylinder package in meromorphic strata. We now consider
a stratum of meromorphic differentials ΩMg(κ), as in §3.3. Assume that
M ⊂ ΩMg(κ) is algebraic, and also R-linear in period coordinates in the
sense of Definition 4.1.2; note that [BDG22] work more generally with C-
linear manifolds.

Cylinders in this context will refer to cylinders of bounded height, and
M-parallelism is defined analogously. Then [BDG22, Thm. 1.6, 1.9] imply
that the “cylinder package” in the sense of §6.2.10 holds on M as well.

Let us note, moreover, that [BDG22, Thm. 1.4] gives a more precise
structure theorem for the linear equations for M near a boundary stratum
in the compactification ΞΩMk(κ).

6.3. Algorithmic aspects

We end by formulating questions regarding algorithms that can be used to
analyze individual translation surfaces, as well as their orbit closures. Some
questions are of theoretical nature – one would like to know that algorithms
exist and they terminate, and others are practical – one would like to have
openly available computer programs that implement these algorithms. Some
work towards this has been done by Hooper, Delecroix, Rüth, Lelièvre,
Chapoton, Eskin, see [HDR+22], as well as McMullen, Mukamel, and many
others. We refer also to [DRW21, App. B] for a discussion of some of the
above software, as well as related algorithmic questions.

For the questions formulated below, it is meaningful to separate the dis-
cussion for typical and atypical orbit closures. The case of typical orbit
closures is likely to be algorithmically more approachable.

6.3.1. Cylinders: complexity, enumeration. Suppose (X, ω) is a trans-
lation surface, with period coordinates in a number field k ⊂ R. Then for
any cylinder C on the surface, the height, width, modulus, and slope are
elements of the field k, and we will refer to them as the numerical invariants
of C.
6.3.2. Question (Complexity and Enumeration). Define a notion of com-
plexity H(C) of the cylinder C. Bound the number-theoretic complexity of
the numerical invariants of C, i.e. give bounds on the Weil height in terms
of the complexity H(C).

Devise an algorithm that enumerates the cylinders on (X, ω). Establish
an upper bound, perhaps polynomial, on the time needed to describe all
cylinders of bounded complexity.

In the case of surfaces (X, ω) whose orbit closure is a Teichmüller curve
whose linear field of definition is real quadratic, the above questions have
been answered by McMullen in [McM22].

Let us note that the case of (X, ω) that has period coordinates in Q, i.e.
is a ramified torus cover, can also be handled algorithmically. Therefore,
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in view of the classification of typical orbit closures in Proposition 5.1.6, it
would be particularly interesting to answer:
6.3.3. Question (Cylinders and Hilbert modular surfaces). Classify cylin-
ders on translation surfaces (X, ω) ∈ ΩM2(1, 1) that generate a Hilbert
modular surface.

This would settle Question 6.3.2 for all typical orbit closures.
The Cylinder Deformation Theorem 6.1.13, combined with an efficient

enumeration of cylinders on a surface answering Question 6.3.2, would open
the way to rigorously analyze orbit closures in a computer-aided way:
6.3.4. Question (Orbit closure enumeration). Given κ = (k1, . . . , kn), give
a terminating algorithm that enumerates all atypical orbit closures in the
stratum ΩMg(κ).

By the Finiteness Theorem 5.1.4, there are only finitely many atypical
orbit closures. In particular, the atypical locus is a finite union of connected
algebraic varieties, so at least theoretically computable. The question should
be compared to an analogous Diophantine one: give a terminating algorithm
that starting from a genus g ≥ 2 smooth algebraic curve over a number field
enumerates all its rational points, which are known to be finite a priori.

A related question is to compute orbit closures starting from given initial
data:
6.3.5. Question (Computation of orbit closure). Given a translation sur-
face (X, ω) with period coordinates in a totally real number field, or more
generally an intersection P of a plane defined over a totally real number
field with a period coordinate chart, compute the closure of this set under
GL2(R).

For the previous two questions, some algorithms have already been im-
plemented, see [HDR+22] using earlier code of Alex Eskin. It would be of
interest to prove termination, and establish upper bounds for the running
times, of these algorithms.

6.3.6. Veech surfaces. Recall that (X, ω) is called a Veech surface if its
orbit closure is a Teichmüller curve. We will call a Teichmüller curve M
absolutely atypical if there is no orbit closure M′ (perhaps a stratum) that
contains M and such that M is typical relative to M′. Note that square-
tiled surfaces can lead to atypical Teichmüller curves, if the monodromy
on the complement to the tangent space is smaller than the full symplectic
group. The other currently known examples, which are also primitive, are
provided by the Bouw–Möller family, as well as three exceptional cases
obtained from the unfolding of the triangles (3, 4, 5), (2, 3, 4), (3, 5, 7) where
an (a, b, c) triangle refers to one whose angles are proportional to the listed
numbers.
6.3.7. Question (Absolutely atypical Teichmüller curves). Are there any
other absolutely atypical primitive Teichmüller curves in any genus at all?
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