Finite-order mapping classes of del Pezzo surfaces

Seraphina Eun Bi Lee

University of Chicago

Spring Topology and Dynamics Conference March 12, 2022

• • = • • = •

Finite group actions on M

 $q: \operatorname{Homeo}^+(M) \to \operatorname{Mod}(M) := \pi_0(\operatorname{Homeo}^+(M))$

Question ((Cyclic) Nielsen realization problem)

For $g \in Mod(M)$ of order $n < \infty$, does there exist $f \in Homeo^+(M)$ of order n such that [f] = g?

Answer $(\dim_{\mathbb{R}} 2)$

Yes! (Nielsen '43) Also for $\dim_{\mathbb{C}} 1$.

What about for higher dimensional complex manifolds?

<日

<</p>

Example: order 2 diffeomorphisms on \mathbb{CP}^2

$$M = \mathbb{CP}^2.$$

Example

$$\sigma: [X:Y:Z] \mapsto [-X:Y:Z]$$

and $\sigma \in \mathsf{PGL}_3(\mathbb{C})$ which is connected so $[\sigma] = \mathsf{Id}$.

Example

$$\tau : [X : Y : Z] \mapsto [\overline{X} : \overline{Y} : \overline{Z}]$$

$$\tau_* = -\operatorname{Id} : H_2(M) \to H_2(M)$$

so $[\tau] \neq \mathsf{Id}$.

< □ > < □ > < □ > < □ > < □ > < □ >

del Pezzo surfaces

Definition

A del Pezzo surface M is a complex surface

$$M = \mathbb{CP}^1 \times \mathbb{CP}^1$$
 or $M = \mathsf{Bl}_P \mathbb{CP}^2$

where $P \subseteq \mathbb{CP}^2$ is a finite set of points in general position with $0 \leq |P| \leq 8$.

Lemma

As smooth manifolds, $BI_P \mathbb{CP}^2$ is diffeomorphic to $M_n := \mathbb{CP}^2 \# n \overline{\mathbb{CP}^2}$ with n = |P|.

A classical example – Geiser involution

 $\gamma \in \operatorname{Aut}(\operatorname{Bl}_{P} \mathbb{CP}^{2})$ $P = \{7 \text{ points in general position}\}$

Let
$$q \in \mathbb{CP}^2 - P$$
.

Set of cubic curves through $P \cup \{q\}$ = \mathbb{CP}^1 A classical example – Geiser involution

 $\gamma \in \operatorname{Aut}(\operatorname{Bl}_{P} \mathbb{CP}^{2}) \qquad P = \{7 \text{ points in general position}\}$

Let
$$q \in \mathbb{CP}^2 - P$$
.

Set of cubic curves through $P \cup \{q\}$ = \mathbb{CP}^1

Cayley–Bacharach \implies ninth base-point q' of pencil

 $\gamma(q) = q'.$

 γ extends to an order two diffeomorphism of $\mathsf{Bl}_P \mathbb{CP}^2 \cong \mathbb{CP}^2 \# 7 \overline{\mathbb{CP}^2}$.

Mapping class groups of del Pezzo surfaces

Corollary (Special case of Freedman '82, Quinn '86)

$$\mathsf{Mod}(M_n) \to \mathsf{Aut}(H_2(M_n), Q_{M_n}) \cong \mathsf{O}(1, n)(\mathbb{Z})$$

 $[f] \mapsto f_* : H_2(M_n) \to H_2(M_n)$

is an isomorphism of groups.

$$\mathsf{O}^+(1,n)(\mathbb{Z}) \leq \mathsf{O}^+(1,n)(\mathbb{R}) \cong \mathsf{Isom}(\mathbb{H}^n)$$

Vinberg: Hyperbolic reflection groups! $(2 \le n \le 9)$

Two types of elements in $Mod(M_n)$

(reducible) *g* preserves some

$$M_n \cong M \# k \overline{\mathbb{CP}^2}$$

on the level of homology

$$H_2(M_n)\cong H_2(M)\oplus H_2\left(\#k\overline{\mathbb{CP}^2}
ight).$$

(irreducible) g does not preserve any such direct sum decomposition of $H_2(M_n)$.

Seraphina Lee (Chicago)

A structure theorem for all involutions

Birational geometry: three classical involutions of $\operatorname{Bl}_P \mathbb{CP}^2$:

- Geiser involutions,
- Ø Bertini involutions, and
- e Jonquiéres involutions.

Theorem (L. '22)

A mapping class $g \in Mod^+(M_n)$ of order 2 is irreducible if and only if g is realized by a de Jonquiéres, Geiser, or Bertini involution on $Bl_P \mathbb{CP}^2$ for some $P \subseteq \mathbb{CP}^2$.

Making new actions out of old

March 12, 2022 9 / 12

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Making new actions out of old

"Equivariant connected sum"

э

< □ > < 同 > < 回 > < 回 > < 回 >

Nielsen realization for involutions

Corollary

Any element $g \in Mod(M_n)$ of order 2 is realized by a diffeomorphism $f \in Diff^+(M_n)$ of order 2.

Nielsen realization for M_2

Theorem (L. '21)

A finite subgroup $G \leq Mod(M_2)$ has a lift to $Diff^+(M_2) \leq Homeo^+(M_2)$ under $q : Homeo^+(M_2) \rightarrow Mod(M_2)$ if and only if G is realizable by an equivariant connected sum.

Corollary

- If $g \in Mod(M_2)$ has finite order n then there exists $f \in Diff^+(M_2)$ with order n such that $[f] = g \in Mod(M_2)$.
- Some finite subgroups $G \leq Mod(M_2)$ have no lift to Diff⁺(M_2).

<日

<</p>

Thank you!

3

< □ > < □ > < □ > < □ > < □ >