
J. Fractal Geom. 7 (2002), 1–62

DOI 10.4171/JFG/83

Journal of Fractal Geometry

© European Mathematical Society

Spectral decimation

for families of self-similar symmetric Laplacians

on the Sierpiński gasket

Sizhen Fang, Dylan A. King,1 Eun Bi Lee,2 and Robert S. Strichartz

Abstract. We construct a one-parameter family of Laplacians on the Sierpiński gasket

that are symmetric and self-similar for the 9-map iterated function system obtained by

iterating the standard 3-map iterated function system. Our main result is the fact that

all these Laplacians satisfy a version of spectral decimation that builds a precise catalog

of eigenvalues and eigenfunctions for any choice of the parameter. We give a number

of applications of this spectral decimation. We also prove analogous results for fractal

Laplacians on the unit interval, and this yields an analogue of the classical Sturm–Liouville

theory for the eigenfunctions of these one-dimensional Laplacians.
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1. Introduction

In the theory of analysis on fractals, the standard Laplacian on the Sierpiński

gasket first presented by Kigami [10] stands as a kind of “poster child,” as it is

nontrivial but completely understandable (See [15] for an elementary exposition).

Just as there are families of Laplacians associated to manifolds (usually described

in terms of Riemannian metrics), so there are families of Laplacians on the

Sierpiński gasket (SG). Note that SG is a self-similar fractal, characterized by

the self-similar identity

SG D
2

[

j D0

Fj .SG/; (1.1)
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where Fj are the contractions of the plane

Fj .x/ D 1

2
.x � qj / C 1

2
qj

with .q0; q1; q2/ the vertices of an equilateral triangle. The standard Laplacian �

is self-similar, meaning that

�.u ı Fj / D r�1
j .�u/ ı Fj (1.2)

for some positive coefficients rj (in this case, all rj D 5), and symmetric with

respect to the dihedral symmetry group D3 of the triangle (and hence SG). More-

over, the standard Laplacian is characterized, up to a constant, by these two prop-

erties. Is this the end of the story?

Actually not. Already in [6] it was noted that you can modify the iterated

function system (IFS) ¹Fj º to another one ¹ zFj º that composes each Fj with the

reflection preserving qj , and still generate SG by the analog of (1.1). This allows

the construction of another family of Laplacians in a very explicit fashion, but still

the standard Laplacian is the unique one that is both self-similar and symmetric.

Another way to generate SG is to take the IFS consisting of all nine compo-

sitions Fj ı Fk . The sets Fj Fk.SG/ gives a level two subdivision with respect

to the original IFS that becomes the level one subdivision for the composite IFS.

The symmetry condition says that the three outer cells Fj Fj .SG/ are equivalent,

as are the six inner cells Fj Fk.SG/ for j ¤ k. We then can construct a two-

parameter family of Laplacians that are both self-similar and symmetric. If we

add one simplifying condition that makes the renormalization coefficients in the

analog of (1.2) equal for all nine cells, then we end up with a one-parameter fam-

ily of symmetric, self-similar Laplacians. It is this family of Laplacians that we

examine in detail in this paper. The standard Laplacian belongs to this family for

the parameter choice r D 1.

A remarkable property of the standard Laplacian on SG, called spectral dec-

imation, was discovered by Fukushima and Shima [9]. It is natural to consider

SG as the limit of a sequence of graphs, and the standard Laplacian as a limit of

graph Laplacians. In particular, there is a straightforward algorithm to construct

harmonic functions on the graph approximations. Spectral decimation allows you

to explicitly construct eigenfunctions and eigenvalues on SG as limits of eigen-

functions and eigenvalues on the graph approximations. A key result in this paper

is the discovery of an analog of spectral decimation for the whole family of Lapla-

cians we consider. This is quite surprising, since there are many fractal Laplacians
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that are extremely symmetric but do not satisfy spectral decimation (see [1] for the

case of the pentagasket). Using spectral decimation, we are able to answer many

interesting questions about the spectra of our family of Laplacians.

The construction of the standard Laplacian on SG is an exact analog of the

construction of the second derivative on the unit interval as a limit of second

difference quotients. In a similar way, there are analogs to our twice-iterated gasket

construction on the unit interval, based on the self-similar identity

I D
3

[

iD0

Fi .I /

for

Fi .x/ D 1

4
x C i

4

and a system of weights that treats inner and outer maps separately. In fact, we

present our results for these one-dimensional fractal Laplacians first since the

description is simpler and we can say more in this context. In particular, the

eigenfunctions for these Laplacians satisfy analogs of Sturm–Liouville theory

concerning locations of zeros and local extrema. It would be fair to think of them

as forming a family of special functions analogous to ¹sin.k�x/º.
Sections 2, 3, and 4 of this paper are devoted to the family of Laplacians on the

interval, with the description of the Laplacians in Section 2, the theory of spectral

decimation in Section 3, and numerical data in Section 4. This data is selected

from the website [8], which also contains the programs used to generate the data.

In Section 5 we prove the Sturm–Liouville properties of our one-dimensional

eigenfunctions. Sections 6, 7, and 8 present the analogs of sections 2, 3, and 4 for

the SG Laplacians. In Section 9 we discuss a method we call threshold subdivision

to create different Laplacians using the same parameters but subdividing (or not)

cells at one level to create cells of the next level based on the measure of the cell.

We present experimental evidence that the Laplacians obtained are different. In

Section 10 we study hierarchical Laplacians which are not self-similar but vary

the parameters at different levels of the construction, as in [7]. In Section 11 we

present data for solutions of spacetime equations, such as the heat equation and

the wave equation. See also [3] for related results.

Although we present a large amount of numerical data, most of our important

results are given complete proofs. To some extent this disguises the experimental

nature of our work, since the numerical data led us to conjecture the results that

we were then able to prove. The reader should consult [11] or [15] for the standard

theory of the Laplacian on SG.
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2. Laplacians on the interval

To construct the interval model, we start with a unit interval I D Œ0; 1� and the

IFS
®

Fi

ˇ

ˇ Fi .x/ D x
4

C i
4
; i D 0; 1; 2; 3

¯

. This gives us the following self-similar

identity on the interval

I D
3

[

iD0

Fi .I /:

In other words, we divide the interval into subintervals of length
�

1
4

�m
on each

level, so that at level m the subintervals are I
.m/

k
D

�

k
4m ; kC1

4m

�

, where 0 6 k 6

4m � 1 (see Figure 1).

k�1
4m

I
.m/

k�1

k
4m

I
.m/

k

kC1
4m

Figure 1. Two adjacent m-cells.

After constructing the model we can assign measure and resistance to the

interval. On level 1, we assign a measure p
2

(where 0 < p < 1) to the outer

intervals I
.1/
0 and I

.1/
3 and a measure 1�p

2
to the inner intervals I

.1/
1 and I

.1/
2 (as

in Figure 2). Every time we take a cell from level m and subdivide it into 4 cells

on level m C 1, we split the measure of the m-cell in the same proportions

�.I
.mC1/

4kCj
/ D

8

ˆ

<

ˆ

:

p

2
�.I

.m/

k
/; j D 0; 3;

1 � p

2
�.I

.m/

k
/; j D 1; 2:

p
2

q
2

1�p
2

1�q
2

1�p
2

1�q
2

p
2

q
2

Figure 2. Level 1.

Let the function i be defined as the following. If A D Fi1 ı � � � ı Fim.I / is a

cell on level m,

i.A/ D #¹ij j ij D 0; 3º
i.e. i.A/ is the number of “outside” choices during contraction to cell A D I

.m/

k
.

Then

�.A/ D
�p

2

�i.A/�1 � p

2

�m�i.A/

D pi.A/.1 � p/m�i.A/

2m
:
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Now we assign a point mass �
.m/

k
to each point x D k

4m . By averaging the

measures of the intervals that meet at x we get

�
.m/

k
D

�.I
.m/

k
/ C �.I

.m/

k�1
/

2
:

We will approximate
R

fd� by
P4m�1

kD1 f
�

k
4m

�

�
.m/

k
.

Next choose another parameter q with 0 < q < 1 and define resistance R.I
.m/

k
/

in the same manner as the measure

R.I
.m/

k
/ D qi.k/.1 � q/m�i.k/

2m
:

The conductances are the reciprocals of resistance, namely

c.I
.m/

k
/ D 1

R.I
.m/

k
/
:

The energy is defined

Em.f / D
4m�1
X

kD0

c.I
.m/

k
/
�

f
� k

4m

�

� f
�k C 1

4m

��2

;

E.f / D lim
m!1

Em:

With this definition of energy, we have the weak formulation of the Laplacian:

E.u; v/ D �
Z

f vd�

where u; v 2 domE and f D �.p/u, the Laplacian with parameter p. In addition,

the pointwise Laplacian is given by

��.p/
m f

� k

4m

�

D 1

�m
k

h

c.I
.m/

k
/
�

f
� k

4m

�

� f
�k C 1

4m

��

C c.I
.m/

k�1
/
�

f
� k

4m

�

� f
�k � 1

4m

��i

:

This is a weighted average of the changes in f over the two intervals intersecting

at k
4m . Let A0 D

�

k�1
4m ; k

4m

�

and A1 D
�

k
4m ; kC1

4m

�

, the m-cells containing k
4m .

Then,

��.p/
m f

� k

4m

�

D 2 � 4m

pi.A1/.1 � p/m�i.A1/ C pi.A0/.1 � p/m�i.A0/

h 1

qi.A1/.1 � q/m�i.A1/

�

f
� k

4m

�

� f
�k C 1

4m

��

C 1

qi.A0/.1 � q/m�i.A0/

�

f
� k

4m

�

� f
�k � 1

4m

��i

:

(2.1)
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Note that the Laplacian is renormalized by p
2

� q
2

or 1�p
2

� 1�q
2

depending on the

location within the interval. In order for the renormalization factor to be constant

across the interval, we need p
2

� q
2

D 1�p
2

� 1�q
2

, or p C q D 1. We will be using

this property throughout this paper for the interval model.

We will impose Dirichlet boundary conditions, namely

f .0/ D 0 and f
�4m

4m

�

D 0:

Then ��
.p/
m can be represented as a self adjoint (with respect to the pointmasses)

matrix of size .4m � 1/ � .4m � 1/, which has 4m � 1 eigenvectors with positive

eigenvalues. In other words,

� �.p/
m f

� k

4m

�

D �f
� k

4m

�

: (2.2)

We will abbreviate �
.p/
m to �m throughout the rest of the text when the choice

of parameter p is clear.

We wish to study the continuous eigenfunctions and eigenvalues of the Lapla-

cian as the limit of the discrete eigenfunctions and eigenvalues given by the graph

approximations of the unit interval.

3. Spectral decimation on the interval

Our aim is to replicate the spectral decimation on the standard interval model

for our twice-iterated interval model. Here we start by simplifying the pointwise

Laplacian formula (2.1). Letting y1 < z < y2 2 Vm, as diagrammed in Figure 3

and p C q D 1, there are three cases for pointwise Laplacian,

� if i.Œz; y2�/ D i.Œy1; z�/, then

� �mf .z/ D
� 4

pq

�m

.2f .z/ � f .y1/ � f .y2//I (3.1a)

� if i.Œz; y2�/ D i.Œy1; z�/ C 1, then

� �mf .z/ D
� 4

pq

�m

.2f .z/ � 2qf .y1/ � 2pf .y2//I (3.1b)

� if i.Œz; y2�/ D i.Œy1; z�/ � 1, then

� �mf .z/ D
� 4

pq

�m

.2f .z/ � 2pf .y1/ � 2qf .y2//: (3.1c)
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We know that the cases are exhaustive by the following lemma:

Lemma 3.1. Let x 2 Vm. Then ji.A0/ � i.A1/j � 1 for A0; A1 the two cells with

junction point x.

Proof. We proceed by induction.

Base case. V1 satisfies this property.

Inductive step. Given that the claim holds on level Vn, the extension to

level VnC1 involves subdividing each n-cell via the process defined in Section 2.

Letting x 2 VnC1, there are two cases.

(a) x 2 Vn. Let A0; A1 be the two n-cells with x as their junction point. By

inductive hypothesis, ji.A0/ � i.A1/j � 1. By the design of the subdivision

process, the two (n C 1)-cells with x as junction point in VnC1 are Fj A0 and

FkA1 with j ¤ k. Then i.Fj A0/ D i.A0/ C 1 and i.FkA1/ D i.A1/ C 1, so

ji.Fj A0/ � i.FkA1/j � 1 and the claim holds on VnC1.

(b) x … Vn. Therefore x must be in a subdivided n-cell, A. The two .n C 1/-cells

with junction point x are Fj A and FkA by the subdivision scheme. Since

i is additive over words, ie i.Fj A/ D i.Fj I / C i.A/, computing i on these

cells yields i.Fj I / C i.A/ and i.FkI / C i.A/. The value of i.Fj I / must

either be 0 (i D 0; 3) or 1 (i D 1; 2), and similarly for i.FkI /. Then

j.i.Fj I / C i.A// � .i.FkI / C i.A//j D ji.Fj I / � i.FkI /j � 1 and so the

claim holds on VnC1. �

For any given eigenvalues �m and eigenfunctions fm.x/ of the Laplacian on

level m, we want to be able to extend the eigenfunctions to level m C 1, as well as

give a new eigenvalue �mC1 such that the following equation holds

� �mC1fmC1.x/ D �mC1fmC1.x/ for all x 2 VmC1 n V0: (3.2)

For now, we will omit the renormalization factor
�

4
pq

�m
, but we will rescale

our eigenvalues later.

As shown in Figure 3, x1, x2 are our points on the previous level, and y1, y2

and z are new points that are born on the next level. Note that we will drop the

f in front of the variables from here for the sake of simplicity. Evaluating (3.2)

on the three new points gives us three equations and six variables, meaning we
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can solve for the values at y1, y2 and z in terms of x1, x2; �mC1 and p (where

q D 1 � p as usual). Solutions for these values are as follows:

y1.x1; x2; �mC1; p/ D
�4pqx2 � 2px1.2 C 2p � 4�mC1 C �2

mC1/

.�4q C .�mC1 � 2/2/.�mC1 � 2/
; (3.3a)

z.x1; x2; �mC1; p/ D 2p.x1 C x2/

.�mC1 � 2/2 � 4q
; (3.3b)

y2.x1; x2; �mC1; p/ D
�4pqx1 � 2px2.2 C 2p � 4�mC1 C �2

mC1/

.�4q C .�mC1 � 2/2/.�mC1 � 2/
: (3.3c)

x1 y1 z y2 x2

Figure 3. A single m-cell.

In order for the equations above to hold we need the denominators to be

nonzero, and thus � D 2.1 � p
q/; 2.1 C p

q/; 2 are our forbidden eigenvalues.

We must verify that this extension is still an eigenfunction at x0 2 Vm with the

new eigenvalue �mC1. We must consider the two neighboring m-cells around x0

as in Figure 4. Although there are three different cases depending on the two m-

cells around x0, the algebraic result is the same for all three cases. In the simplest

case, we are given

�mx0 D
� 4

pq

�m

.2x0 � x1 � x0
1/

by the m-level eigenfunction equation, and want to verify

�mC1x0 D
� 4

pq

�mC1

.2x0 � y2.x1; x0; �mC1; p/ � y1.x0; x0
1; �mC1; p//:

x1 y1 x0 y0
1

x0
1

Figure 4. The m-cells around x0.

These two conditions yield �m as a quartic function of �mC1 and p.

�m.�mC1; p/ D .4 � �mC1/.�mC1 � 2/2�mC1

4pq
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All eigenvalues need to be scaled by a factor of
�

4
pq

�mC1
. Since p and q are

interchangeable in the quartic equation and the scaling factor, we will see a pattern

of equal eigenvalues when we interchange p and q in Section 4.

Now we want to determine the eigenfunctions and eigenvalues that are born on

each level. We can describe all the eigenfunctions that are born with the following

proposition and corollary.

Proposition 3.2. If fm is a Dirichlet eigenfunction with eigenvalue
�

4
pq

�m
� on

level m, then fmC1 defined the following way is an eigenfunction with eigenvalue
�

4
pq

�mC1
� on level m C 1: if fm is skew symmetric about x D 1

2
,

fmC1.x/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

fm ı F �1
0 .x/ if x 2 F0.I /;

p

q
fm ı F �1

1 .x/ if x 2 F1.I /;

p

q
fm ı F �1

2 .x/ if x 2 F2.I /;

fm ı F �1
3 .x/ if x 2 F3.I /:

If fm is symmetric about x D 1
2
,

fmC1.x/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

fm ı F �1
0 .x/ if x 2 F0.I /;

�p

q
fm ı F �1

1 .x/ if x 2 F1.I /;

p

q
fm ı F �1

2 .x/ if x 2 F2.I /;

�fm ı F �1
3 .x/ if x 2 F3.I /:

Proof. First, we note that the two cases given (symmetric or skew symmetric)

are exhaustive, since we see that by the eigenfunction extension equations from

decimation, symmetric (or skew symmetric) functions will be extended so that

the extension is symmetric or skew symmetric, and all eigenfunctions born also

satisfy that condition.

In both cases, fmC1 is (locally) skew symmetric about y 2 V1 for all m. For all

y 2 VmC1, we want to verify that fmC1.y/ D
�

4
pq

�mC1
�m. There are two cases

for y 2 VmC1: y 62 V1 or y 2 V1.
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(a) Consider y 62 V1 and let fm be an eigenfunction on level m with eigenvalue
�

4
pq

�m
�m. For all such y, there is some i and x ¤ 0; 1 such that y D Fi .x/.

If i D 0; 3,

�mC1fmC1.Fi .x//

D 4

pq
�mC1.fmC1 ı Fi /.x/ (by the scaling law)

D 4

pq
�m.˙fm.x// .by definition of fmC1/

D
� 4

pq

�� 4

pq

�m

.��/.˙fm.x// .by assumption/

D
� 4

pq

�mC1

.��/fmC1.Fi .x// .by definition of fmC1/:

A similar computation holds for i D 1; 2.

(b) Consider y 2 V1 and let fm be an eigenfunction on level m with eigenvalue
�

4
pq

�m
�m as before. Recall the pointwise Laplacian formula (3.1) and con-

sider y D 1
4

and its neighbors, y1 and y2 (where y1 < y < y2).

� �mC1fmC1

�1

4

�

D
� 4

pq

�mC1�

2fmC1

�1

4

�

� 2pfmC1.y1/ � 2qfmC1.y2/
�

D
� 4

pq

�mC1�

2fmC1

�1

4

�

� 2pfmC1.y1/ C 2q
�p

q

�

fmC1.y1/
�

D
� 4

pq

�mC1

2fmC1

�1

4

�

D 0:

Since we know that fmC1.y2/ D �p
q

fmC1.y1/ by skew symmetry, and

fmC1

�

1
4

�

D 0 by the definition of fmC1. Similarly, the eigenvalue equation

holds at x D 3
4
. At x D 1

2
, since by definition, fmC1 is skew symmetric

about x D 1
2

and fmC1

�

1
2

�

D 0, the equation holds as well. �

Corollary 3.3. Eigenvalues 2.1 � p
q/, 2, 2.1 C p

q/, scaled appropriately, are

born on each level m.

Proof. To confirm that 2.1 � p
q/ and 2.1 C p

q/ never arise from as a solution

to the quartic from decimation, we see that both �m D 2.1 � p
q/ and �m D

2.1 C p
q/ give �m�1 D 4, meaning that �m�2 D 0. �m D 2 gives �m�1 D 0.
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Therefore 2.1�p
q/ and 2.1Cp

q/ are forbidden eigenvalues (at least for Dirichlet

eigenfunctions).

Proof by induction on m. Base case: We give three eigenfunctions for level

m D 1.

g1.x/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

0 if x D 0;

p
q if x D 1

4

1 if x D 1

2
;

p
q if x D 3

4
;

0 if x D 1I

g2.x/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

0 if x D 0;

1 if x D 1

4
;

0 if x D 1

2
;

�1 if x D 3

4
;

0 if x D 1I

g3.x/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

0 if x D 0;

p
q if x D 1

4
;

�1 if x D 1

2
;

p
q if x D 3

4
;

0 if x D 1:

By the proposition above, we can construct new eigenfunctions on any level m for

which the eigenvalues stay the same, i.e. 2.1 � p
q/; 2; 2.1 C p

q/, scaled up, so

these are the eigenvalues that are born at every level. �

As usual, we finish with a counting argument to ensure that all eigenvalues

and eigenfunctions have been accounted for. On level m C 1, we should have

4mC1 �1 pairs of eigenvalues and eigenfunctions since #.VmC1 nV0/ D 4mC1 �1.

From decimating the 4m � 1 eigenfunctions from level m, we obtain 4.4m � 1/ D
4mC1 � 4 new eigenfunctions. On each level, we account for 3 new eigenvalues

and functions that are born. Adding these give 4mC1�4C3 D 4mC1�1 D #VmC1,

meaning that this process accounts for all eigenfunctions and values on level mC1.

These are the four maps that take �m to four values of �mC1:

ˆ1.�m/ D 2 �
q

2 C 2
p

1 � p�m C p2�m; (3.4a)

ˆ2.�m/ D 2 �
q

2 � 2
p

1 � p�m C p2�m; (3.4b)
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ˆ3.�m/ D 2 C
q

2 � 2
p

1 � p�m C p2�m; (3.4c)

ˆ4.�m/ D 2 C
q

2 C 2
p

1 � p�m C p2�m: (3.4d)

In the following proposition, we study how the eigenvalues on level m C 1 are

ordered.

Proposition 3.4. Let s be the number of Dirichlet eigenvalues on level m, given

by s D #.Vm n V0/ D 4m � 1. Then the sequence of eigenvalues on level m C 1 in

strictly increasing order is the following:

ˆ1.�
.m/
1;p /; : : : ; ˆ1.�.m/

s;p /; 2.1 � p
q/; ˆ2.�.m/

s;p /; : : : ; ˆ2.�
.m/
1;p/; 2;

ˆ3.�
.m/
1;p /; : : : ; ˆ3.�.m/

s;p /; 2.1 C p
q/; ˆ4.�.m/

s;p /; : : : ; ˆ4.�
.m/
1;p /:

Furthermore, all eigenvalues have multiplicity 1.

Proof. We see that the domain of these functions are � 2 .0; 4/ (since the

maximum that can be attained from applying the functions on each level ap-

proaches 4), and since ˆ1; ˆ3 are increasing and ˆ2; ˆ4 are decreasing, the min-

imum for ˆ1; ˆ3 and the maximum for ˆ2; ˆ4 occur at � D 1
p.1�p/

. Also,

ˆ4 � ˆ3 � ˆ2 � ˆ1, i.e. for all x; y in the domain, ˆ4.x/ � ˆ3.y/, etc.

See Figure 5 for a graph showing this in the case of p D 0:3.

Out[32]=

1 2 3 4
λm

1

2

3

4

λm+1

Φ1

Φ2

Φ3

Φ4

Figure 5. ˆ1.�/; ˆ2.�/; ˆ3.�/; andˆ4.�/ for p D 0:3.
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Inductively, since on level 1, the eigenvalues 2; 2.1 � p
q/; 2.1 C p

q/ all

have multiplicity 1, all eigenvalues generated by the above 4 equations on level

m will also have multiplicity 1, and we need only to check where the eigenvalues

born on level m fall into the spectrum. First, for � D 2: we can see that since

ˆ3.0/ D ˆ2.0/ D 2, and since �m�1 ¤ 0, we see that 2 has multiplicity 1, and

that ˆ3 > 2 > ˆ2. Similarly, consider ˆ2; ˆ1; and 2.1 � p
q/. If 2p � 1 > 0,

since ˆ2 is decreasing, consider

ˆ2.max ˆi / D ˆ3.4/

D 2 �
q

2 � 2
p

1 � 4p C 4p2

D 2 �
p

2 � 2.2p � 1/ D 2 �
p

4 � 4p

D 2.1 � p
q/;

and since �m�1 D 4 H) �m�2 D 0, this means that 2.1 � p
q/ < min ˆ2.

Otherwise, if 2p � 1 < 0, we see that 2.1 � p
q/ > max ˆ1 by computations

similar to those before. Similar results can also be shown for 2.1 C p
q/. Finally,

ˆ1.�/ < 2.1 � p
q/ < ˆ2.�/ < 2 < ˆ3.�/ < 2.1 C p

q/ < ˆ4.�/

for all relevant �. We know that ˆ1; ˆ3 are increasing and ˆ2; ˆ4 are decreasing,

so if ¹�.m/
n;pº denote an ordered sequence of eigenvalues on level m for a particular

choice of p, the sequence for level m C 1 would look like this:

ˆ1.�
.m/
1;p /; : : : ; ˆ1.�.m/

s;p /; 2.1 � p
q/; ˆ2.�.m/

s;p /; : : : ; ˆ2.�
.m/
1;p/; 2;

ˆ3.�
.m/
1;p /; : : : ; ˆ3.�.m/

s;p /; 2.1 C p
q/; ˆ4.�.m/

s;p /; : : : ; ˆ4.�
.m/
1;p /;

where s is the number of eigenvalues on level m. �

We would like to define

� D lim
m!1

� 4

pq

�m

�m

with �m a sequence defined by repeated application of the ˆ mappings, and all

but a finite number ˆ1. Expressing ˆ1 in Taylor Series form yields

ˆ1.x/ D 4

pq
x C O.x2/

and so as � ! 0, the higher order terms will fall away, causing �m D O
��

pq
4

�m�

as m ! 1. Then the limit defined above clearly exists.

With the above information, we may state the following theorem summarizing

these results. The proof lies in the work shown above.
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Theorem 3.5 (interval spectral decimation). For any p, given um, an eigenfunc-

tion with eigenvalue �m on Vm, we may choose �mC1 as one of the values given

in (3.4), assuming that �mC1 ¤ 2; 2.1 ˙ p
q/. We can then extend um to VmC1

according to (3.3) to obtain an eigenfunction on level m C 1. Using Corollary 3.3

and counting arguments, this process produces a complete spectra on level mC1.

4. Data on the interval

In this section, we will present the experimental data produced for the interval for

p D 0:1; 0:9.

4.1. Eigenvalues and eigenfunctions. In Table 1 we have two tables of eigenval-

ues of the Dirichlet Laplacian on I the first three levels of graph approximation.

The table on the left presents the eigenvalues for p D 0:1, and the table on the

right presents the eigenvalues for p D 0:9.

Notice that, at each level, there exist identical eigenvalues for p D 0:1 and

p D 0:9, and the locations (n) of identical eigenvalues are 8k�2, 8kC2, 8.2kC1/,

8.8k C 4/ with periodic period 64. This pattern occurs for all interchanged pairs

of p and q as far as the property p C q D 1 is preserved. We give a generalized

description of this pattern in the following corollary of Proposition 3.4.

Corollary 4.1. Let �
.m/
n;p denote the nth eigenvalue of �

.p/
m and let pCq D 1. Then

�
.m/
n;p D �

.m/
n;q if n � 4a

2
mod 4a for some a � m.

Proof. By induction. Base case is trivial on level 1, where �
.1/
2;p D �

.1/
2;q . Assume

the claim holds on level m � 1. If n � 4a

2
mod 4a where a < m, it is easy to see

that this will still hold in level m for all a < m by the way that the four mappings

above act on the eigenvalues on level m � 1. If i D 1; 3,

ˆi .�
.m�1/
n;p / D �

.m/

nC.i�1/.sC1/;p
D �

.m/

nC.i�1/.sC1/;q

and if i D 2; 4,

ˆi .�
.m�1/
n;p / D �

.m/

�nCi.sC1/;p
D �

.m/

�nCi.sC1/;q

where s denotes the number of eigenvalues on level m � 1. By assumption,

n C .i � 1/.s C 1/ � 4a

2
mod 4a and �n C i.s C 1/ � 4a

2
mod 4a where a < m,

since s D 4m�1 � 1.

Now we only need to account for the new eigenvalue born on level m, which

will occur at the middle of the spectrum. This is � .4m�1/C1
2 ;p

, which is equal to

� .4m�1/C1
2

;q
since both are equal to 2

�

4
pq

�m
. Since this is 4m

2
mod 4m, we see that

the corollary holds for all a � m. �
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Table 1a. Eigenvalues of the Laplacian on the interval. Left: p D 0:1. Right: p D 0:9.

n m D 1 m D 2 m D 3

1 4.561485 4.574716 4.575014

2 88.88889 94.42371 94.55094

3 173.2163 196.7487 197.3024

4 202.7326 203.3207

5 2719.420 2832.159

6 3092.044 3239.248

7 3760.552 3982.276

8 3950.617 4196.609

9 4140.683 4412.348

10 4809.191 5182.667

11 5181.815 5620.117

12 7698.502 8744.386

13 7704.486 8752.202

14 7806.811 8886.180

15 7896.660 9004.313

16 9010.340

17 120076.9

18 120432.6

19 120839.3

20 120863.1

21 131514.8

22 133237.8

23 136467.8

24 137424.2

25 138399.9

26 142011.9

27 144173.8

28 167135.6

29 167261.5

30 169821.6

31 174315.5

32 175583.0

n m D 1 m D 2 m D 3

1 60.77975 63.28154 63.33865

2 88.88889 94.42371 94.55094

3 116.9980 126.9341 127.1642

4 2701.322 2812.513

5 2957.227 3091.390

6 3092.044 3239.248

7 3246.346 3409.282

8 3950.617 4196.609

9 4654.888 5003.240

10 4809.191 5182.667

11 4944.007 5340.254

12 5199.912 5641.515

13 7774.300 8843.549

14 7806.811 8886.180

15 7837.953 8927.074

16 120058.8

17 120309.2

18 120432.6

19 120561.7

20 131432.3

21 132608.6

22 133237.8

23 133966.5

24 137424.2

25 141150.4

26 142011.9

27 142780.0

28 144282.1

29 168901.7

30 169821.6

31 170867.2

32 175583.0
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Table 1b. Eigenvalues of the Laplacian on the interval. Left: p D 0:1. Right: p D 0:9.

n m D 1 m D 2 m D 3

33 176850.5

34 181344.4

35 183904.5

36 184030.4

37 206992.2

38 209154.1

39 212766.1

40 213741.8

41 214698.2

42 217928.2

43 219651.2

44 230302.9

45 230326.7

46 230733.3

47 231089.1

48 342155.6

49 342161.7

50 342279.8

51 342413.8

52 342421.6

53 345545.9

54 345983.3

55 346753.6

56 346969.4

57 347183.7

58 347926.7

59 348333.8

60 350962.7

61 350968.7

62 351071.4

63 351161.4

n m D 1 m D 2 m D 3

33 180298.7

34 181344.4

35 182264.3

36 206883.9

37 208386.0

38 209154.1

39 210015.5

40 213741.8

41 217199.5

42 217928.2

43 218557.4

44 219733.7

45 230604.3

46 230733.3

47 230856.8

48 231107.2

49 342238.9

50 342279.8

51 342322.4

52 345524.5

53 345825.7

54 345983.3

55 346162.7

56 346969.4

57 347756.7

58 347926.7

59 348074.6

60 348353.5

61 351038.8

62 351071.4

63 351102.6
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The graph of ˆi in Figure 5 shows that there are gaps in the mappings of

eigenvalues from level m to m C 1 at .ˆ1.4/; ˆ2.4// [ .ˆ3.4/; ˆ4.4//, and we

know that no eigenvalues are born in those intervals at any level. These gaps can

be observed in the experimental data as well.

Figure 6 shows all three eigenfunctions of the graph Laplacian at level 1 of

the standard case when p D 0:5, where �i labeled below each graph are the

eigenvalues associated with each eigenfunction. Figure 7 presents the first six

eigenfunctions for the same value of p but on a higher level, m D 5. As we

can see, the eigenfunctions on the interval of the standard case are trigonometric

functions.

Figures 8 and 9 are the eigenfunction plots for the interval with m D 5 but

different values of p. The value of p for figures 8 and 9 are 0:1 and 0:9, respec-

tively. The eigenfunctions still resembles the trigonometric functions although not

as much as the standard case.

4.2. Eigenvalue counting function and Weyl plot. We define the eigenvalue

counting function:

N.x/ D #¹� j � � x; for all eigenvalues �º (4.1)

Figure 10 shows eigenvalue counting functions of p D 0:1 and p D 0:9 at

level 5. The eigenvalue counting function plots of every pair of interchanged p

and q (for example, p D 0:1 and p D 0:9) look almost identical due to the set of

matching eigenvalues.

By linear regression on a log-log plot, we can obtain numerical estimates for

the classic associated power ratio ˛, and then we can compute the Weyl ratio

W.x/ D N.x/
x˛ .

However, besides the numerical approach, we also have an algebraic expres-

sion for ˛. At level m the Laplacian renormalization factor is
�

4
pq

�m
, and thus

N
��

4
pq

�m�

� 4m. Therefore . 4
pq

/m˛ � 4m, and we get

˛ D log 4

log
�

4
pq

� :

Figure 11 shows the Weyl plots of p D 0:1 and p D 0:9 at level 5. The power

ratio ˛ is labeled below the x-axis of each graph. Note that p and q also enter the

expression for ˛ symmetrically.
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Figure 6. First 3 Dirichlet eigenfunctions on the interval on level m D 1 for p D 0:5

(standard case, appx. sine).
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Figure 7. First six eigenfunctions on the interval on level m D 5 for p D 0:5 (standard

case).
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Figure 8a. First 16 eigenfunctions on the interval on level m D 5 for p D 0:1.
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Figure 8b. First 16 eigenfunctions on the interval on level m D 5 for p D 0:1.
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Figure 9a. First 16 eigenfunctions on the interval on level m D 5. p D 0:9.
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Figure 9b. First 16 eigenfunctions on the interval on level m D 5. p D 0:9.
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Figure 10. Counting functions on the interval on level m D 5. Left: p D 0:1. Right:

p D 0:9.
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Figure 11. Weyl plots on the interval at level m D 5. Left: p D 0:1. Right: p D 0:9.

4.3. Limiting Laplacians. Having developed spectral decimation on the inter-

val, we would like to describe the behavior in the limiting cases, where p ! 0 or

p ! 1. We begin with an analysis of the eigenvalue distribution.

For both limiting cases, the renormalization constant 4
pq

is unbounded, and

so any eigenvalues that are to remain bounded (with respect to p) must be very

small. Considering the eigenvalues that are born on each level,
�

4
pq

�m
2 and

�

4
pq

�m
2.1 C p

q/ are both unbounded for both limiting cases. In the case of the

first eigenvalue,

lim
p!0;m!1

� 4

pq

�m

ˆm
1 .2.1 � p

q// D 4;

lim
p!1;m!1

� 4

pq

�m

ˆm
1 .2.1 � p

q// D 1;

the behavior is different for the two limiting cases. This is verified experimentally

in Table 2.
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Table 2. Eigenvalues of limiting Laplacians on the interval.

p D 10�2 p D 10�4 p D 10�5

�1 4:0507 4:0005 4:0000

�2 813:1334 8:0013 � 104 8:0001 � 105

�3 1632:434 1:6003 � 105 1:6000 � 106

�4 1636:588 1:60004 � 105 1:6000 � 106

p D 1 � 10�2 p D 1 � 10�4 p D 1 � 10�5

�1 731:361 7:9213 � 104 7:9748 � 105

�2 813:1334 8:0013 � 104 8:0001 � 105

�3 895:009 8:0813 � 104 8:0254 � 105

�4 2:9385 � 105 3:1686 � 109 3:1899 � 1011

Patterns also develop in the relationships of the unbounded eigenvalues – these

will be addressed in the upcoming section. The behavior of the eigenfunctions

associated with these eigenvalues is complex and is connected to the sequence

of ˆ maps used to reach each individual eigenvalue. However, here we provide

a clear analysis of a single example – the eigenfunction associated with �1 D 4

as p ! 0. We can explicitly take the limits of the four eigenfunction extension

formulas as p ! 0. Writing the extensions to y1; z; and y2 as functions of values

x1; x2; p; �,

lim
p!0

y1.x1; x2; p; ˆ1.2.1 �
p

1 � p/// D x1 C x2

2
;

lim
p!0

z.x1; x2; p; ˆ1.2.1 �
p

1 � p/// D x1 C x2

2
;

lim
p!0

y2.x1; x2; p; ˆ1.2.1 �
p

1 � p/// D x1 C x2

2
:

Here we use ˆ1.2.1 �
p

1 � p/ as the eigenvalue because this will lead us

to � D 4. Since the Dirichlet eigenfunction associated with this eigenvalue on

level 1 is uniformly 1 on 1
4
; 1

2
; 3

4
, this extension algorithm produces two Cantor

functions, joined by an interval of uniformly 1. These theoretical results are

supported numerically in Figure 12, where the Devil’s Staircase is clearly visible

on the interval
�

0; 1
4

�

, and again in reverse on
�

3
4
; 1

�

.

Another observation is that the miniaturization algorithm on eigenfunctions

that unites 4 copies of an eigenfunction has interesting limiting behavior. The

ratio p
q

used in the piecewise definition will go to 0 with p ! 0 and go to 1 with

p ! 1. After normalization, this causes eigenfunctions produced in this manner

to have support limited to the inner half of the interval as p ! 1 and support

limited to the outer quarters of the interval as p ! 0.
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Figure 12. Ground state eigenfunction for p D 0:001, m D 4.

4.4. Ratios of eigenvalues. We may tackle the behavior of unbounded eigenval-

ues by instead examining their behavior using the ratios between eigenvalues – this

effectively removes the renormalization constant by division. In the standard case,

taking ratios of squares of integers forms a dense set. The eigenfunctions that are

born on level m, 2.1 � p
q/; 2; 2.1 C p

q/ will converge to 0; 2; 4 as p ! 0 and

2; 2; 2 as p ! 1. The eigenvalues produced through decimation are given by

ˆ1; ˆ2; ˆ3; ˆ4 applied to eigenvalues, but explicitly taking limits of these maps

gives us values independent of the eigenvalue. Specifically,

lim
p!0

¹ˆ1; ˆ2; ˆ3; ˆ4º D ¹0; 2; 2; 4º;

lim
p!1

¹ˆ1; ˆ2; ˆ3; ˆ4º D ¹0; 2; 2; 4º:

Then, excepting larger ratios derived from comparing 2 or 4 to values near 0, we

expect the set of ratios to approach the set of fractions obtained by choosing from

¹2; 4º, namely
®

1
2
; 1; 2

¯

. Indeed, we find numerical evidence supporting this claim,

visible in Figure 13.

5. Zeros and extrema of eigenfunctions on the interval

The eigenfunctions of the standard Laplacian on the interval are well stud-

ied as the eigenfunctions of the second derivative. They are a special case of

Sturm–Liouville equations, which are second-order homogeneous linear differen-

tial equations of form

d

dx

h

p.x/
du

dx

i

C Œ��.x/ � q.x/�u D 0; (5.1)
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Figure 13. Eigenvalue ratios for p D 1
2

, p D 0:0001, p D 0:999.

which yield the Laplacian equation if p.x/ D 1, �.x/ D 1, and q.x/ D 0. Studying

eigenfunctions, i.e. sine curves, in this way allows us to characterize them by their

zeros and extrema. Classic Sturm–Liouville theory proves the following theorem

to do this:

Theorem 5.1 (Sturm comparison theorem). Let P.x/ � P1.x/ > 0 and Q1.x/ �
Q.x/ in the differential equations

d

dx

�

P.x/
du

dx

�

C Q.x/u D 0; (5.2)

d

dx

�

P1.x/
du1

dx

�

C Q1.x/u1 D 0: (5.3)

Then, between any two zeros of a nontrivial solution u.x/ of the first differential

equation, there lies at least one zero of every solution of the second differential

equation, except when u.x/ � cu1.x/. This implies P � P1 and Q � Q1, except

possibly in intervals where Q � Q1 � 0.

It follows from the Sturm Comparison theorem that if we have two eigenfunc-

tions u1; u2 of the standard Laplacian on the interval such that

��u1 D �1u1; (5.4)

��u2 D �2u2; (5.5)

where �1; �2 are constants, if �2 > �1 > 0, between every pair of zeros of u2, u1

will also have at least one zero. This is a special case of the theorem. It is easy to

verify this result since we know that the eigenfunctions for the standard Laplacian

are of form f .x/ D sin.k�x/.

We establish an analogous result to the special case of the Sturm comparison

theorem for all �.p/ in the theorem below. The proof of Theorem 5.1 involves
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linear operators that, when twice iterated, equal the Laplacian (i.e. the second

derivative) and classic trigonometric functions that allow one to exploit useful

facts about their zeros. We were not able to employ such strategies, as we lacked

analogous notions of derivative and trigonometric functions that would help us.

Therefore, the proof below uses different techniques than those used in classic

Sturm–Liouville theory. We note that similar results for related Laplacians have

been obtained in [4].

Theorem 5.2. Let �i be the i th eigenvalue and fi be the eigenfunction for �i .

(a) For any eigenfunction f of the interval, there is exactly one local extremum

between two consecutive zeros.

(b) fi has i � 1 zeros.

(c) If �i < �j and xk ; xkC1 are consecutive zeros of fi , then fj has at least one

zero in Œxk; xkC1�.

Proof. (a) If f .x/ is a local maximum, then ��f .x/ > 0. Since � > 0 and

��f .x/ D �f .x/, f .x/ > 0. Similarly, if f .x/ is a local minimum, f .x/ < 0.

Since if z; w are consecutive zeros, f .a/ > 0 for all z < a < w or f .a/ < 0 for all

z < a < w, there can be either only maxima or only minima between two zeros,

meaning there can only be one extrema.

(b) The result is true for p D 0:5 by Theorem 5.1. We claim that as p

varies continuously, �p;i and fp;i .x/ for all points x, the i th eigenvalue and the

value at the i th eigenfunction of �.p/, also vary continuously. This means that if

there exists p such that fp;i does not have i � 1 zeros, fp;i must have morphed

continuously from f0:5;i to do so. We know that in order for �.p/fp;i .x/ D 0,

on some neighborhood A of x, for all x0; x1 2 A where x0 < x and x1 > x,

f .x0/ < 0 < f .x1/ or f .x0/ > 0 > f .x1/. However, in order for the number

of zeros of fp;i to change from that of f0:5;i , there has to exist p0 such that fp0;i

has a zero x where on some neighborhood A of x, fp0;i .y/ � 0 for all y 2 A or

fp0 ;i.y/ � 0 for all y 2 A. This is a contradiction. Therefore, the number of zeros

for the i th eigenfunction stays constant as p varies.

(c) Proof by contradiction. Consider �i < �j , with eigenfunctions fi ; fj

respectively, of �
.p/
m given m and p. If the statement were false, then there

would exist consecutive zeros of fi , xk ; xkC1, such that fj does not have a zero in

A D Œxk; xkC1�. Since fi ; fj are eigenfunctions,

.��fi D �ifi and � �fj D �j fj /

H) .�j � �i /fifj D fi .��fj / � fj .��fi/
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by algebra. We can assume without loss of generality that fi and fj are both

positive on A. By the Gauss–Green formula,

Z

A

fi .��fj /d� �
Z

A

fj .��fi/d� D
X

x2@A

..fj @nfi /.x/ � .fi@nfj /.x//:

So,
Z

A

.�j � �i /fifj d�

D
Z

A

fi .��fj /d� �
Z

A

fj .��fi/d�

D
X

x2@A

�

.fj @nfi /.x/ � .fi@nfj /.x/
�

D
X

x2@A

�

.fj @nfi /.x/ � .0/.@nfj /.x/
�

.because fi .@A/ D 0/

D .fj @nfi /.xk/ C .fj @nfi /.xkC1/:

Since fi is positive on A, the normal derivative must be negative at the bound-

aries of A, i.e. @nfi .xk/; @nfi .xkC1/ < 0. We assumed that fj .xk/; fj .xkC1/ > 0,

so the right hand side is negative. But the left hand side is positive, since the in-

tegrand is positive. This is a contradiction. Therefore, we have proved that fj has

at least one zero in Œxk ; xkC1�. �

The following corollaries follow directly from Theorem 5.2:

Corollary 5.3. If �i is the i th eigenvalue and fi is its eigenfunction, fi has exactly

i local extrema.

Corollary 5.4. If �i ; �iC1 are consecutive eigenvalues with eigenfunctions fi;fiC1

respectively, then for each pair of consecutive zeros of fi , occurring at xk and

xkC1, fiC1 has exactly one zero in Œxk ; xkC1�.

In addition to this theorem, we can apply Proposition 3.2 to observe a pattern

in the zeros and the values of the local extrema in certain eigenfunctions:

Corollary 5.5. If gi is the eigenfunction associated with the i th eigenvalue �i on

level m � 1 and x is one of its zeros, then for all 0 � k � 3, Fk.x/ is a zero of

f4i , the eigenfunction associated with the .4i/th eigenvalue �4i . The values of the

local extrema of f4i are of form ˙
�

p
q

�n
max.gi .x//.
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This gives us a nice description of the eigenfunctions, especially those of

the form �4n and 2.4n/th eigenvalues �2.4n/. The zeros of the 1st and 2nd

eigenfunctions occur at ¹0; 1º and
®

0; 1
2
; 1

¯

respectively, for all p, and are spaced

evenly. This means that all eigenfunctions f4n and f2.4n/ will have evenly spaced

zeros for all p. See figures 8 and 9 for the first 16 eigenfunctions for p D 0:1 and

p D 0:9 with the zeros identified.

6. Laplacians on the Sierpiński gasket

In the standard theory, the Sierpiński gasket is defined by an IFS consisting of three

contractive mappings, with uniform measure throughout the cells and uniform

resistance throughout the edges. As in the interval case before, a larger set of

symmetric, self-similar Laplacians can be generated through a modified IFS,

defined

¹Fjk j Fjk D Fj ı Fkº (6.1)

where Fi is a standard contractive mapping for the Sierpiński gasket. Then, the

Sierpiński gasket can be equivalently defined

SG D
[

0�j

k�2

Fjk.SG/: (6.2)

This new IFS allows us to define a non-uniform, self-similar, symmetric mea-

sure for SG. Note that Fjk.SG/ gives the outer cells if j D k, the inner cells

if j ¤ k. In order to maintain symmetry, we must define the measure so that

�.Fi i .SG// D �.Fjj .SG// for all i; j , and �.Fjk/ D �.Fih/ for all j ¤ k, i ¤ h.

Without loss of generality, we will set �.SG/ D 1, meaning that if �0 denotes the

measure of an outer cell and �1 denotes the measure of an inner cell,

3�0 C 6�1 D 1 (6.3)

leaving us only one free measure parameter to vary.

In order to compute the measure of A D Fj1k1
ıFj2k2

ı � � � ıFjmkm
.SG/, an m-

cell of SG, define i.A/ to be the number of ja such that ja D ka, i.e. the number

of “outer” mappings needed to obtain A. The number of “inner” mappings needed

is m � i.A/. Then,

�.A/ D �
i.A/
0 �

m�i.A/
1 D �

i.A/
0

�1 � 3�0

6

�m�i.A/

: (6.4)
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In addition to a non-uniform measure, we can also define a non-uniform

resistance. In order to maintain symmetry, we must define the resistance of the

edges of the outer cells to be equal and the same for the inner cells. Call the

resistance of the outer cells r0 and the inner cells r1. We want to compute the

resistances of the edges so that the resulting effective resistances between points

in V0 are equal; call this effective resistance �. Let r1 D 1, r D r0, and we will

multiply by a constant at the end. The ��Y transforms shown in figures 14 and 15

show that

� D 9r2 C 26r C 15

6.r C 2/
; r0 D 6r.r C 2/

9r2 C 26r C 15
; r1 D 6.r C 2/

9r2 C 26r C 15
;

and so there is only one free resistance parameter, r D r0

r1
, to vary.

We can compute the conductance and resistance in a similar way as the mea-

sure. Consider the m-cell

A D Fj1k1
ı Fj2k2

ı � � � ı Fjmkm
.SG/:

Then for x; y 2 V0,

c.Fj1k1
ı � � � ı Fjmkm

.x/; Fj1k1
ı � � � ı Fjmkm

.y// D 1

r
i.A/
0

� 1

r
m�i.A/
1

�

c.x; y/:

The measure and resistance distributions, along with a construction of the

twice iterated SG, are shown in Figure 16. With the definition of conductance,

we may define energy

Em.u/ D
X

x�y

c.m/.x; y/ju.x/ � u.y/j2; E.u/ D lim
m!1

Em.u/;

and a weak formulation of the Laplacian

E.u; v/ D �
Z

f vd�

where u; v 2 dom.E/ and f D �.r/u, the Laplacian with parameter r . As usual,

the pointwise formula for the Laplacian can be defined

��.r/
m u.x/ D 1

R

‰
.x/
m d�

X

x�y

c.m/.x; y/.u.x/ � u.y//; x 2 Vm n V0; (6.5a)

��.r/u.x/ D lim
m!1

��.r/
m u.x/; x 2 Vm n V0; (6.5b)

where ‰
.x/
m .y/ D ıxy for y 2 Vm and is piecewise harmonic in the complement

of Vm. If the choice of r is clear, we will abbreviate �
.r/
m and �.r/ to �m or �.
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Figure 14. The transformation on 1
3

of the total gasket. Each arrow denotes a � � Y

transform.
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Figure 15. The transformation of the entire gasket, using Figure 14 in Step 1.
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Figure 16. Top: Construction of the twice-iterated SG. Bottom: Assignment of measure

and resistance.
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We can compute
R

‰
.x/
m d� (the pointmass of x) explicitly. ‰

.x/
m has support in

the two neighboring m-cells of x. Call these two cells A and B . If x1; x2; x3 2 A,

then
P

i

R

‰
.xi /
m d� D

R

A
1d�. By symmetry,

R

‰
.xi /
m d� are all equal. The same

applies to the integrals for B . So

Z

‰.x/
m d� D 1

3
.�.A/ C �.B// D 1

3
.�

i.A/
0 �

m�i.A/
1 C �

i.B/
0 �

m�i.B/
1 /:

As in the standard case, our Laplacian is self-similar with the following iden-

tity:

��.u ı Fjj / D 1

r0�0

.��u/ ı Fjj :

��.u ı Fjk/ D 1

r1�1

.��u/ ı Fjk ; j ¤ k:

As on the interval, we will require that the renormalization factor is constant

for any choice of contraction mappings we choose, i.e. r0�0 D r1�1. This means

that there is only one choice of parameter that determines both the measure and

the resistance. We will use r D r0

r1
as this parameter throughout this paper.

The renormalization factor r0�0 D r1�1 can be defined in terms of r . From

now on, we will denote

�0.r/r0.r/ D L.r/ D 2r.r C 2/

.2r C 1/.9r2 C 26r C 15/

as the renormalization factor of �.r/. One interesting observation is that L.r/ has

one global maximum at rmax � 0:641677 (and no other local extrema on .0; 1/)

which can be solved for analytically, but we will omit the calculations. This means

that for all r ¤ rmax, there exists exactly one r 0 ¤ r such that L.r/ D L.r 0/.

However, we did not find any significant properties relating r 0 to r .

7. Spectral decimation on the Sierpiński gasket

We now seek to replicate the analysis performed in Section 3 on the more com-

plicated structure of the Sierpiński gasket. By Lemma 3.1, which extends directly

to SG, we can simplify the pointwise Laplacian formula (6.5) based on the value

of i on adjacent cells. Letting A0 and A1 be m-cells with junction point x, and

other vertices y0; y1 and y2; y3, respectively. Then the pointwise Laplacian of a

function f at x can be written as follows.
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� If i.A0/ D i.A1/, then

��mf .x/ D
� 1

�0r0

�m 3

2
..2f .x/ � f .y0/ � f .y1//

C .2f .x/ � f .y2/ � f .y3///I

� if i.A0/ D i.A1/ C 1, then

��mf .x/ D
� 1

�0r0

�m 3

2

2

�0 C �1

.�0.2f .x/ � f .y0/ � f .y1//

C �1.2f .x/ � f .y2/ � f .y3///I

� if i.A0/ D i.A1/ � 1, then

��mf .x/ D
� 1

�0r0

�m 3

2

2

�0 C �1

.�1.2f .x/ � f .y0/ � f .y1//

C �0.2f .x/ � f .y2/ � f .y3///:

For now we will omit the renormalization factor
�

1
�0r0

�m
and later rescale

our eigenvalues by this constant term. To develop an algorithm to extend an

eigenfunction on Vm with eigenvalue �m to an eigenfunction on VmC1 with new

eigenvalue �mC1 we formulate an analogous system to [15].

Given an eigenfunction um on level m, consider any m-cell with vertices

x0; x1; x2, as in Figure 17. The extension to VmC1 creates 12 new points. To ensure

that our extension is an eigenfunction, we mandate that

��mC1umC1.x/ D �mC1umC1.x/ for all x 2 VmC1 n V0:

x2 x1

x0

w1 w2

w0

y0;1

y1;0z2y2;0 z1

y0;2

z0

y2;1 y1;2

Figure 17. A single m-cell with vertices x0; x1; x2.
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Evaluating this equation on the 12 points produced via subdivision yields a

12-equation, 16-variable system that can be solved algebraically to yield yi;j ; wi ,

and zi as functions of x0; x1; x2; �mC1. For readability we will refer to u.a/ as a.

These functions can be written as

w0.x0; x1; x2; �mC1; r/

D 81x0.�3 C .2r C r2/.�mC1 � 9/ C �mC1/

.r; �mC1/

C
9.x1 C x2/.�189 C 135�mC1 � 30�2

mC1 C 2�3
mC1/

.r; �mC1/

C
9.x1 C x2/.r2.�81 C 177�mC1 � 30�2

mC1 C 2�3
mC1//

.r; �mC1/

C
9.x1 C x2/.2r.�135 C 135� � 30�2

mC1 C 2�3
mC1//

.r; �mC1/
;

(7.1)

z0.x0; x1; x2; �mC1; r/

D
�9.x1 C x2/.54 � 27�mC1 C 3�2

mC1 C r2.81 � 36�mC1 C 3�2
mC1//

.r; �mC1/

C
�9r.x1 C x2/.189 � 63�mC1 C 6�2

mC1/

.r; �mC1/

C
9x0.�297 C 225�mC1 C r2.�81 C 171�mC1 � 54�2

mC1 C 4�3
mC1//

.r; �mC1/

C
9x0.�54�2

mC1 C 4�3
mC1 C r.�324 C 432�mC1 � 108�2

mC1 C 8�mC1//

.r; �mC1/
;

(7.2)

y0;1.x0; x1; x2; �mC1; r/

D
�3x0.�mC1 � 3/2.135 � 48�mC1 C 4�2

mC1/

.r; �mC1/

C
�3r2x0.243 � 756�mC1 C 405�2

mC1 � 72�3
mC1 C 4�4

mC1/

.r; �mC1/

C
�3rx0.1134 � 2106�mC1 C 900�2

mC1 � 144�3
mC1 C 8�4

mC1/

.r; �mC1/

C �3rx2.405 � r.27�mC1 � 243/ � 81�mC1/

.r; �mC1/

C
�3rx1.567 � 189�mC1 C 18�2

mC1 C r.243 � 189�mC1 C 18�2
mC1//

.r; �mC1/
:

(7.3)
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Similar equations for the remaining points can be obtained by permuting the

indices 0; 1; 2. The term .r; �mC1/ is defined as

.r; �mC1/ D .9 � 3.2 C 3r/�mC1 C .1 C r/�2
mC1/

.�405 C 279�mC1 � 60�2
mC1 C 4�3

mC1/

C r.9 � 3.2 C 3r/�mC1 C .1 C r/�2
mC1/

.�702 C 558�mC1 � 120�2
mC1 C 8�3

mC1/

C r2.9 � 3.2 C 3r/�mC1 C .1 C r/�2
mC1/

.�243 C 243�mC1 � 60�2
mC1 C 4�3

mC1/:

a polynomial of degree 3 in r and degree 5 in �mC1. Note that the extension

equations are valid for any r; �mC1 such that .r; �mC1/ ¤ 0. I turns out that

 belongs to teh special class of invertible quintics, and so in order to ensure

.r; �mC1/ ¤ 0 we follow the strategy of [15] and record forbidden eigenvalues

b1.r/; b2.r/; b3.r/; b4.r/; b5.r/

as the roots of .r; �mC1/ in �mC1 as a function of r such that

b1.1/ < b4.1/ < b5.1/ < b2.1/ < b3.1/:

These formulas were designed to extend an eigenfunction to VmC1, but we

must verify that the eigenfunction equation also holds on Vm – that is, the points

x0; x1; x2. Specifically consider x0, and in addition to the m-cell considered above,

consider the other m-cell with vertex x0 as seen in Figure 18. We must make the

pointwise Laplacian hold at x0 – there are 3 distinct cases based upon the value

of i on the two m-cells, but the algebraic result is the same for all three cases. In

the simplest case, we are given

�mx0 D 3

2
..2x0 � x2 � x1/ C .2x0 � x0

2 � x0
1//

by the m-level eigenvalue equation, and seek to verify that

�mC1x0 D 3

2
.2x0 � y0;1.x0; x1; x2; �mC1; r/ � y0;2.x0; x1; x2; �mC1; r//

C 3

2
.2x0 � y2;0.x0

1; x0
2; x0; �mC1; r/ � y2;1.x0

1; x0
2; x0; �mC1; r//:

(7.4)
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x0
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2;0
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x2 x1
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y0;1y0;2

Figure 18. The m-cells around x0.

Mandating that both above conditions hold allows the formulation of a condi-

tion on �m as a function of �mC1 and r – in particular we require that

�m.�mC1; r/

D
��mC1.�mC1 � 3/2.135 � 48�mC1 C 4�2

mC1/

54r.�6 C r.�mC1 � 3/ C �mC1/

C
�r3�mC1.1458 � 1701�mC1 C 603�2

mC1 � 84�3
mC1 C 4�4

mC1/

54r.�6 C r.�mC1 � 3/ C �mC1/

C
�r2�mC1.4941 � 5022�mC1 C 1701�2

mC1 � 240�3
mC1 C 12�4

mC1/

54r.�6 C r.�mC1 � 3/ C �mC1/

C
�r�mC1.4536 � 4455�mC1 C 1557�2

mC1 � 228�3
mC1 C 12�4

mC1/

54r.�6 C r.�mC1 � 3/ C �mC1/
:

(7.5)

holds. This equation is quintic in �mC1, and so we must compute numerical

inverses. We denote these 5 inverses by ˆi .�m; r/, with

ˆi .�m; r/ � ˆiC1.�m; r/ for all �m
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for fixed r . We must also add a sixth forbidden eigenvalue, b6 D 9. If �mC1 D 9,

then (7.4) is satisfied regardless of the value of �m. These equations provide a

recipe for extension of existing eigenvalues; but just as in the case of the standard

gasket, we must also account for eigenfunction/values that cannot be produced

by this decimation process. These equations were derived independent of any

boundary conditions. For the remainder of this section, we will provide a detailed

analysis and counting argument for the eigenvalues and functions which are born

on each level, to demonstrate that we have described the complete spectrum, under

the Dirichlet boundary assumption. We believe that analogous analysis for the

Neumann boundary assumption is possible.

Eigenvalues b1 and b2 are born on level 1 only. Both are associated with

eigenfunctions according to Figure 19a. For b1, the value taken on at points marked

a is 4r

rC
p

r.8C9r/
, while for b2 the value at a is 4r

r�
p

r.8C9r/
.

Eigenvalues b3; b4, and b5 are all present with multiplicity 2 and a basis of

two skew-symmetric functions (linearly independent via rotation about the gasket)

on level 1. Analytic formulas for these functions exist as functions of r and

can be obtained via symbolic eigenvector computations on a symbolic level 1

Laplacian matrix, and verify that such functions exist and are skew-symmetric,

but are otherwise too large and unwieldy to be analyzed. If we denote these level 1

functions by A, then on higher levels we may create the eigenfunction see in

Figure 19a, by placing A and �A around an ‘empty’ cell. We may also create,

independently, the two eigenfunctions seen in Figure 19b by gluing A together

along the boundary. The number of ‘empty’ cells on level m C 1 is given by
P2m�1

iD0 3i , so that adding 2 gives the lower bound for the multiplicity for all three

of these eigenvalues:
�

P2m�1
iD0 3i

�

C 2 D 32mC3
2

.

For � D b6 D 9, the multiplicity and eigenfunctions are independent of r .

Consider Figure 19c. We see that this is the same as the eigenfunction in the

standard case described by [15]. Computations show that the same construction as

on the standard case, i.e. rotating and fitting this function on level m D 1 so that

u.x/ D 2 for some x 2 VmC1 to get an eigenfunction with the same eigenvalue

on level m C 1, is successful. Since this construction is exactly the same as the

construction on the standard SG shown by [15], we will take the same lower bound

for the multiplicity of � D 9 on level m C 1, which is 32mC2�3
2

.

Consider � D 9C6r
1Cr

, which we will call b7. On level 1, this eigenvalue

corresponds to this function in Figure 19c. This function can be miniaturized into

each cell of the next level, creating 9 new eigenfunctions. These new functions are

all independent of each other, meaning that the multiplicity of b7 on level m C 1

is � 9m, the number of such cells in level m C 1.
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(a) Left: Eigenfunction for b1; b2. Right: Eigenfunction for b3; b4; b5.
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(b) Two independent eigenfunctions for b3; b4; b5.
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(c) Left: eigenfunction for b6 D 6 Right: eigenfunction for b7.

Figure 19
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We need to confirm that the eigenvalues born on level m C 1 are not deci-

mated to through the eigenvalue extension mapping. We see that applying (7.5)

to these eigenvalues yields �m.b2/; �m.b3/; �m.b4/; �m.b5/; �m.b6/ � 0, which is

impossible for Dirichlet eigenvalues. For b7, we need to consider the eigenfunc-

tion extension mapping. In order for the function shown in Figure 19c to arise in

level m C 1, the function would have been uniformly 0 on level m, which is also

impossible for Dirichlet eigenfunctions.

Now we compile these results into a counting argument to show that we have

acquired every eigenfunction for any level m > 1. The sum of the multiplicities

of the eigenvalues that are born on level m > 1 is 9m C 3
�

32mC3
2

�

C 32m�1
2

. We

know that, with #.Vm n V0/ points, level m will have #.Vm n V0/ D 32mC1�3
2

eigenvalues. Each of these will decimate to 5 new values on level m, except

for the 32m�3
2

eigenvalues on level m corresponding � D 6, which will only

decimate to 3 new values (2 of the 5 always lead to forbidden eigenvalues b1

and b2). This means that the number of eigenvalues we produce via decimation

is 5
�

32mC1�3
2

� 32m�3
2

�

C 3
�

32m�3
2

�

. Adding the number of eigenvalues we have

identified that are born, we compute

5.32mC1 � 3/

2
� 2.32m � 3/

2
C 9m C 3

�32m C 3

2

�

C 32mC2 � 3

2
D 32mC3 � 3

2
;

which is #.VmC1nV0/, confirming that we have accounted for all of the eigenvalues

on level m C 1.

We now, similar to the interval case, define

� D lim
m!1

� 1

�0r0

�m

�m; (7.6)

with �m a sequence defined by repeated application of the ˆ mappings, with all

but a finite number ˆ1. Expressing ˆ1 in Taylor Series form is not as simple

as on the interval; as a solution to a quintic equation we lack a closed algebraic

form. However, application of the Lagrange Inversion Theorem allows simple

formulation of a Taylor Series for the inverse of the aforementioned quintic near

�m D 0

ˆ1.x/ D 2r.2 C r/

.1 C 2r/.15 C 26r C 9r2/
x C O.x2/

and so as � ! 0, the higher order terms will fall away, causing

�m D O
�� 2r.2 C r/

.1 C 2r/.15 C 26r C 9r2/

�m�

as m ! 1.
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Computing the renormalization factor explicitly as a function of r yields

1

�0r0

D .1 C 2r/.15 C 26r C 9r2/

2r.2 C r/

and so the limit defined above clearly exists.

The ordering of eigenvalues that are born and decimated from the ˆ maps on

SG is, unlike the interval, dependent on the parameter r . Lacking algebraic closed

forms for the ˆi is less than ideal, but we can still provide a complete description

using the properties of the quintic function, �mC1.�m; r/, that they are solutions

to. For brevity we present only results and not algebraic proofs of each - these are

not difficult to show for each case.

For very small r , the ordering follows:

ˆ1.�
.m/
1;p /; : : : ; ˆ1.�.m/

s;p /; b1;

ˆ2.�.m/
s;p /; : : : ; ˆ2.�

.m/
1;p /; b4;

ˆ3.�
.m/
1;p /; : : : ; ˆ3.�.m/

s;p /; b2;

ˆ4.�.m/
s;p /; : : : ; ˆ4.�

.m/
1;p /; b5;

ˆ5.�.m/
s;p /; : : : ; ˆ5.�

.m/
1;p /; b3; b7; b6:

Then at the solution to b2.r/ D b4.r/ � 0:28 a local inversion occurs around ˆ4

to give

ˆ1.�
.m/
1;p /; : : : ; ˆ1.�.m/

s;p /; b1;

ˆ2.�.m/
s;p /; : : : ; ˆ2.�

.m/
1;p /; b4;

ˆ3.�
.m/
1;p /; : : : ; ˆ3.�.m/

s;p /; b5;

ˆ4.�
.m/
1;p /; : : : ; ˆ4.�.m/

s;p /; b2;

ˆ5.�.m/
s;p /; : : : ; ˆ5.�

.m/
1;p /; b3; b7; b6:

The next major change occurs at r D 1 when the direction of ˆ3 inverts, and b7

descends past b3:

ˆ1.�
.m/
1;p /; : : : ; ˆ1.�.m/

s;p /; b1;

ˆ2.�.m/
s;p /; : : : ; ˆ2.�

.m/
1;p /; b4;

ˆ3.�.m/
s;p /; : : : ; ˆ3.�

.m/
1;p /; b5;

ˆ4.�
.m/
1;p /; : : : ; ˆ4.�.m/

s;p /; b2;

ˆ5.�.m/
s;p /; : : : ; b7; ˆ5.�

.m/
1;p /; b3; b6:
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Then b7 continues to descend past b2 to yield

ˆ1.�
.m/
1;p /; : : : ; ˆ1.�.m/

s;p /; b1;

ˆ2.�.m/
s;p /; : : : ; ˆ2.�

.m/
1;p /; b4;

ˆ3.�.m/
s;p /; : : : ; ˆ3.�

.m/
1;p /; b5;

ˆ4.�
.m/
1;p /; : : : ; ˆ4.�.m/

s;p /; b7; b2;

ˆ5.�.m/
s;p /; : : : ; ˆ5.�

.m/
1;p /; b3; b6:

There are many small gaps of varying sizes interweaved between the above

decimation ordering, but their exact size and location is very difficult to describe

analytically. We summarize the above results in another conclusive theorem.

Theorem 7.1 (SG spectral decimation). For any r , given um, an eigenfunction

with eigenvalue �m on Vm, we may choose �mC1 as a solution to (7.5), given

that �mC1 ¤ b1; b2; b3; b4; b5; b6; b7. We can then extend um to VmC1 according

to (7.1)–(7.3) to obtain an eigenfunction on level m C 1. Then using counting

arguments and constructions detailed above, this process, taken together with

known eigenfunctions born on each level, produces a complete spectrum on level

m C 1.

8. Data on the Sierpiński gasket

In this section, we present the experimental data produced for SG for r D 0:5; 3.

8.1. Eigenvalues and eigenfunctions. Table 3 shows a portion of the spectra for

r D 0:5; 1, and r D 3 on SG for the first three levels. There doesn’t seem to be an

obvious pattern to the spectra for certain parameter values of r than are observed

in the interval case. Since #.Vm n V0/ D 32mC1�3
2

, we have 32mC1

2
eigenvalues at

level m.

Figures 20–22 show the first 4 eigenfunctions for each of the r values.

8.2. Eigenvalue counting functions and Weyl plots. We give graphs of count-

ing functions for the SG for r D 0:5; 1; and 3 at the first three levels in Figure 23.

The counting function is defined

N.x/ D #¹� j � � x; for all eigenvalues �º

as before, and is known to follow a power law according to Weyl asymptotics.
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Table 3a. Eigenvalues on SG (truncated for length). Left: r D 0:5. Right: r D 3.

n m D 1 m D 2 m D 3

1 24.20000 25.05695 25.09281

2 55.36441 60.24744 60.45549

3 55.36441 60.24744 60.45549

4 133.1000 170.4184 172.1013

5 133.1000 170.4184 172.1013

6 145.2000 192.2647 194.4113

7 174.5356 255.3789 259.1902

8 174.5356 255.3789 259.1902

9 193.6000 309.8982 315.5415

10 217.8000 433.1401 444.3046

11 217.8000 433.1401 444.3046

12 217.8000 433.1401 444.3046

13 735.8874 769.1626

14 812.6530 853.5739

15 812.6530 853.5739

16 911.9137 964.0106

17 949.4321 1006.141

18 949.4321 1006.141

19 1174.440 1263.477

20 1174.440 1263.477

21 1265.407 1369.883

22 1339.819 1457.988

23 1339.819 1457.988

24 1339.819 1457.988

25 1339.819 1457.988

26 1339.819 1457.988

27 1339.819 1457.988

28 2392.064 2825.629

29 2446.852 2904.264

30 2446.852 2904.264

31 2553.162 3059.388

32 2553.162 3059.388

33 2566.728 3079.432

34 2596.932 3124.265

35 2596.932 3124.265

36 2614.705 3150.783

37 2635.380 3181.757

n m D 1 m D 2 m D 3

1 11.46517 11.53001 11.53161

2 72.55942 75.30424 75.37256

3 72.55942 75.30424 75.37256

4 203.1230 227.7845 228.4117

5 203.1230 227.7845 228.4117

6 274.0500 323.1067 324.3712

7 323.4848 396.8281 398.7384

8 333.3176 412.3704 414.4339

9 333.3176 412.3704 414.4339

10 365.4000 2271.921 2337.182

11 365.4000 2271.921 2337.182

12 365.4000 2271.921 2337.182

13 2343.077 2412.602

14 2343.077 2412.602

15 2364.160 2434.976

16 2465.819 2543.036

17 2601.450 2687.663

18 2601.450 2687.663

19 2828.745 2931.217

20 2828.745 2931.217

21 2927.756 3037.780

22 2945.912 3057.352

23 2945.912 3057.352

24 2945.912 3057.352

25 2945.912 3057.352

26 2945.912 3057.352

27 2945.912 3057.352

28 7417.620 8208.932

29 7417.620 8208.932

30 7417.620 8208.932

31 7452.209 8251.684

32 7452.209 8251.684

33 7463.317 8265.424

34 7523.311 8339.725

35 7624.700 8465.641

36 7624.700 8465.641

37 7900.887 8810.892
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Table 3b. Eigenvalues on SG (truncated for length). Left: r D 0:5. Right: r D 3.

n m D 1 m D 2 m D 3

38 2635.380 3181.757

39 2635.380 3181.757

40 3221.020 4124.126

41 3221.020 4124.126

42 3221.020 4124.126

43 3221.020 4124.126

44 3221.020 4124.126

45 3221.020 4124.126

46 3241.324 4159.370

47 3270.497 4210.355

48 3270.497 4210.355

49 3361.988 4372.997

50 3361.988 4372.997

51 3379.323 4404.298

52 3426.166 4489.691

53 3426.166 4489.691

54 3461.300 4554.529

55 3959.160 5559.953

56 3959.160 5559.953

57 3959.160 5559.953

58 4005.369 5663.113

59 4036.030 5732.676

60 4036.030 5732.676

61 4076.930 5826.922

62 4092.159 5862.450

63 4092.159 5862.450

64 4175.123 6060.421

65 4175.123 6060.421

66 4203.307 6129.463

67 4223.761 6180.169

68 4223.761 6180.169

69 4223.761 6180.169

70 4223.761 6180.169

71 4223.761 6180.169

72 4223.761 6180.169

73 4685.120 7499.536

� � � � � �

n m D 1 m D 2 m D 3

38 7900.887 8810.892

39 8155.336 9131.941

40 8246.795 9248.050

41 8246.795 9248.050

42 8246.795 9248.050

43 8246.795 9248.050

44 8246.795 9248.050

45 8246.795 9248.050

46 8762.523 9909.999

47 9110.091 10363.26

48 9110.091 10363.26

49 9595.838 11006.79

50 9595.838 11006.79

51 9818.552 11305.92

52 9967.039 11506.82

53 9996.189 11546.40

54 9996.189 11546.40

55 10090.78 11675.16

56 10090.78 11675.16

57 10090.78 11675.16

58 11126.43 13118.13

59 11126.43 13118.13

60 11126.43 13118.13

61 11126.43 13118.13

62 11126.43 13118.13

63 11126.43 13118.13

64 11126.43 13118.13

65 11126.43 13118.13

66 11126.43 13118.13

67 13175.44 16176.94

68 13175.44 16176.94

69 13187.95 16196.55

70 13248.50 16291.69

71 13329.52 16419.46

72 13329.52 16419.46

73 13464.26 16633.14

� � � � � �
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Figure 20. First 4 eigenfunctions on m D 3, r D 0:5.
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Figure 21. First 4 eigenfunctions on m D 3, r D 1 (standard).
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Figure 22. First 4 eigenfunctions on m D 3. Top: r D 0:5. Middle: r D 1 (standard).

Bottom: r D 3.
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Figure 23. Graphs of counting functions on m D 3. Left: r D 0:5. Center: r D 1 (standard).

Right: r D 3.

We can also generate Weyl plots similarly as on the interval. The exponent in

the power law relationship ˛ can be computed in the same way as before. We can

just replace the renormalization factor and the number of cells in the formula for

˛ for the interval to obtain the correct constant for the gasket. This gives

˛ D log.9/

log.L.r/�1/
;

where L.r/ is the renormalization factor as defined in Section 6. Equipped with ˛,

we plot

W.�/ D N.�/

�˛

on a log-log scale and confirm that periodicity occurs in our Weyl plots in Fig-

ure 24. This behavior is established in [12].
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Figure 24. Weyl plots on m D 3. Left: r D 0:5. Center: r D 1 (standard). Right: r D 3.

8.3. Limiting Laplacians. We would now like to, similar to the previous analy-

sis on the interval, examine the limiting behavior of our Laplacian on SG, as either

r ! 0 or r ! 1. As before, the eigenfunctions can be prohibitively complicated,

but the eigenvalues more readily offer themselves up for analysis.

Again, for both limiting cases, the renormalization constant 1
�0r0

is unbounded,

and so any eigenvalues that we wish to remain bounded (with respect to r) must

be very small. Considering the set ¹b1; b2; b3; b4; b5; b6; b7º of eigenvalues born

on each (m D 1 for b1; b2) level, the only eigenvalue that tends towards 0 in the

limiting cases is b1 D 3.2C3r�
p

8rC9r2/
2.1Cr/

. In the case of the first eigenvalue,

lim
r!0

m!1

� 1

�0r0

�m

ˆm
1

�3.2 C 3r �
p

8r C 9r2/

2.1 C r/

�

D1;

lim
r!1
m!1

� 1

�0r0

�m

ˆm
1

�3.2 C 3r �
p

8r C 9r2/

2.1 C r/

�

D9;

the behavior is different for the two limiting cases. This is verified experimentally

in Table 4.

Table 4. Limiting eigenvalues.

r D 10�2 r D 10�4 r D 10�5

�1 1:0096 � 103 1:10958 � 105 1:12002 � 106

�2 1:15446 � 103 1:12529 � 105 1:12503 � 106

�3 1:15446 � 103 1:12529 � 105 1:12503 � 106

�4 1:34118 � 103 1:14141 � 105 1:13008 � 106

r D 102 r D 104 r D 105

�1 9:0750 9:0008 8:9994

�2 1381:52 1:35031 � 105 1:35003 � 106

�3 1381:52 1:35031 � 105 1:35003 � 106

�4 4141:61 4:05091 � 105 4:05009 � 106
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We will use ratios to further characterize these eigenvalues in the upcoming

section. Similarly to the interval case, the eigenfunction extension algorithm is

related to the sequence of ˆ maps used on each individual eigenvalue. However,

we can examine the ground state eigenfunction to provide an interesting example.

We can explicitly take the limits of the eigenvalue extension formulas as r ! 1.

Writing the extensions to w0; z0; and y0;1 as functions of values x0; x1; x2; r; �,

lim
r!1

w0.x0; x1; x2; r; ˆ1.b1// D x0 C x1 C x2

3
;

lim
r!1

z0.x0; x1; x2; r; ˆ1.b1// D x0 C x1 C x2

3
;

lim
r!1

y0;1.x0; x1; x2; r; ˆ1.b1// D x0 C x1 C x2

3
:

Here we use ˆ1.b1/ as the eigenvalue because this will lead us to � D 9.

While we do not have an a closed algebraic form for ˆ1, since b1 ! 0, it suffices

to use the Lagrangian Inversion Polynomial discussed eariler as a substitute for

an analytical form of ˆ1. It is interesting to note that this limiting direction is

analogous to the limiting direction producing �1 D 4 on the interval. If we

consider the outer 3 cells of the twice-iterated gasket as the “outside,” then both

p ! 0 and r ! 1 assign all measure to the “inside” core and all resistance to the

“outside” shell of the structure, be it interval or SG. This is in contrast to the case

where all measure is assigned to the “outside” and resistance to the “inside” – on

the interval the limiting structure is simply the 1
2
-Cantor set.

Similar to the interval example, the ground state eigenfunction on level 1 has

value of uniformly 1 in the limiting case. Then application of the above extension

algorithm yields a Cantor-like function on SG. On the inside 6 level 1 cells the

function is uniformly 1, but on the outside 3 cells a step-function is formed, similar

to that formed by the classic Cantor function. The most significant difference is

the dependence on the values of three points - thus the largest ‘tier’ occurs at
1
3
.0 C 1 C 1/ D 2

3
, as opposed to 1

2
on the interval. Figure 25 contains images of

this function, an interesting extension of the Devil’s Staircase to SG.

8.4. Ratios of eigenvalues. Ratios also provide an effective method of eigen-

value analysis on SG, and the limiting case is more interesting than on the interval.

Some gaps have been shown to exist even in the standard case [5]. In our case,

¹b1; b2; b3; b4; b5; b6; b7º, the eigenvalues being born on each level, have explicit

limits for extreme r, given by

lim
r!0

¹b1; b2; b3; b4; b5; b6; b7º D
°

3; 3;
15

2
; 3;

9

2
; 9; 9

±

;

lim
r!1

¹b1; b2; b3; b4; b5; b6; b7º D
°

0; 9; 9;
3

2
;
9

2
; 6; 9

±

:
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Figure 25. Ground state eigenfunction for r D 104, m D 4, with side-view (left) to show

similarity to Cantor function.

We can also, as before, examine the limiting behavior of ¹ˆ1; ˆ2; ˆ3; ˆ4; ˆ5º:

lim
r!0

¹ˆ1; ˆ2; ˆ3; ˆ4; ˆ5º D
°

0; 3; 3;
3

2
;
15

2

±

;

lim
r!1

¹ˆ1; ˆ2; ˆ3; ˆ4; ˆ5º D
°

0;
3

2
;
9

2
; 6; 9

±

:

Of significant interest is that, unlike on the interval, the limiting behavior of the

eigenvalues which are born and the eigenvalue extension maps is different for the

two limiting directions of the parameter. We would expect this difference to show

up in the observed ratios between eigenvalues. For r ! 0, we expect to observe

ratios of the set
®

3; 3; 3
2
; 15

2

¯

, or explicitly
®

1
3
; 2

5
; 1

2
; 3

5
; 2

3
; 5

6
; 1; 6

5
; 3

2
; 5

3
; 2; 5

2
; 3

¯

.

For r ! 1, we expect to observe ratios of the set
®

3
2
; 9

2
; 6; 9

¯

, or explicitly
®

1
6
; 1

4
; 1

3
; 1

2
; 2

3
; 3

4
; 1; 4

3
; 3

2
; 2; 3; 5; 6

¯

. In fact these are precisely the ratios we ob-

serve numerically for both limiting cases, as seen in Figure 26. Of course, the

gaps in the ratios of eigenvalues imply gaps of the form lim supn!1
�nC1

�n
> 1.
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Figure 26. Eigenvalue ratios for r D 1, r D 10�4, r D 104.
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9. Threshold subdivision

In the next two sections, we will generalize the Laplacians that we have been

studying in this paper to create different families of the Laplacian, though this

will eliminate self-similarity at any level m. One way is to change the division

scheme of the cells when extending to level m from level m � 1. Until now, the

cells on level m could all be written in form Fw.K/ where jwj D m and K D SG

or I . For a threshold subdivision, choose a cutoff value c. Then given a partition

into cells Cm D ¹A1; : : : ; AN º on level m, we take

An 2 CmC1 if �.An/ < cmC1;

Fi .An/ 2 CmC1 for all i otherwise;

i.e. divide the cell at level m if its measure is greater than cmC1. For the right

choice of measure and cutoff value, this will give us a more uniform distribution

of measure throughout K.

We computed the spectra and eigenfunctions on the interval numerically for

various values for p and cutoff values c. For eigenvalues high enough on the

spectrum, we observed eigenfunctions that are asymmetric about x D 1
2
, which is

unprecedented in our study of self-similar, symmetric Laplacians. Some examples

are given in Figure 27 for p D 0:3 and c D 0:35 D 1�p
2

. As the figure suggests,

the lower portion of the spectra seems to give eigenfunctions that are pointwise

close to the eigenfunctions obtained for the self-similar Laplacians from previous

sections. As we progress to higher portions of the spectra, we begin to see

more and more eigenfunctions that are asymmetric about x D 1
2
, as well as

eigenvalues that seem to hint at multiplicities � 1. However, we have yet to

see eigenvalues that have multiplicities > 2. We suspect that this implies that

these discrete approximations yield a different Laplacian than those in previous

sections, as the discrete eigenfunctions observed seem to approximate a different

set of eigenfunctions as in the standard division scheme. We give the full spectra

at the first three levels and the graphs of the corresponding eigenvalue counting

functions for p D 0:3 and more values of c in table 5-7 and Figure 28 respectively.

Though the data in this paper only corresponds to the interval, the same scheme

can be used to generate a family of Laplacians on SG as well.
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Table 5. Eigenvalues for threshold division, p D 0:3, c D 0:0 (standard).

n m D 1 m D 2 m D 3

1 6.222475 6.360901 6.368233

2 38.09524 44.62337 44.98851

3 69.96800 101.8143 103.7496

4 118.5233 121.1600

5 354.9600 380.5864

6 475.0876 523.0972

7 629.7550 719.5578

8 725.6236 849.9690

9 821.4921 988.2072

10 976.1596 1231.269

11 1096.287 1441.680

12 1332.724 1939.319

13 1349.433 1980.481

14 1406.624 2129.940

15 1444.886 2238.704

16 2257.587

17 6280.032

18 6449.775

19 6692.325

20 6761.142

21 7675.375

22 8118.797

23 8689.125

24 9049.287

25 9419.944

26 10054.94

27 10600.28

28 11995.33

29 12131.09

30 12707.14

31 13401.88

32 13821.40

n m D 1 m D 2 m D 3

33 14240.92

34 14935.67

35 15511.72

36 15647.47

37 17042.52

38 17587.86

39 18222.86

40 18593.52

41 18953.68

42 19524.01

43 19967.43

44 20881.66

45 20950.48

46 21193.03

47 21362.77

48 25385.22

49 25404.10

50 25512.86

51 25662.32

52 25703.48

53 26201.12

54 26411.53

55 26654.60

56 26792.83

57 26923.25

58 27119.71

59 27262.22

60 27521.64

61 27539.05

62 27597.81

63 27636.43
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Table 6. Eigenvalues for threshold division, p D 0:3, c D 0:35.

n m D 1 m D 2 m D 3

1 6.222475 6.360901 6.354989

2 38.09524 44.62337 44.79475

3 69.96800 101.8143 100.1729

4 118.5233 116.5333

5 354.9600 373.9338

6 475.0876 521.7032

7 629.7550 740.8326

8 725.6236 822.3015

9 821.4921 909.5239

10 976.1596 1194.766

11 1096.287 1453.684

12 1332.724 2120.754

13 1349.433 3505.048

14 1406.624 3505.582

15 1444.886 4265.552

16 4269.176

17 4781.933

18 4783.277

19 6525.961

20 6866.018

21 8212.002

22 9174.324

23 9881.015

24 9882.112

25 10153.79

26 12175.47

n m D 1 m D 2 m D 3

27 12983.19

28 14074.93

29 14532.81

30 14533.42

31 15208.65

32 15822.08

33 17646.69

34 18651.30

35 18951.58

36 18951.63

37 19557.36

38 20905.12

39 21208.02

40 25434.87

41 25565.03

42 25565.13

43 25634.94

44 25786.45

45 26432.80

46 26809.97

47 26896.26

48 26896.26

49 27127.68

50 27525.33

51 27599.89

Table 7. Eigenvalues for threshold division, p D 0:3, c D 0:5.

n m D 1 m D 2 m D 3

1 6.222475 6.023543 6.360901

2 38.09524 42.94625 44.62337

3 69.96800 187.1441 101.8143

4 245.1589 118.5233

5 518.6735 354.9600

6 762.9425 475.0876

7 994.9449 629.7550

8 1342.166 725.6236

9 1412.052 821.4921

n m D 1 m D 2 m D 3

10 976.1596

11 1096.287

12 1332.724

13 1349.433

14 1406.624

15 1444.886
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Figure 27. Select eigenfunctions for threshold division, m D 4, p D 0:3, c D 0:35.
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Figure 28. Eigenvalue counting functions for threshold division, m D 5, p D 0:3. Left:

c D 0 (standard). Center: c D 0:35. Right: c D 0:5.

10. Hierarchical Laplacians

Another way to construct the Laplacian on K D I or SG is to use a sequence

of parameters instead of a single value for p or r such that the measure and

resistance of each m-cell will be determined according to the mth parameter in

the sequence. For example, if A D Fw.I / is an m-cell on the interval with the

sequence of parameters ¹piº, we can determine measure and resistance on Fi .A/,

an .m C 1/-cell, in the following way. If i D 0; 3,

�.Fi .A// D
�pmC1

2

�

�.A/;

R.Fi .A// D
�1 � pmC1

2

�

R.A/:

If i D 1; 2,

�.Fi .A// D
�1 � pmC1

2

�

�.A/;

R.Fi .A// D
�pmC1

2

�

R.A/:

The same construction can be used to construct hierarchical Laplacians using

a sequence of r values on SG as well. Note that decimation still holds for this

hierarchical Laplacian, though a different extension mapping will be used at every

level m.

The spectra for these hierarchical Laplacians on the interval yielded some

interesting, though purely experimental, patterns. For example, we examine the

spectra for a sequence of parameters ¹p1; p2; p1; p2; : : : º and compare it to the

spectra of the Laplacians with a single value for p, i.e. �.p1/ and �.p2/. The Weyl

plot for the hierarchical spectra with ¹p1; p2; p1; p2; : : : º visually seems to be a

sort of mix of the Weyl plots for the spectra of �.p1/ and �.p2/. For example, take

p1 D 0:1 and p2 D 0:4. Figure 29 shows the Weyl plots for the Laplacian�.pi /,
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and each of the plots in Figure 30 seems to be mix of the preceding Weyl plots

in Figure 29. We are unable to give an analytic explanation of this phenomena

at the moment, but foresee that this way of constructing Laplacians may lead to

more concrete results in the future. A related example in [7] yields more decisive

graphs.
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Figure 29. Weyl plots for standard division scheme, p D 0:1 (left) and p D 0:4 (right).
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Figure 30. Weyl plots for Hierarchical scheme, p D ¹0:1; 0:4; 0:1; : : : º (left) and p D
¹0:4; 0:1; 0:4; : : : º (right).

11. Solutions of spacetime equations

The methods outlined in this paper provide a framework for the computation of a

finite approximation of the spectra for both the interval and the Sierpiński gasket.

One of the most significant applications of a strong grip on relevant spectra are

solutions to spacetime equations through the application of the spectral operator.

The general framework is the same as in the case of the Kigami Laplacian ([10]

and [15]). We sketch the ideas for the convenience of the readers. The main interest

of this section are the figures obtained in the general case.
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Given an orthonormal basis of eigenfunctions and eigenvalues of the Lapla-

cian, uj and �j , ordered such that �j C1 � �j , we define the spectral operator

as

f .��/u D
1

X

j D1

f .�j /hu; uj iuj ;

where the inner product ha; bi is defined as

hf; gi D
Z

a.y/b.y/d�.y/:

This spectral operator is used in the classical solution to some spacetime partial

differential equations. Unable to numerically compute the infinite series described

above, we were reduced to computing numerical approximations using a finite

number of eigenfunction and eigenvalue pairs.

Implementation of the spectral operator is not far from previously described

computations. Previous sections describe finding eigenfunctions themselves; only

orthonormality must be verified. Normalizing each function is a trivial task

accomplished by rescaling such that

Z

uj .y/2d�.y/ D 1

for all eigenfunctions. On the interval, orthogonality is provided by the properties

of linear algebra - eigenfunctions associated with distinct eigenvalues are guaran-

teed to be orthogonal. On the Sierpiński gasket, eigenfunctions associated with

eigenvalues of high multiplicity are not necessarily orthogonal. Clever solutions

have been propose to this problem [2], but we chose a simple and direct imple-

mentation of the Gram–Schmidt algorithm to provide the necessary orthonormal

basis for each eigenvalue on the Sierpiński gasket.

11.1. Heat equation. Our first application of the spectral operator is to the heat

equation, where we seek u.x; t/ such that

@u.x; t/

@t
D �xu.x; t/

and

u.x; 0/ D f .x/;

with Neumann boundary conditions

@nu.x; t/j@� D 0
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for some region � and initial heat distribution described by f .x/. The classical

solution to this problem is given by the spectral operator

u.x; t/ D
X

�j

e��j t uj .x/

Z

uj .y/f .y/d�.y/;

where the eigenfunction basis used corresponds to Neumann boundary conditions

(the Dirichlet problem can be solved using a Dirichlet basis). The heat equation

earns its name describing the flow of heat across space as a function of time, but

has deep-rooted connections to Brownian Motion, probability, and random walks.

The simplest choice of f .x/ for our analysis is a delta function, with support

limited to a single point in the graph approximation. Using Neumann eigenvalues

and eigenvectors, we have �1 D 0, with u1 D 1. Then the large t limit is

determined wholly by the value of
R

f .y/d�.y/. If f .x/ is a delta function with

support restricted to f .x0/ D d , this integral further reduces to
R

f .y/d�.y/ D d
m

where m is the pointmass assigned to point x0. In Figure 31 several numerical

solutions are displayed to delta functions at the center of the interval for different

values of p.

The consequence of this is that, considering that the solution will converge to

a uniform distribution regardless of the value of r or p, limt!1 u.x; t/ D d
m

and

is therefore very dependent on the choice of parameter.

Furthermore, we can describe the rate of convergence towards these uniform

functions. As t moves away from t D 0, �1 begins to dominate, but the last term

to fall away will be the second smallest eigenvalue, �2. Recalling that eigenvalues

tend to infinity at the edge of parameter space, it seems that that heat equation

solutions using these Laplacians will relax to the ground state the fastest.

11.2. Wave equation. We can also use these methods to solve the wave equation

@2u.x; t/

@t2
D �xu.x; t/;

with initial conditions

u.x; 0/ D0;

@u

@t
u.x; 0/ Df .x/;

and Dirichlet boundary conditions

u.x; t/
ˇ

ˇ

@�
D 0
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Figure 31. Top row: heat solutions for p D 0:5 (left) and p D 0:6. Bottom row: heat

solutions for p D 0:1 (left) and p D 0:9 (right). All at t D 0:005.

for some region �. The classical solution is given by

u.x; t/ D
X

�j

sin t
p

�j
p

�j

uj .x/

Z

uj .y/f .y/d�.y/:

The wave equation can be solved by numerical methods very similar to those

used to solve the heat equation, but the results can be very difficult to analyze quan-

titatively. Some qualitative results on the interval are displayed in figures 32–34.

In the standard case we form the classic traveling wave formation, but varying p

slightly to p D 0:52 produces a small wake behind the leading peak. This wake

remains as the leading peak inverts along the right boundary and returns to the

origin.

As the value of p becomes more extreme, oscillations become focused onto

specific regions of the interval – in particular those with the smallest measure, as

seen in the second row of figures 32–34. Similar behavior occurs on SG, but is

more difficult to analyze and display because of the increased complexity of the

underlying structure. The infinite propagation speed proved in [13] and [14] holds

here, and is visible in figures 32–34.
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Figure 32. Top row: wave solutions for p D 0:5 (left) and p D 0:52. Bottom row: wave

solutions for p D 0:01 (left) and p D 0:99 (right). All at t D 0:1.
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Figure 33. Solutions above at t D 0:4.
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Figure 34. Solutions above at t D 0:8.
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