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Abstract

Let M be a smooth 4-manifold underlying some del Pezzo surface of degree d ≥ 6. We
consider the smooth Nielsen realization problem for M : which finite subgroups of Mod(M) =
π0(Homeo+(M)) have lifts to Diff+(M) ≤ Homeo+(M) under the quotient map π : Homeo+(M)→
Mod(M)? We give a complete classification of such finite subgroups of Mod(M) for d ≥ 7 and a
partial answer for d = 6. For the cases d ≥ 8, the quotient map π admits a section with image
contained in Diff+(M). For the case d = 7, we show that all finite order elements of Mod(M) have
lifts to Diff+(M), but there are finite subgroups of Mod(M) that do not lift to Diff+(M). We prove
that the condition of whether a finite subgroup G ≤ Mod(M) lifts to Diff+(M) is equivalent to
the existence of a certain equivariant connected sum realizing G. For the case d = 6, we show this
equivalence for all maximal finite subgroups G ≤ Mod(M).

1 Introduction

For any closed, oriented, smooth manifold M , consider the mapping class group denoted Mod(M) :=
π0(Homeo+(M)). There is a quotient map of groups π : Homeo+(M) → Mod(M) sending each
orientation-preserving homeomorphism f to its isotopy class [f ] ∈ Mod(M). The Nielsen realization
problem asks: for which finite subgroups G ≤ Mod(M) does there exist a lift G̃ of G to Homeo+(M)?

The Nielsen realization problem has many refinements: for any reasonable structure on M , we
may require that the lift G̃ be contained in the automorphism group Aut(M) ≤ Homeo+(M) of
this structure. Three well-studied refinements are the smooth, metric, and complex Nielsen realization
problems. Note that affirmative answers to the complex and metric Nielsen realization problems
imply an affirmative answer to the smooth Nielsen realization problem.

For surfaces M , all three Nielsen realization problems were answered affirmatively for cyclic
groups G ≤ Mod(M) by Nielsen ([Nie43]), for solvable groups G ≤ Mod(M) by Fenchel ([Fen48]),
and for a general finite group G ≤ Mod(M) by Kerckhoff ([Ker83]). For 4-manifolds, these three
Nielsen realization problems were first studied by Farb–Looijenga ([FL21]), in which they solve the
metric and complex Nielsen realization problems for K3 surfaces M ([FL21, Theorem 1.2]) and the
smooth version for involutions ([FL21, Theorem 1.8]). Unlike the case of surfaces, some subgroups
G ≤ Mod(M) are realized and some are not.

The goal of this paper is to solve the smooth Nielsen realization problem for the underlying
smooth manifolds M4 of del Pezzo surfaces of high degree. A del Pezzo surface is a smooth projective
algebraic surface with ample anticanonical divisor class. Any del Pezzo surface is isomorphic to
CP1×CP1, CP2, or BlP CP2 where P is a set of n points (with 1 ≤ n ≤ 8) in general position (no three
collinear points, no six coconic points, and no eight points on a cubic which is singular at any of the
eight points); see [Dol12, Theorem 8.1.15, Proposition 8.1.25]. The degree of the blowup BlP CP2 of
CP2 at n points is 9− n and the degree of CP1 × CP1 is 8.

The blowup BlP CP2 of CP2 at n points is diffeomorphic to the smooth 4-manifold

Mn := CP2#nCP2
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Figure 1: An equivariant connected sum (N1#N2, G). Left: The group G acts by diffeomorphisms
on both N1 and N2, fixes p1 and p2, and preserves some neighborhood Ui (in grey) of each pi. Right:
A connected sum formed by gluing Ui − {pi} for i = 1, 2 in a G-equivariant way.

(see [GS99, p. 43]). Thus the underlying smooth manifolds of del Pezzo surfaces are Mn with 0 ≤
n ≤ 8 and M∗ = S2 × S2; we call these manifolds del Pezzo manifolds. Throughout this paper, we
mostly considerMn with n = 0, ∗, 1, 2, or 3 which are the underlying manifolds of del Pezzo surfaces
of degree d ≥ 6.

In order to study smooth actions by finite groups on Mn, we consider equivariant connected sums.
For some k ≥ 1 and all 1 ≤ i ≤ k, let Ni be a smooth 4-manifold with a finite group G acting on Ni
by orientation-preserving diffeomorphisms. Under some conditions, we can G-equivariantly glue
the manifolds Ni at points pi ∈ Ni fixed by G or along a G-orbit of points in Ni to form a connected
sum N1# . . .#Nk with a smooth G-action such that G acts on each Ni in the prescribed way. See
Figure 1 for an illustration of an equivariant connected sum. In this paper, we further impose for
each 1 ≤ i ≤ k that Ni or Ni be a complex surface on which G acts by biholomorphisms and anti-
biholomorphisms; we call such a connected sum a complex equivariant connected sum. See Section 2.2
for a more precise definition and discussion.

Main results. Among the del Pezzo manifolds considered in this paper, onlyM2 andM3 have infinite
mapping class groups; we focus on the smooth Nielsen realization problem for M2 and M3 below.
The reader may find the statements and proofs for the cases of M0, M∗, and M1 in Section 3.

The following theorem gives a complete solution for the smooth Nielsen realization problem for
M2 in terms of the existence of complex equivariant connected sums.

Theorem 1.1 (Realizability Classification). Let G ≤ Mod(M2) be a finite subgroup. There exists a lift
G̃ ≤ Diff+(M2) of G under π : Homeo+(M2) → Mod(M2) if and only if G is realized by a complex
equivariant connected sum. In particular, some finite subgroups G are realized by diffeomorphisms and some
are not.

The proof of Theorem 1.1 uses the fact that an index 2 subgroup of Mod(M2) is isomorphic to a
hyperbolic reflection group, which yields an enumeration of the finite subgroups of Mod(M2) up to
conjugacy. For each finite subgroup, we either construct a lift to Diff+(M2) by a complex equivariant
connected sum or show it does not lift to Diff+(M2) using the theory of finite group actions on 4-
manifolds. See Section 2 for an overview of these tools.

Some consequences of Theorem 1.1 and its proof distinguish the Nielsen realization problem for
M2 from those of surfaces and K3 manifolds. For example, the proof of Theorem 1.1 answers the
smooth Nielsen realization problem for finite cyclic subgroups of Mod(M2) affirmatively.

Corollary 1.2 (Smooth Nielsen realization for cyclic groups). If c ∈ Mod(M2) has finite order n then
there exists f ∈ Diff+(M2) with order n such that [f ] = c.

We record a specific case of Corollary 1.2 below to emphasize that the situation differs from that
of K3 manifolds, in which the topological isotopy class of any Dehn twist about a (−2)-sphere does
not lift to any finite order diffeomorphism (see Farb–Looijenga [FL21, Corollary 1.10]).
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Corollary 1.3 (Twists lift in Mod(M2)). For any Dehn twist T about a (−2)-sphere inM2, there is an order
2 diffeomorphism f ∈ Diff+(M2) that is topologically isotopic to T .

One way in which the smooth Nielsen realization problem for M2 differs from that for surfaces
in all relevant categories (smooth, metric, complex) is the nonrealizability of some finite subgroups
G ≤ Mod(M2).

Corollary 1.4 (A subgroup that doesn’t lift, but its elements do). There exist finite subgroups G ≤
Mod(M2) that do not have any lift G̃ to Diff+(M2). In fact, there exist finite subgroups G ≤ Mod(M2) such
that all elements c ∈ G of order n admit representatives f ∈ Diff+(M2) with order n but such that G itself
does not lift to Diff+(M2).

Remark 1.5. The minimal subgroupsG ≤ Mod(M2) of Corollary 1.4 are isomorphic to (Z/2Z)2. How-
ever, there exist subgroups of Mod(M2) that are isomorphic to (Z/2Z)2 that do lift to Diff+(M2).

The proof method of Theorem 1.1 becomes unwieldy as the sizes of maximal finite subgroups
of Mod(Mn) grow as n grows. Instead of a full solution, we answer the smooth Nielsen realization
problem only for maximal finite subgroups of Mod(M3) in terms of complex equivariant connected
sums.

Theorem 1.6 (Realizing maximal finite subgroups). Up to conjugation, Mod(M3) has three maximal
finite subgroups. Two of these have no lifts to Diff+(M3) under π : Homeo+(M3) → Mod(M3). One does
lift, and is in fact realized by a complex equivariant connected sum.

Remark 1.7. More specifically, letG ≤ Mod(M3) be a maximal finite subgroup and considerM3 as the
complex surface BlP CP2 where P = {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}. Let Aut(M3) ≤ Diff+(M3) be
the complex automorphism group of M3, and τ : M3 →M3 be the anti-biholomorphism induced by
complex conjugation on CP2. The proof of Theorem 1.6 shows that there exists a lift G̃ ≤ Diff+(M3) of
G under π : Homeo+(M3)→ Mod(M3) if and only if G is conjugate to π(〈Aut(M3), τ〉) in Mod(M3).

Finally, we consider the complex Nielsen realization problem for all 4-manifolds of the formM =
M∗ and Mn for all n ≥ 0.

Theorem 1.8 (Smooth not complex). If M = M∗ or Mn for n ≥ 0 there exist mapping classes c ∈
Mod(M) of order 2 such that there exist involutions f ∈ Diff+(M) with [f ] = c (in fact, c is realized by a
complex equivariant connected sum) but such that

1. there exist no biholomorphic involution f with [f ] = c for any complex structure of M , and

2. if M = Mn with n ≥ 1 then there exist no anti-biholomorphic involution f with [f ] = c for any
complex structure of M .

Related work. Hambleton–Tanase ([HT04, Theorem A]) shows that if G = Z/pZ acts smoothly on
#nCP2 for n ≥ 1 and p is an odd prime then there exists an equivariant connected sum of linear
actions on CP2 with the same fixed-set data (see [HT04] for the exact description of this data) and the
same induced action on H2(#nCP2;Z). Their method is to analyze the equivariant Yang–Mills mod-
uli space to produce a stratified G-equivariant cobordism between (#nCP2, G) and an equivariant
connected sum of linear actions on CP2. Our results are similar in flavor in that we relate the exis-
tence of smooth actions on del Pezzo manifolds to the existence of complex equivariant connected
sums. However, our methods are much more elementary than those of [HT04] and conversely yield
less refined results in terms of the fixed sets.

Finite group actions by complex or symplectic automorphisms of blowups of CP2 have also been
well-studied. All possible groups appearing as the complex automorphism groups of del Pezzo
surfaces and their actions on their second homology groups have been determined by Dolgachev–
Iskovskikh ([DI09]). Finite groups of symplectic automorphisms of blowups of CP2 have also been
studied by Chen–Li–Wu ([CLW21]).
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The existence of order-2 mapping classes of 4-manifolds that do not lift to an order-2 diffeomor-
phism was known in a few cases; see Raymond–Scott ([RS77, Theorem 1]) for the case of certain
nil-manifolds (in every dimension d ≥ 3) and Baraglia–Konno ([BK19, Theorem 1.2]) for the case of
the K3 manifold. On the other hand, recent work of Farb–Looijenga ([FL21]) more systematically
addresses the metric, complex, and smooth Nielsen realization problems for the K3 manifold. Their
result on the nonrealizability of Dehn twists in the K3 manifold by finite-order diffeomorphisms
([FL21, Corollary 1.10]) was later extended to all smooth spin 4-manifolds with non-zero signature
by Konno ([Kon22, Theorem 1.1]).

Outline of paper. In Section 2 we review the relevant facts about the mapping class groups of del
Pezzo manifolds and their relationship to hyperbolic reflection subgroups. In Section 3 we detail
the elementary cases of the smooth Nielsen realization problem for M0, M∗, and M1. In Section 4
we review some results on finite group actions on 4-manifolds (Subsection 4.1) and apply them in
Subsection 4.2 to classify all finite subgroups of Mod(M2) which lift to Diff+(M2) and prove Theorem
1.1 and its corollaries. We then apply similar techniques to obtain a partial result for finite subgroups
of Mod(M3) in Subsection 4.3. Finally, we address the complex Nielsen realization problem for M =
M∗ and Mn for all n ≥ 0 in Subsection 4.4.

Acknowledgements. I am grateful to Benson Farb for his continued support and guidance through-
out every step of this project, from suggesting this problem to commenting on many previous drafts.
I thank both Farb and Eduard Looijenga for sharing an early draft of their paper ([FL21]) with me,
which helped shape this project in its beginnings. I thank Hokuto Konno for bringing many rele-
vant references on Nielsen realization for 4-manifolds to my attention. I thank Danny Calegari and
Shmuel Weinberger for their helpful answers to my questions about mapping class groups of and fi-
nite group actions on 4-manifolds, and R. İnanç Baykur, Dan Margalit, Anubhav Mukherjee for their
comments on an earlier draft that improved the exposition of this paper. Finally, I thank anonymous
referees for their close reading of the paper and many helpful suggestions and comments.

2 Mapping class groups of del Pezzo manifolds

In this section we outline the tools used to study the finite subgroups of mapping class groups of del
Pezzo manifolds.

2.1 Mapping class groups of del Pezzo manifolds

The mapping class groups Mod(M) := π0(Homeo+(M)) of closed, oriented, and simply connected 4-
manifolds are computable due to the following theorems of Freedman, Perron, Quinn, and Cochran–
Habegger.

Theorem 2.1 (Freedman [Fre82], Perron [Per86], Quinn [Qui86], Cochran–Habegger [CH90]). LetM4

be a closed, oriented, and simply connected manifold. The map

Φ : Mod(M)→ Aut(H2(M ;Z), QM )

given by Φ : [f ] 7→ f∗ is an isomorphism of groups.

The Mayer–Vietoris sequence implies that H2(Mn;Z) = H2(CP2;Z) ⊕H2(CP2;Z)⊕n and gives a
natural Z-basis {H,E1, . . . , En}with intersection formQMn

∼= 〈1〉⊕n〈−1〉; the group Aut(H2(M ;Z), QMn
)

is the indefinite orthogonal group O(1, n)(Z), i.e. by Theorem 2.1,

Mod(Mn) ∼= O(1, n)(Z).

We will identify Aut(H2(M ;Z), QM ) and Mod(M) for all M in the rest of this paper.
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On the other hand, there is a diffeomorphism M2
∼= (CP1 × CP1)#CP2. So in addition to the

standard Z-basis {H,E1, E2} of H2(M2;Z), there is another natural Z-basis {S1, S2,Σ} of homology
corresponding to the decompositionH2(M2) ∼= H2(CP1×CP1;Z)⊕H2(CP2

;Z). The lattice (H2(CP1×
CP1;Z), QCP1×CP1) has two isotropic generators S1 and S2 with QCP1×CP1(S1, S2) = 1 coming from
the factors of the product CP1×CP1. One such diffeomorphism ϕ : M2 → (CP1×CP1)#CP2 induces
the isometry on homology

ϕ∗ : H − Ei 7→ Si for i = 1, 2, ϕ∗ : H − E1 − E2 7→ Σ.

Combining the diffeomorphism Mn
∼= (CP1 × CP1)#(n− 1)CP2

for n ≥ 2 with Theorem 2.1 and
applying [Wal64a, Theorem 2] to Mn yields the following statement. (The same statement holds for
M0, M∗, and M1 but these cases will be handled in Section 3.)

Theorem 2.2 (A rephrasing of [Wal64a, Theorem 2]). ForM = M∗ orMn with 2 ≤ n ≤ 9, the restriction
of π : Homeo+(M)→ Mod(M) to the subgroup Diff+(M) ≤ Homeo+(M) is surjective.

Remark 2.3. Theorem 2.2 cannot be extended to manifoldsMn for n ≥ 10; Friedman–Morgan ([FM88,
Theorem 10]) shows that the image of the quotient π|Diff+(Mn) : Diff+(Mn)→ Aut(H2(Mn;Z), QMn

)
has infinite index in Aut(H2(Mn;Z), QMn

) for all n ≥ 10.

2.2 Complex equivariant connected sums

A definition of equivariant connected sums can be found in [HT04, Section 1.C]. We include the
definition here for the convenience of the reader.

Let N1, N2 be smooth manifolds and G a finite group. Suppose G ≤ Diff+(Ni) for i = 1, 2 and
fix G-invariant metrics on each Ni. Suppose further that there exists points pi ∈ Ni for i = 1, 2
such that pi is fixed by all g ∈ G and the tangential representations G → SO(TpiNi) are equivalent
by an orientation-reversing isometry ρ : Tp1N1 → Tp2N2. By the equivariant tubular neighborhood
theorem ([Bre73, Theorem VI.2.2]), there exist G-invariant neighborhoods of pi ∈ Ni for each i = 1, 2
which are G-equivariantly diffeomorphic to TpiNi. We can now form as usual a connected sum
N1#N2 by taking the G-equivariant neighborhoods of p1 and p2 in N1 − p1 and N2 − p2 respectively
and equivariantly identifying concentric annuli around p1 and p2 via the orientation-reversing map
ρ. Then the connected sum N1#N2 has a natural smooth action of G. The G-manifold (N1#N2, G) is
called an equivariant connected sum.

More generally, suppose that G ≤ Diff+(N1) is finite. Let H ≤ G be any subgroup acting
smoothly on N2, i.e. there is a homomorphism H → Diff+(N2). Then the twisted product G ×H N2

is diffeomorphic to a disjoint union of |G/H|-many copies of N2. Note that G×H N2 6∼= G/H ×N2 as
G-spaces; see [Bre73, Chapter I, Section 6(A)] for more details.

Suppose there exist points p1 ∈ N1 and p2 ∈ N2, both with stabilizers equal to H such that
the tangential representations H → SO(TpiNi) are equivalent by an orientation-reversing isometry
Tp1N1 → Tp2N2. By [Bre73, Theorem VI.2.2] again, there exist H-invariant tubular neighborhoods
of the points in the G-orbits of p1 ∈ N1 and (1, p2) ∈ G ×H N2. The G-equivariant identification of
these H-invariant neighborhoods forms a connected sum denoted by N1#(G×H N2) with a natural
smooth action of G. Letting m = |G/H|, note that N1#(G×H N2) is diffeomorphic to N1#mN2. The
G-manifold (N1#mN2, G) is also called an equivariant connected sum. Note that the first construction
(N1#N2, G) is a special case of this more general construction with H = G.

With these definitions in mind, we define a complex equivariant connected sum.

Definition 2.4. Let M be a smooth manifold and let G ≤ Diff+(M) be finite. The pair (M,G) is called a
complex equivariant connected sum if one of the following holds:

1. (M,G) is G-equivariantly diffeomorphic to N or N , where N is a complex manifold and each g ∈ G ≤
Diff+(N) is biholomorphic or anti-biholomorphic, or
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2. (M,G) is G-equivariantly diffeomorphic to an equivariant connected sum (N1#(G×H N2), G), where
(N1, G) and (N2, H) are complex equivariant connected sums with H ≤ G.

If G0 ≤ Mod(M) is a finite group such that there exists a complex equivariant connected sum
(M,G) and G ≤ Diff+(M) is a lift of G0 under the quotient π : Homeo+(M)→ Mod(M) then we say
that G0 is realizable by a complex equivariant connected sum.

2.3 The group O(1, n)(Z) and the hyperboloid model

Fix n ∈ N. Consider the vector space Rn+1 with the diagonal binary symmetric form Qn of signature
(1, n)

Qn((x0, x1, . . . , xn), (y0, y1, . . . , yn)) = x0y0 − x1y1 − · · · − xnyn.

We denote the pair (Rn+1, Qn) by E1,n and the pair (Rn+1, Rn) by En,1 where Rn = −Qn. There is
a natural isometric inclusion (H2(Mn;Z), QMn

) ↪→ E1,n; using this embedding, identify Rn+1 with
the R-span of the Z-basis {H,E1, . . . , En} of H2(Mn;Z) which makes the R-bilinear extension of
QMn coincide with Qn. Under this identification, Qn(H,H) = −Rn(H,H) = 1 and Qn(Ek, Ek) =
−Rn(Ek, Ek) = −1 for all 1 ≤ k ≤ n.

Let O(n, 1)(R) ≤ GL(n + 1)(R) be the group of matrices preserving the form Rn. The group
O(n, 1)(Z) is the subgroup of integral matrices of O(n, 1)(R). Every v ∈ Rn+1 with Rn(v, v) = ±1,±2
defines a reflection Refv ∈ O(n, 1)(R) about v by

Refv(w) := w − 2Rn(v, w)

Rn(v, v)
v = w − 2Qn(v, w)

Qn(v, v)
v.

If v ∈ Zn+1 ⊆ En,1 then Refv ∈ O(n, 1)(Z).
Consider the submanifold

Hn = {v = (v0, v1, . . . , vn) ∈ Rn+1 : Rn(v, v) = −1, v0 > 0};

the restriction ofRn to Hn defines a Riemannian metric on Hn. As the notation suggests, this Rieman-
nian manifold is isometric to the hyperbolic n-space and is called the hyperboloid model (see [Thu97,
Chapter 2]). Let O+(n, 1)(R) denote the index 2 subgroup of O(n, 1)(R) that preserves the subman-
ifold Hn. This is the isometry group Isom(Hn) of Hn. The subgroup O+(n, 1)(Z) is defined to be
the subgroup of integral matrices of O+(n, 1)(R), so O+(n, 1)(Z) is a discrete subgroup of Isom(Hn).
Finally, we observe that O(1, n)(R) = O(n, 1)(R) as subgroups of GL(n+ 1)(R).

2.4 Coxeter theory

According to Vinberg ([Vin72]), the groups O+(n, 1)(Z) each contain a finite index, hyperbolic re-
flection subgroup acting by isometries on Hn with a fundamental domain of finite volume for all
n ≤ 17. It turns out that for n ≤ 9, the maximal reflection subgroup of O+(n, 1)(Z) is O+(n, 1)(Z)
itself. Explicit generators for each O+(n, 1)(Z) are also determined in [Wal64b].

Theorem 2.5 (Wall, [Wal64b, Theorem 1.5, 1.6]). For n = 2 and 3, the groups O+(n, 1)(Z) are:

O+(2, 1)(Z) = 〈RefH−E1−E2 , RefE1−E2 , RefE2〉,
O+(3, 1)(Z) = 〈RefH−E1−E2−E3

, RefE1−E2
, RefE2−E3

, RefE3
〉.

Remark 2.6. Another way to phrase the first half of Theorem 2.5 is that O+(2, 1)(Z) is the triangle
group ∆(2, 4,∞). This formulation is classical, shown by Fricke in [Fri91, p. 64-68].
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RefH−E1−E2
RefE1−E2

RefE2

O+(2, 1)(Z)

O+(3, 1)(Z)
RefE1−E2

RefE3
RefH−E1−E2−E3

RefE2−E3

Figure 2: Coxeter diagrams for O+(2, 1)(Z) and O+(3, 1)(Z), according to the notation of [Vin72,
Section 2.2].

In particular, the groups O+(n, 1)(Z) for n = 2, 3 are Coxeter groups and their Coxeter diagrams
are given in Figure 2. Denote the Coxeter system given by the diagrams in Figure 2 by (W (n), S(n))
for n = 2, 3.

For the sake of completeness, we emphasize that the geometric representation of (W (n), S(n)), de-
fined using the conventions of [Hum90, Section 5.3], coincides with the action of O+(n, 1)(Z) on En,1.
Let Vn be the R-span of {αs : s ∈ S(n)}. The standard symmetric bilinear form Bn on Vn defined by
the Coxeter system (W (n), S(n)) is given on the basis {αs : s ∈ S(n)} by

Bn(αs, αt) = − cos
π

m(s, t)
.

The action of W (n) on Vn preserving Bn is defined on the generators s ∈ S(n) by

s · v = v − 2Bn(αs, v)αs.

Moreover, there is an isometry Fn : (Vn, Bn) → (Rn+1, Rn), given on the basis elements of Vn by
Fn(αRefv ) = Rn(v, v)−

1
2 v. One can check that Fn(s · v) = s · Fn(v) for all v ∈ Vn and s ∈ S(n). From

now on, we identify En,1 with (Vn, Bn) under the isometry Fn.
The fact that O+(n, 1)(Z) ≤ Isom(Hn) via the geometric representation of (W (n), S(n)) yields an

easy classification of the finite subgroups of O+(n, 1)(Z) = O+(1, n)(Z) for n = 2, 3.

Lemma 2.7. For n = 2 or 3 and for any Refv ∈ S(n)− {RefE1−E2}, let

Gv := 〈s ∈ S(n)− {Refv}〉 ≤W (n).

The maximal finite subgroups of W (n) ∼= O+(1, n)(Z) are conjugate in W (n) to some Gv .

Proof. Let G ≤ O+(n, 1)(Z) ∼= W (n) be a finite subgroup. Then G acts on Hn as a finite subgroup
of isometries so it must fix at least one point in Hn ([Thu97, Corollary 2.5.19]). The fundamental
domain of O+(n, 1)(Z) in Hn (n = 2, 3) given by Vinberg’s algorithm ([Vin72, Proposition 4, Table 4])
has closure equal to the intersection

P :=
⋂

Refv∈S(n)

{w ∈ Hn : Rn(w, v) ≤ 0},

after conjugating the generators S(n) by

n∏
i=1

RefEi ∈ O+(n, 1)(Z),

which negates each Ei for 1 ≤ i ≤ n and fixes H .
On the other hand, let U ⊆ Vn be the Tits cone of W (n) and consider −U = {−x ∈ Vn : x ∈ U}.

Observe that F−1
n (P ) is contained in −U , and hence F−1

n (Hn) is also contained in −U . Because G
fixes a point in −U , it also fixes a point in U .
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For any I ⊆ S(n), define

CI =

(⋂
s∈I
{w ∈ Vn : Bn(w,αs) = 0}

)
∩

 ⋂
s∈S(n)−I

{w ∈ Vn : Bn(w,αs) > 0}

 .

The family C of the sets of the form w(CI) for all w ∈ W (n) and I ⊆ S(n) partitions U ([Hum90,
Section 5.13]). The stabilizer of any point in CI is WI by [Hum90, Theorem 5.13], where

WI := 〈s ∈ I ⊆ S(n)〉 ≤W (n).

If I = S(n) then the only point in Vn that is fixed byWI is 0 ∈ Vn, which is not contained in F−1
n (Hn).

If I = S(n)− {RefE1−E2
} then the fixed subspace of WI in Vn is F−1

n (R{H − E1}), which has empty
intersection with F−1

n (Hn). Note that if I is a proper subset of S(n) and I 6= S(n)− {RefE1−E2} then
WI is contained in Gv for some Refv ∈ S(n)− {RefE1−E2}. Hence if G fixes a point in F−1

n (Hn) then
G is contained, up to conjugacy in W (n), in Gv for some Refv ∈ S(n)− {RefE1−E2

}.

For completeness, we record the analogous result for O(1, n)(Z) for n = 2, 3.

Lemma 2.8. For n = 2, 3, maximal finite subgroups of O(1, n)(Z) are conjugate in O(1, n)(Z) to subgroups
of the form 〈Gv,−In+1〉 for some Refv ∈ S(n) − {RefE1−E2}. Here, In+1 denotes the (n + 1) × (n + 1)
identity matrix.

Proof. Let G be a maximal finite subgroup of O(1, n)(Z). Observe that 〈−In+1, G〉 is finite because
−In+1 ∈ Z(O(1, n)(Z)), so −In+1 ∈ G. Then G fits into a split short exact sequence

1→ O+(1, n)(Z) ∩G→ G→ 〈−In+1〉 → 1,

meaning that G = 〈O+(1, n)(Z) ∩ G,−In+1〉 with O+(1, n)(Z) ∩ G a maximal finite subgroup of
O+(1, n)(Z). Finally, conclude by applying Lemma 2.7.

3 A section of π : Homeo+(M)→ Mod(M) for M =M0, M∗ and M1

Let M = CP2, CP1 × CP1, or CP2#CP2. The mapping class group Mod(M) is isomorphic to Z/2Z
for M = CP2 and to (Z/2Z)2 in the latter two cases. It turns out that there exists a particularly nice
section of the quotient map π : Homeo+(M) → Mod(M). We construct this section in the following
proposition as a warmup for the rest of this paper.

Proposition 3.1. Let M = CP2, CP1 × CP1, or CP2#CP2. There is a section of π : Homeo+(M) →
Mod(M) with image in Diff+(M). In fact, Mod(M) is realized by a complex equivariant connected sum.

A main tool to construct complex equivariant connected sums is the following lemma.

Lemma 3.2. Let GM ∼= (Z/2Z)2 ≤ Diff+(M) and let GN ∼= (Z/2Z)2 ≤ Diff+(N) and fix a group
isomorphism Φ : GM → GN . Suppose there exist p ∈ Fix(GM ) ⊆ M , q ∈ Fix(GN ) ⊆ N . For all h ∈ GM ,
let Fh and FΦ(h) denote the connected components of p, q in Fix(h) and Fix(Φ(h)) respectively and suppose
that Fh, FΦ(h) are 2-dimensional. Moreover for some pair of generators f, g of GM , suppose that Ff ∩ Fg and
FΦ(f) ∩ FΦ(g) are 1-dimensional.

There exist diffeomorphisms h#Φ(h) ∈ Diff+(M#N) for all h ∈ GM such that 〈h#Φ(h) : h ∈ GM 〉 ∼=
GM and

[h#Φ(h)] = ([h], [Φ(h)]) ∈ Mod(M)×Mod(N) ≤ Mod(M#N).
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Proof. Fix aGM -invariant metric onM andGN -invariant metric onN . The tangential representations
ρM : GM → SO(TpM) and ρN : GN → SO(TqN) are faithful because isometries of compact manifolds
are determined by their action on a point and a frame. The invariant subspaces TpMGM and TqNGN

are 1-dimensional because Ff ∩ Fg and FΦ(f) ∩ FΦ(g) are 1-dimensional. Therefore −I4 is not in the
image of the tangential representations of either GM and GN .

There is a unique faithful representation ρ : (Z/2Z)2 → SO(4,R) up to conjugation in SO(4,R)
such that −I4 /∈ im(ρ). Therefore, ρM and ρN are equivalent by an orientation-preserving isometry
TpM → TqN , i.e. an orientation-reversing isometry TpM → TqN . Now construct the connected
sum at small GM - and GN -invariant disks in M and N centered at p and q respectively. Then M#N
becomes a smooth (Z/2Z)2-manifold in the standard way since the map

(f#Φ(f))(x) =

{
f(x) x ∈M − p
Φ(f)(x) x ∈ N − q

is a well-defined diffeomorphism of M#N . By construction,

[f#Φ(f)] = ([f ], [Φ(f)]) ∈ Mod(M)×Mod(N) ≤ Mod(M#N).

Proof of Proposition 3.1. Consider the cases M = M0, M = M∗ and M = M1 separately.

1. Let M = M0 = CP2. Then Aut(H2(M ;Z), QM ) ∼= Z/2Z with generator c : H 7→ −H . The map
τ : M → M given by complex conjugation realizes c so s : c 7→ τ defines a desired section
s : Mod(M)→ Diff+(M).

2. Let M = M∗ = CP1 × CP1. Let (S1, S2) be a Z-basis of H2(M ;Z) where S1, S2 correspond to
the first and second factors CP1 respectively so that QM (Si, Sj) = 1− δij for 1 ≤ i, j ≤ 2. Then
Aut(H2(M ;Z), QM ) = 〈c1, c2〉 ∼= (Z/2Z)2 where

c1 =

(
−1 0
0 −1

)
, c2 =

(
0 1
1 0

)
with respect to the Z-basis (S1, S2). For c = c1 and c2, define fc : M →M by

fc1 : ([X : Y ], [W : Z]) 7→ ([X : Y ], [W : Z]), fc2 : ([X : Y ], [W : Z]) 7→ ([W : Z], [X : Y ]).

Because fc1 and fc2 have order two and commute, 〈fc1 , fc2〉 ∼= (Z/2Z)2 ≤ Diff+(M) with
[fci ] = ci for i = 1, 2. Therefore, s : ci 7→ fci defines a desired section s : Mod(M)→ Diff+(M).

3. Let M = M1 = CP2#CP2. Then Aut(H2(M ;Z);QM ) = 〈c1, c2〉 ∼= (Z/2Z)2 where

c1 =

(
−1 0
0 1

)
, c2 =

(
1 0
0 −1

)
with respect to the Z-basis (H,E1). Define the diffeomorphisms f1, f2 : CP2 → CP2 and g1, g2 :
CP2 → CP2 by

f1, g2 : [X : Y : Z] 7→ [X : Y : Z], f2, g1 : [X : Y : Z] 7→ [−X : Y : Z].

Because f1 and f2 have order two and commute, 〈f1, f2〉 ∼= (Z/2Z)2 ≤ Diff+(CP2). By the same
computation, 〈g1, g2〉 ∼= (Z/2Z)2 ≤ Diff+(CP2). Also,

Fix(f1) = Fix(g2) = {[a : b : c] : a, b, c ∈ R} ∼= RP2,

Fix(f2) = Fix(g1) = {[0 : Y : Z] ∈ CP2} t {[1 : 0 : 0]} ∼= CP1 t {p}.
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Let q = [0 : 1 : 0] ∈ CP2. Then q is contained in a 2-dimensional component of Fix(fi) and
Fix(gi) for both i = 1, 2. Moreover,

q ∈ Fix(f1) ∩ Fix(f2) = Fix(g1) ∩ Fix(g2) = {[0 : b : c] : b, c ∈ R} ∼= S1,

i.e. the connected components of q in Fix(f1)∩Fix(f2) and Fix(g1)∩Fix(g2) are 1-dimensional.
Now apply Lemma 3.2 with 〈f1, f2〉 ≤ Diff+(CP2) and 〈g1, g2〉 ≤ Diff+(CP2). The resulting dif-
feomorphisms fi#gi of M1 generate (Z/2Z)2 and satisfy the equalities [fi#gi] = ci. Therefore,
s : ci 7→ fi#gi defines a desired section s : Mod(M)→ Diff+(M).

4 Nielsen realization problem for del Pezzo manifolds

4.1 Finite group actions on 4-manifolds

If G = Z/pZ with p ∈ Z prime acts smoothly on a closed, oriented 4-manifold in an orientation-
preserving way then its fixed set is a finite disjoint union of isolated points and surfaces (see e.g.
[FL21, Proof of Lemma 3.5 (3)]). In this section we outline some results giving homological restric-
tions on these fixed sets.

Any topological action of G = Z/pZ on a closed, oriented, simply-connected 4-manifold M ,
induces an action of G on H2(M ;Z). By [Edm89, Proposition 1.1], H2(M ;Z) decomposes as a di-
rect sum of indecomposable representations of the trivial type, cyclotomic type, and regular type.
Note that indecomposable representations of cyclotomic type are not necessarily isomorphic as G-
representations to Z[ζp], where ζp is a primitive pth root of unity, if p ≥ 23. Similarly, not all indecom-
posable representations of regular type are isomorphic as G-representations to the group ring Z[G]
if p ≥ 23. See [Edm89, Proposition 1.1] for more details. Such exotic representations do not occur in
the arguments of this paper because p = 2 in all applications of the following proposition.

Proposition 4.1 (Edmonds, [Edm89, Proposition 2.4]). Let G = Z/pZ act smoothly on a closed, oriented,
simply-connected smooth 4-manifold M . Let t be the number of trivial summands and c be the number of
cyclotomic summands in H2(M ;Z). Let Fix(G) ⊆M be the fixed set of G. If Fix(G) 6= ∅ then

1. β1(Fix(G)) = c and

2. β0(Fix(G)) + β2(Fix(G)) = t+ 2,

where βk(Fix(G)) denotes the mod p, kth Betti numbers of Fix(G).

In fact, the results of [Edm89] apply more generally to any locally linear actions of G on such
manifolds M .

Remark 4.2. By [Edm89, Corollary 1.4], the Euler characteristic χ(Fix(G)) of Fix(G) is t−c+2. Hence,
if t + 2 6= c then Fix(G) 6= ∅ if t + 2 6= c and so Proposition 4.1 applies. Moreover, Proposition 4.1
applies to the Z[G]-module structure of H2(M ;Z) since the invariants t and c are preserved under
the isomorphism H2(M ;Z)→ H2(M ;Z) via Poincaré duality.

The second standard result regarding fixed sets of orientation-preserving, smooth finite group
actions on 4-manifolds is the Hirzebruch G-signature theorem. We specialize to the case G = Z/2Z.
Two quantities are necessary in the statement of this theorem: σ(M) and σ(M/G). The quantity
σ(M) denotes the signature ofM , which is defined as σ(M) = p+−p− where (p+, p−) is the signature
of the intersection form QM as a nondegenerate symmetric bilinear form. By [HZ74, Section 2.1, (22),
(24)], σ(M/G) = p+

G−p
−
G where (p+

G, p
−
G) is the signature of the intersection form QM restricted to the

G-fixed subspace of H2(M ;R).
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Theorem 4.3 (A special case of the Hirzebruch G-signature theorem, [HZ74, Section 9.2, (12)]). Let
G = Z/2Z act on M4 by orientation-preserving diffeomorphisms such that the 2-dimensional connected
components of the fixed sets are orientable. Then

2σ(M/G) = σ(M) +
∑
C

QM ([C], [C])

where the sum on the right side is taken over the 2-dimensional connected components C of the fixed set of G
in M .

Remark 4.4. The Hirzebruch G-signature theorem in [HZ74, Section 9.2 (12)] is stated for a general
finite group G. Its statement involves certain quantities called defects which are attached to every
connected submanifold ofM with nontrivial stabilizer inG. In the case thatG = Z/2Z, any orientable
2-dimensional component C of the fixed set has defect equal to QM ([C], [C]) according to [HZ74,
Section 9.2, (15)]. At any isolated fixed point p ∈ M , the nontrivial element g ∈ G acts by −I4 on
the tangent space TpM . This observation and [HZ74, Section 9.2, (19)] imply that the defect at any
isolated fixed point is 0. These computations of defects reduce the general statement of the theorem
to the statement given above for G = Z/2Z.

4.2 Smooth Nielsen realization problem for M2

The goal of this subsection is to prove Theorem 1.1. We first label certain mapping classes in Mod(M2).
Denote by Φ,Ψ by following elements of Aut(H2(M2;Z), QM2

) ∼= O(1, 2)(Z) whose matrix forms are
given with respect to the ordered Z-basis (H,E1, E2) of H2(M2;Z):

Φ = RefE1−E2
RefE1

=

1 0 0
0 0 1
0 −1 0

 , Ψ = RefE1
=

1 0 0
0 −1 0
0 0 1

 .

Denote by A,B the following elements of Aut(H2(M2;Z), QM2
) ∼= O(1, 2)(Z) whose matrix forms

are given respect to the Z-basis (S1, S2,Σ):

A = RefE1−E2
=

0 1 0
1 0 0
0 0 1

 , B = RefH−E1−E2
=

1 0 0
0 1 0
0 0 −1

 .

We determine the realizable subgroups of G1 = 〈A,B,−I3〉 and G2 = 〈Φ,Ψ,−I3〉 in Sections
4.2.1 and 4.2.2 respectively. In Section 4.2, we combine the results of Sections 4.2.1 and 4.2.2 to prove
Theorem 1.1 and Corollaries 1.2 and 1.3.

4.2.1 Subgroups of G1 = 〈A,B,−I3〉 ∼= (Z/2Z)3

In this section we first analyze the fixed sets of any lift of some c ∈ G1 to determine some subgroups
of G1 which cannot be realized by diffeomorphisms. Afterwards, we explicitly realize the remaining
subgroups of G1.

Lemma 4.5. Let g = A or −AB. If g is realized by an order 2 diffeomorphism fg then

Fix(fg) ∼= S2 t {p}

where p is an isolated fixed points of fg .

Proof. If g = A, let S = (S1, S2,Σ) and if g = −AB, let S = (S1,−S2,Σ). With respect to the Z-basis
S of H2(M2;Z),

g =

0 1 0
1 0 0
0 0 1

 .
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By Remark 4.2, χ(Fix(fg)) = 3 and so Fix(fg) 6= ∅. Proposition 4.1 implies that β1(Fix(fg)) = 0 and
β0(Fix(fg))+β2(Fix(fg)) = 3. Combining with the fact that each Fix(ϕ) is a disjoint union of surfaces
and isolated points shows that

Fix(fg) ∼= S2 t {p} or [3]

where [n] denotes the set of n distinct isolated points. By the G-signature theorem (Theorem 4.3) and
the fact that σ(M2) = −1,

2σ(M2/G) = −1 +
∑
C

QM2
([C], [C]).

Comparing the parity of both sides of the equation shows that there must exist at least one 2-
dimensional component of the fixed set.

The next lemma determines the self-intersection numbers of the submanifolds S2 of Fix(fA) and
Fix(f−AB).

Lemma 4.6. Let g = A or −AB. Suppose g is realized by an order 2 diffeomorphism fg with Fix(fg) ∼=
Fg t {p} and Fg ∼= S2. Then

QM2
([FA], [FA]) = 1, QM2

([F−AB ], [F−AB ]) = −3.

Proof. Let G = 〈fg〉. Then

H2(M2;R)G =

{
R{S1 + S2,Σ} if g = A,

R{S1 − S2,Σ} if g = −AB.

The restriction of QM2 to H2(M2;R)G with respect to the R-bases (S1 + S2,Σ) and (S1 − S2,Σ) re-
spectively are

QM2 |H2(M2;R)G =



(
2 0

0 −1

)
if g = A,(

−2 0

0 −1

)
if g = −AB.

This shows that σ(M2/〈fA〉) = 0 and σ(M2/〈f−AB〉) = −2. Applying the G-signature theorem
(Theorem 4.3) to both cases above shows

0 = −1 +QM2
([FA], [FA]) − 4 = −1 +QM2

([F−AB ], [F−AB ]).

Lemma 4.6 yields the appropriate homological obstructions to prove the following nonrealizabil-
ity results.

Proposition 4.7. There is no lift of 〈A,−B〉 ∼= (Z/2Z)2 ≤ Mod(M2) or of 〈A,B〉 ∼= (Z/2Z)2 ≤ Mod(M2)
to Diff+(M2).

Proof. Suppose there is a lift 〈fA, f±B〉 ∼= (Z/2Z)2 ≤ Diff+(M2) with [fA] = A and [f±B ] = ±B.
Because f±B and fA commute, f±B restricts to a diffeomorphism on FA, the unique 2-dimensional
connected component of Fix(fA) by Lemma 4.5. Therefore ±B([FA]) = [FA] or −[FA]. Observe that
H2(M2;Z) has a direct sum decomposition

H2(M2;Z) = Z{Σ} ⊕ Z{S1, S2}

into a sum of (1)- and (−1)-eigenspaces of of ±B, meaning that either [FA] ∈ Z{Σ} or [FA] ∈
Z{S1, S2}.

By Lemma 4.6, QM2
([FA], [FA]) = 1. If [FA] = aΣ for any a ∈ Z then −a2 = QM2

([FA], [FA]) = 1
which is a contradiction. If [FA] = aS1 + bS2 for any a, b ∈ Z then 2ab = QM2

([FA], [FA]) = 1 which
is also a contradiction.
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Proposition 4.8. There is no lift of 〈−AB,−A〉 ∼= (Z/2Z)2 ≤ Mod(M2) to Diff+(M2).

Proof. Suppose there is a lift 〈f−AB , f−A〉 ∼= (Z/2Z)2 ≤ Diff+(M2) with [f−AB ] = −AB and [f−A] =
−A. Because f−AB and f−A commute, f−A restricts to a diffeomorphism on F−AB , which is the
unique 2-dimensional connected component of Fix(f−AB) by Lemma 4.5. There is a decomposition

H2(M2;Q) = Q{S1 − S2} ⊕Q{S1 + S2,Σ}

into (1)- and (−1)-eigenspaces of −A, which means that either [F−AB ] ∈ Q{S1 − S2} ∩H2(M2;Z) or
[F−AB ] ∈ Q{S1 + S2,Σ} ∩H2(M2;Z).

If [F−AB ] ∈ Q{S1 − S2} ∩H2(M2;Z) then [F−AB ] = a(S1 − S2) for some a ∈ Z. Compute that

−3 = QM2
([F−AB ], [F−AB ]) = −2a2,

which is a contradiction by Lemma 4.6.
If [F−AB ] ∈ Q{S1 +S2,Σ}∩H2(M2;Z) then [F−AB ] = a(S1 +S2)+bΣ for some a, b ∈ Z. Moreover,

H2(M2;Q) has another direct sum decomposition

H2(M2;Q) ∼= Q{S1 − S2,Σ} ⊕Q{S1 + S2}

into a sum of (1)- and (−1)-eigenspaces of −AB. Because −AB([F−AB ]) = [F−AB ],

[F−AB ] = a(S1 + S2) + bΣ ∈ Z{S1 − S2,Σ}

which implies that [F−AB ] = bΣ. However, this is impossible since −3 = QM2
([F−AB ], [F−AB ]) =

−b2 by Lemma 4.6.

It turns out that with the exception of the subgroups of Propositions 4.7 and 4.8, all other sub-
groups of G1 are realizable. We explicitly construct the lifts of these subgroups of G1 to Diff+(M2) in
this next proposition.

Proposition 4.9. If G ≤ Mod(M2) is one of

〈A,−I3〉, 〈B,−B〉, 〈AB,−I3〉, or 〈AB,−B〉

then G is realized by a complex equivariant connected sum.

Proof. Define diffeomorphisms h1
A, h

1
B , h

1
−I3 , h

1
AB , h

1
−B : CP1 × CP1 → CP1 × CP1 by:

h1
A, h

1
AB : ([X1 : X2], [Y1 : Y2]) 7→ ([Y1 : Y2], [X1 : X2]),

h1
B : ([X1 : X2], [Y1 : Y2]) 7→ ([−X1 : X2], [Y1 : Y2]),

h1
−I3 , h

1
−B : ([X1 : X2], [Y1 : Y2]) 7→ ([X1 : X2], [Y1 : Y2]).

The diffeomorphisms h1
A, h

1
B , h

1
−I3 , h

1
AB , h

1
−B have order 2. On the other hand, define diffeomor-

phisms h2
A, h

2
B , h

2
−I3 , h

2
AB , h

2
−B : CP2 → CP2 by:

h2
A, h

2
−B : [X : Y : Z] 7→ [−X : Y : Z],

h2
B , h

2
−I3 : [X : Y : Z] 7→ [X : Y : Z],

h2
AB : [X : Y : Z] 7→ [−X : Y : Z].

The fixed sets of the diffeomorphisms defined above are:

Fix(h1
A) = Fix(h1

AB) = {([X1 : X2], [X1 : X2])} ∼= CP1,

Fix(h1
B) = {([0 : 1], [Y1 : Y2])} t {([1 : 0], [Y1 : Y2])} ∼= CP1 t CP1,

Fix(h1
−I3) = Fix(h1

−B) = {([a : b], [c : d]) ∈ RP1 × RP1} ∼= T2,

Fix(h2
A) = Fix(h2

−B) = {[0 : Y : Z] ∈ CP2} t {[1 : 0 : 0]} ∼= CP1 t {p},
Fix(h2

B) = Fix(h2
−I3) = {[a : b : c] : a, b, c ∈ R} ∼= RP2,

Fix(h2
AB) = {[ai : b : c] : a, b, c ∈ R} ∼= RP2.
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1. Compute that

〈h1
A, h

1
−I3〉 ∼= (Z/2Z)2 ≤ Diff+(CP1 × CP1) and 〈h2

A, h
2
−I3〉 ∼= (Z/2Z)2 ≤ Diff+(CP2).

Let q1 = ([0 : 1], [0 : 1]) ∈ Fix(h1
A) ∩ Fix(h1

−I3) and q2 = [0 : 0 : 1] ∈ Fix(h2
A) ∩ Fix(h2

−I3). The
connected component Fq1 of q1 in Fix(h1

A) ∩ Fix(h1
−I3) is

Fq1 = {([a : b], [a : b]) : a, b ∈ R} ∼= S1.

The connected component Fq2 of q2 in Fix(h2
A) ∩ Fix(h2

−I3) is

Fq2 = {[0 : a : b] : a, b ∈ R} ∼= S1.

Therefore, apply Lemma 3.2 to see that 〈h1
A#h2

A, h
1
−I3#h2

−I3〉 ≤ Diff+(M2) is a realization of
〈A,−I3〉 by a complex equivariant connected sum.

2. Compute that

〈h1
B , h

1
−B〉 ∼= (Z/2Z)2 ≤ Diff+(CP1 × CP1) and 〈h2

B , h
2
−B〉 ∼= (Z/2Z)2 ≤ Diff+(CP2).

Let q1 = ([0 : 1], [0 : 1]) ∈ Fix(h1
B) ∩ Fix(h1

−B) and q2 = [0 : 0 : 1] ∈ Fix(h2
B) ∩ Fix(h2

−B). The
connected component Fq1 of q1 in Fix(h1

B) ∩ Fix(h1
−B) is

Fq1 = {([0 : 1], [a : b]) : a, b ∈ R} ∼= S1.

The connected component Fq2 of q2 in Fix(h2
B) ∩ Fix(h2

−B) is

Fq2 = {[0 : a : b] : a, b ∈ R} ∼= S1.

Therefore, apply Lemma 3.2 to see that 〈h1
B#h2

B , h
1
−B#h2

−B〉 ≤ Diff+(M2) is a realization of
〈B,−B〉 by a complex equivariant connected sum.

3. Compute that

〈h1
−I3 , h

1
AB〉 ∼= (Z/2Z)2 ≤ Diff+(CP1 × CP1) and 〈h2

−I3 , h
2
AB〉 ∼= (Z/2Z)2 ≤ Diff+(CP2).

Let q1 = ([0 : 1], [0 : 1]) ∈ Fix(h1
−I3) ∩ Fix(h1

AB) and q2 = [0 : 0 : 1] ∈ Fix(h2
−I3) ∩ Fix(h2

AB). The
connected component Fq1 of q1 in Fix(h1

−I3) ∩ Fix(h1
AB) is

Fq1 = {([a : b], [a : b]) : a, b ∈ R} ∼= S1.

The connected component Fq2 of q2 in Fix(h2
−I3) ∩ Fix(h2

AB) is

Fq2 = {[0 : a : b] : a, b ∈ R} ∼= S1.

Therefore, apply Lemma 3.2 to see that 〈h1
−I3#h2

−I3 , h
1
AB#h2

AB〉 ≤ Diff+(M2) is a realization of
〈−I3, AB〉 by a complex equivariant connected sum.

4. Compute that

〈h1
AB , h

1
−B〉 ∼= (Z/2Z)2 ≤ Diff+(CP1 × CP1) and 〈h2

AB , h
2
−B〉 ∼= (Z/2Z)2 ≤ Diff+(CP2).

Let q1 = ([0 : 1], [0 : 1]) ∈ Fix(h1
AB) ∩ Fix(h1

−B) and q2 = [0 : 0 : 1] ∈ Fix(h2
AB) ∩ Fix(h2

−B). The
connected component Fq1 of q1 in Fix(h1

AB) ∩ Fix(h1
−B) is

Fq1 = {([a : b], [a : b]) : a, b ∈ R} ∼= S1.

The connected component Fq2 of q2 in Fix(h2
AB) ∩ Fix(h2

−B) is

Fq2 = {[0 : a : b] : a, b ∈ R} ∼= S1.

Therefore, apply Lemma 3.2 to see that 〈h1
AB#h2

AB , h
1
−B#h2

−B〉 ≤ Diff+(M2) is a realization of
〈AB,−B〉 by a complex equivariant connected sum.
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4.2.2 G2 = 〈Φ,Ψ,−I3〉 ∼= D4 × Z/2Z

In this section we show that the subgroup G2 is realizable by diffeomorphisms of M2 given by a
complex equivariant connected sum. Throughout, the dihedral group of order 8 is denoted by D4.

Proposition 4.10. The groupG2
∼= D4×(Z/2Z) ≤ Mod(M2) is realized by a complex equivariant connected

sum.

Proof. Define diffeomorphisms hΦ, hΨ, h−I3 : CP2 → CP2 by

hΦ([X : Y : Z]) = [−Y : X : Z],

hΨ([X : Y : Z]) = [X : −Y : Z],

h−I3([X : Y : Z]) = [X : Y : Z].

Let p1 = [1 : 0 : 0] ∈ CP2 and p2 = [0 : 1 : 0] ∈ CP2. The subgroup 〈hΦ, hΨ, h−I3〉 ≤ Diff+(CP2)
preserves the set {p1, p2} ⊆ CP2. It is straightforward to check that 〈hΦ, hΨ, h−I3〉 ∼= D4 × (Z/2Z).

On the other hand, let N1, N2
∼= CP2. Define gΦ : N1 tN2 → N1 tN2 by

gΦ|N1
([X : Y : Z]) = [X : −Y : Z] ∈ N2,

gΦ|N2
([X : Y : Z]) = [X : Y : −Z] ∈ N1.

Define gΨ, g−I3 : N1 tN2 → N1 tN2

gΨ([X : Y : Z]) =

{
[X : −Y : Z] ∈ N1 if [X : Y : Z] ∈ N1,

[X : Y : −Z] ∈ N2 if [X : Y : Z] ∈ N2,

g−I3([X : Y : Z]) =

{
[X : Y : Z] ∈ N1 if [X : Y : Z] ∈ N1,

[X : Y : Z] ∈ N2 if [X : Y : Z] ∈ N2.

The maps gΦ, gΨ, g−I3 preserve the set {q1, q2} ⊆ N1 tN2 with q1 = [0 : 0 : 1] ∈ N1 and q2 = [0 : 0 :
1] ∈ N2. It is straightforward to check that 〈gΦ, gΨ, g−I3〉 ∼= D4 × (Z/2Z).

Let Bk = {(a, b, c, d) ∈ R4 : a2 + b2 + c2 + d2 < 1} for k = 1, 2. Define smooth embeddings
ik : Bk → CP2, jk : Bk → Nk for k = 1, 2 by

i1(a, b, c, d) = [1 : a+ bi : c+ di] ∈ CP2, j1(a, b, c, d) = [c+ bi : a− di : 1] ∈ N1,

i2(a, b, c, d) = [a+ bi : 1 : c+ di] ∈ CP2, j2(a, b, c, d) = [c+ bi : a− di : 1] ∈ N2.

The embeddings i1, i2 are orientation-preserving while j1, j2 are orientation-reversing. Then we ex-
plicitly identify M2 with

(CP2 − {p1, p2}) t (N1 tN2 − {q1, q2})/ ∼

with ik(tuk) ∼ jk((1 − t)uk) for all t ∈ (0, 1) and uk ∈ ∂Bk for k = 1, 2. For c = Φ,Ψ, and −I3, let
fc ∈ Diff+(M2) be defined

fc(x) =

{
hc(x) x ∈ CP2 − {p1, p2}
gc(x) x ∈ (N1 tN2)− {q2, q2}.

See Figure 3 for an illustration of the complex equivariant connected sum (M2, 〈fΦ, fΨ, f−I3〉). We
now show that each fc is a well-defined diffeomorphism of M2. Let x = (a, b, c, d) ∈ ∂B4 and
t ∈ (0, 1). Compute for i1(tx) = [1 : t(a+ bi) : t(c+ di)] ∈ im(i1) ⊆ CP2 − {p1, p2},

hΦ(i1(tx)) = i2(t(−a,−b, c, d)) = j2((1− t)(−a,−b, c, d)) = gΦ(j1((1− t)x)),

hΨ(i1(tx)) = i1(t(−a,−b, c, d)) = j1((1− t)(−a,−b, c, d)) = gΨ(j1((1− t)x)),

h−I3(i1(tx)) = i1(t(a,−b, c,−d)) = j1((1− t)(a,−b, c,−d)) = g−I3(j1((1− t)x)).
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N1 = CP2 N2 = CP2

CP2

p1 p2

hΦ

hΦ

q1 q2

N1 − {q1} N2 − {q2}

CP2 − {p1, p2}

 

〈hΦ, hΨ, h−I3〉

gΦ

gΦ

〈gΨ, g−I3〉 〈gΨ, g−I3〉 〈fΨ, f−I3〉 〈fΨ, f−I3〉

fΦ

fΦ

〈fΦ, fΨ, f−I3〉

Figure 3: The complex equivariant connected sum (CP2#2CP2, G2) constructed in the proof of
Proposition 4.10. Left: The group G2 acts on CP2 and 2CP2. The subgroup 〈Φ2,Ψ,−I3〉 fixes the
points p1, p2, q1, and q2 and preserves some neighborhoods (in grey) of each point. The group G2

acts on the union of these neighborhoods. Right: A connected sum formed by gluing the neighbor-
hood of qi to the neighborhood of pi (in grey) for i = 1, 2 in a G2-equivariant way.

For i2(tx) = [t(a+ bi) : 1 : t(c+ di)] ∈ im(i2) ⊆ CP2 − {p1, p2},

hΦ(i2(tx)) = i1(t(−a,−b,−c,−d)) = j1((1− t)(−a,−b,−c,−d)) = gΦ(j2((1− t)x)),

hΨ(i2(tx)) = i2(t(−a,−b,−c,−d) = j2((1− t)(−a,−b,−c,−d)) = gΨ(j2((1− t)x)),

h−I3(i2(tx)) = i2(t(a,−b, c,−d)) = j2((1− t)(a,−b, c,−d)) = g−I3(j2((1− t)x)).

We have computed explicitly that hc(tx) ∼ gc((1 − t)x) for all c = Φ,Ψ,−I3, x ∈ ∂Bk for k = 1, 2
and t ∈ (0, 1). Therefore, 〈fΦ, fΨ, f−I3〉 ∼= D4 × (Z/2Z) ≤ Diff+(M2) is a desired lift of 〈Φ,Ψ,−I3〉 ∼=
D4 × (Z/2Z) ≤ Mod(M2) with [fΦ] = Φ, [fΨ] = Ψ, and [f−I3 ] = −I3 by construction.

Finally, let H = 〈Φ2,Ψ,−I3〉 E G2. As constructed above, H acts on both CP2 and CP2 smoothly,
and H is the stabilizer of p1 ∈ CP2 and q1 ∈ N1

∼= CP2. Hence (M2, 〈fΦ, fΨ, f−I3〉) is an explicit
construction of the complex equivariant connected sum (CP2#(G2 ×H CP2), G2).

4.2.3 Proof of Theorem 1.1 and its corollaries

The following proposition ties together the lemmas of the previous sections.

Proposition 4.11. Let G ≤ Mod(M2) be a finite subgroup. There exists a lift G̃ of G to Diff+(M2) under
π : Homeo+(M2)→ Mod(M2) if and only if G is conjugate in Mod(M2) to a subgroup of:

1. 〈Φ,Ψ,−I3〉 ∼= D4 × (Z/2Z), or

2. one of the four groups 〈A,−I3〉, 〈B,−I3〉, 〈AB,−I3〉, or 〈−A,−B〉, each isomorphic to (Z/2Z)2.

Proof. By Lemma 2.8, any finite subgroup G ≤ Mod(M2) is conjugate in Mod(M2) to a subgroup of

1. 〈GH−E1−E2 ,−I3〉 = 〈RefE1−E2 ,RefE2 ,−I3〉 = 〈Φ,Ψ,−I3〉 or

2. 〈GE2
,−I3〉 = 〈RefH−E1−E2

,RefE1−E2
,−I3〉 = 〈A,B,−I3〉.
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Proposition 4.10 constructs a lift of 〈Φ,Ψ,−I3〉 to Diff+(M2) explicitly. Suppose G is a subgroup of
〈A,B,−I3〉 ∼= (Z/2Z)3 and G has a lift G̃ ≤ Diff+(M2). Because there are subgroups of 〈A,B,−I3〉
which do not have lifts to Diff+(M2) (Propositions 4.7 and 4.8), G must be a proper subgroup of
〈A,B,−I3〉. Observe that any two out of the seven nontrivial elements of 〈A,B,−I3〉 determine a
subgroup of order 4 in 〈A,B,−I3〉, and there are three possible sets of generators for each order 4
subgroup. This gives seven distinct subgroups of order 4.

Propositions 4.7 and 4.8 account for three subgroups isomorphic to (Z/2Z)2 that cannot be real-
ized by diffeomorphisms. Proposition 4.9 gives lifts for the four remaining subgroups isomorphic to
(Z/2Z)2; all of these lifts are realized as complex equivariant connected sums. This accounts for all
maximal proper subgroups of 〈A,B,−I3〉. On the other hand, all nontrivial subgroups of maximal
proper subgroups of 〈A,B,−I3〉 are cyclic of order 2. Note that all order 2 elements of 〈A,B,−I3〉
are contained in some subgroup of order 4, which have lifts to Diff+(M2), listed in Proposition 4.9.

Finally, the map π|Diff+(M2) : Diff+(M2) → Mod(M2) is surjective by Theorem 2.2. Therefore, for
any finite subgroup H = gGg−1 ⊆ Mod(M2) with G a finite subgroup of 〈A,B,−I3〉 or 〈Φ,Ψ,−I3〉,
let α ∈ Diff+(M2) be a representative of g ∈ Mod(M2). Then if a lift G̃ of G to Diff+(M2) exists then
H̃ = αG̃α−1 is a lift of H and vice versa. Therefore, a lift G̃ of G to Diff+(M2) exists if and only if G
is conjugate to a subgroup given in the statement of the proposition.

We can now prove Theorem 1.1.

Proof of Theorem 1.1. All constructions of Proposition 4.9 and Proposition 4.10, which account for all
realizable cases of Proposition 4.11, are given as complex equivariant connected sums. These account
for all finite subgroups of Mod(M2) which lift to Diff+(M2).

Finally, we deduce the corollaries of Theorem 1.1.

Proof of Corollary 1.2. By Lemma 2.8, any finite order element c of Mod(M2) is conjugate to some
element contained in G1 or G2. Compute that all individual finite order elements of G1 and G2 are
contained in some subgroup given in Proposition 4.11 that lifts to Diff+(M2). Again since π|Diff+(M2) :

Diff+(M2) → Mod(M2) is surjective, this is enough to conclude that c is represented by an order n
diffeomorphism in Diff+(M2).

Proof of Corollary 1.3. Let S be a smoothly embedded (−2)-sphere in M2 and let TS be the Dehn twist
about S. A construction of Dehn twists about Lagrangian spheres S in symplectic 4-manifolds is
given in [Sei08, Section (2a)]. This construction in fact works for any smoothly embedded (−2)-
sphere S in a smooth 4-manifold.

By construction, the restriction of TS to S is the antipodal map, and so (TS)∗[S] = −[S] 6= 0.
According to [Sei08, Proposition 2.1], the square T 2

S is smoothly isotopic to the identity of M2. There-
fore, both the smooth and topological mapping classes of TS have order 2. The corollary is now a
special case of Corollary 1.2.

Proof of Corollary 1.4. By Propositions 4.7 and 4.8, there exist subgroups G ≤ Mod(M2) isomorphic
to (Z/2Z)2 that cannot be realized by diffeomorphisms. By Corollary 1.2, all elements g ∈ G are
realized by a complex equivariant connected sum.

4.3 Smooth Nielsen realization problem for M3

In this section we use similar techniques as used in the proof of Theorem 1.1 to show that only one
of the three maximal finite subgroups of Mod(M3) lifts to Diff+(M3).

Throughout this section let

σ(ij) = RefEi−Ej R(k) = RefEk
, ψ = RefH−E1−E2−E3 , c = R(1)R(2)R(3).
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For any subgroup G ≤ Mod(M3) with a lift to Diff+(M3), we denote this lift by 〈fg : g ∈ G〉 ≤
Diff+(M3) where fg ∈ Diff+(M3) and [fg] = g ∈ Mod(M3). The following is a reformulation of
[Edm89, Corollary 2.6].

Lemma 4.12 (Edmonds, [Edm89, Corollary 2.6]). LetM be a simply-connected, closed, oriented 4-manifold.
Let f : M → M be an orientation-preserving diffeomorphism of prime order p. If Fix(f) has two or more
connected components and S ⊆ Fix(f) is an orientable 2-dimensional component then [S] 6= 0 ∈ H2(M ;Z).

Proof. If Fix(f) is not purely 2-dimensional then [Edm89, Corollary 2.6] says that the 2-dimensional
components represent linearly independent elements of H2(M ;Z/pZ). Then because [S] 6= 0 ∈
H2(M ;Z/pZ) and S is an orientable surface, [S] 6= 0 ∈ H2(M ;Z).

If Fix(f) is purely 2-dimensional with k-many connected components then [Edm89, Corollary
2.6] says that any (k − 1)-many connected components represent linearly independent elements of
H2(M ;Z/pZ). By the assumption that k > 1, this implies that [S] 6= 0 ∈ H2(M ;Z/pZ). Because S is
an orientable surface, [S] 6= 0 ∈ H2(M ;Z).

In addition to the homological results used in Section 4.2, a main idea of many arguments in this
section is the following: suppose a finite abelian group G acts smoothly on some 4-manifold M and
fix a G-invariant metric on M . For all g, h ∈ G, the fact that g, h commute implies that h restricts
to a diffeomorphism on Fix(g) and vice versa. If there is a unique isolated fixed point p ∈ Fix(g)
then p must be fixed by all elements of G since diffeomorphisms of Fix(g) must send 0-dimensional
components to 0-dimensional components and so the tangential representation G → SO(TpM) is
faithful.

Lemma 4.13. If G = 〈σ(12), R(3)〉 ∼= (Z/2Z)2 ≤ Mod(M3) lifts to Diff+(M3) then Fix(fσ(12)) ∼= F1tF2

with Fi ∼= S2 for i = 1, 2 and Fix(fσ(12)R(3)) ∼= RP2 t {p}. Moreover, QM3
([F1], [F1]) +QM3

([F2], [F2]) =
0.

Proof. Suppose a lift 〈fg : g ∈ G〉 ≤ Diff+(M3) exists. By Remark 4.2, χ(Fix(fσ(12))) = 4 and
χ(Fix(fσ(12)R(3))) = 2; therefore, Fix(fσ(12)) 6= ∅ and Fix(fσ(12)R(3)) 6= ∅. By Proposition 4.1,
β1(Fix(fσ(12))) = 0 and β0(Fix(fσ(12)))+β2(Fix(fσ(12))) = 4. Again by Proposition 4.1, β1(Fix(fσ(12)R(3))) =
1 and β0(Fix(fσ(12)R(3))) + β2(Fix(fσ(12)R(3))) = 3. Combining with the fact that each Fix(ϕ) is a dis-
joint union of surfaces and isolated points shows that

Fix(fσ(12)) ∼= [4], S2 t [2], or S2 t S2, Fix(fσ(12)R(3)) ∼= RP2 t {p}.

Because p ∈ Fix(fσ(12)R(3)) is a unique isolated fixed point, p is fixed by fg for all g ∈ G and the
tangential representation G→ SO(TpM) is faithful. If p is an isolated fixed point of fh for any h ∈ G,
then d(fh)p = −I4 which is the only element of SO(4) of order 2 that does not fix any nonzero vector.
Therefore, p is not an isolated fixed point of fh for any h 6= σ(12)R(3) ∈ G.

Because fσ(12) acts on Fix(fσ(12)R(3)), it must fix the isolated point p ∈ Fix(fσ(12)R(3)). Then p
cannot be an isolated fixed point of fσ(12), and so Fix(fσ(12)) 6∼= [4].

Suppose Fix(fσ(12)
) ∼= S2 t [2]. By the G-signature theorem (Theorem 4.3) for G = 〈fσ(12)〉 with

S ∼= S2 ⊆ Fix(fσ(12)),
−2 = −2 +QM3([S], [S]).

The diffeomorphism fR(3) commutes with fσ(12) and so fR(3) restricts to a diffeomorphism of S and
R(3)([S]) = ±[S].

If R(3)([S]) = −[S] then [S] = aE3 ∈ Z{E3} for some a ∈ Z. Then QM3([S], [S]) = −a2 = 0
implies that a = 0. By Lemma 4.12, this is a contradiction.

If R(3)([S]) = [S] then [S] ∈ Z{H,E1 + E2} since σ(12)([S]) = [S]. Hence [S] = aH + b(E1 + E2)
for some a, b ∈ Z, and so QM3

([S], [S]) = a2 − 2b2 = 0. The only integral solution to this equation is
(a, b) = (0, 0), meaning [S] = 0. This is again a contradiction by Lemma 4.12, and so Fix(fσ(12)) 6∼=
S2 t [2].
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Finally, the only remaining choice is Fix(fσ(12)) ∼= S2 t S2. Denote these 2-spheres by F1 and
F2. The last claim follows because −2 = −2 + QM3([F1], [F1]) + QM3([F2], [F2]) by the G-signature
theorem (Theorem 4.3) for G = 〈fσ(12)〉.

Proposition 4.14. There is no lift of G = 〈σ(12), σ(23), R(3)〉 ≤ Mod(M3) to Diff+(M3).

Proof. Suppose a lift 〈fg : g ∈ G〉 ≤ Diff+(M3) exists. By Lemma 4.13, Fix(fσ(12)R(3)) ∼= RP2 t {q}
for some isolated fixed point q ∈ M3 of fσ(12)R(3). Note that c = R(1)R(2)R(3) is in the center Z(G)
of G, so fc must fix the point q. Because Fix(fc) 6= ∅, Proposition 4.1 shows that β1(Fix(fc)) = 3
and β0(Fix(fc)) + β2(Fix(fc)) = 3. Combining with the fact that each Fix(fc) is a disjoint union of
surfaces and isolated points shows that Fix(fc) ∼= #3RP2 t {p} for some isolated fixed point p ∈M3

of fc. All elements g ∈ G commute with c, and so fg acts on Fix(fc) by diffeomorphism. This shows
that p is a fixed point of fg for all g ∈ G and the tangential representation G→ SO(TpM3) is faithful.
Because fc has order 2, its derivative at the isolated fixed point p must be d(fc)p = −I4. Therefore, p
cannot be an isolated fixed point of the lift of fh for any h 6= c ∈ G of order 2.

If p is an isolated point in Fix(fσ(12)) ∩ Fix(fR(3)) then p is an isolated fixed point of fσ(12)R(3),
which is a contradiction. So p is in a 1-dimensional component of Fix(fσ(12)) ∩ Fix(fR(3)). Let
Fix(fσ(12)) = F1 t F2 with Fi ∼= S2 by Lemma 4.13. Because R(3) and σ(12) commute in G, the
diffeomorphism fR(3) acts on Fix(fσ(12)). Assuming p ∈ F1, we must have R(3)([F1]) = −[F1], i.e.
[F1] = aE3 for some a ∈ Z, because fR(3) only fixes a 1-dimensional submanifold of F1. On the
other hand, fc acts by a diffeomorphism on F1 since fc(p) = p and c commutes with σ(12). Therefore
c([F1]) = c(aE3) = −[F1]. However, d(fc)p must act by −I2 on TpF1 because d(fc)p = −I4 on TpM3.
This means that fc acts in an orientation-preserving way on F1, i.e. c([F1]) = [F1]. Therefore, [F1] = 0.
This is a contradiction by Lemma 4.12.

Proposition 4.15. There is no lift of G = 〈ψ, σ(12), R(3)〉 ≤ Mod(M3) to Diff+(M3).

Proof. Suppose there is such a lift 〈fg : g ∈ G〉 to Diff+(M3). Observe that σ(12) ∈ Z(G) and
Fix(fσ(12)) = F1 t F2 with Fi ∼= S2 and QM3

([F1], [F1]) + QM3
([F2], [F2]) = 0 by Lemma 4.13.

Lemma 4.13 shows that Fix(fσ(12)R(3)) ∼= RP2 t {p}. Since fσ(12) and fR(3) act on Fix(fσ(12)R(3)),
they must fix the unique isolated point p. Because fσ(12) and fR(3) have a common fixed point, fR(3)

preserves each Fi. Moreover, p must be an isolated point in Fix(fσ(12)) ∩ Fix(fR(3)), since otherwise
p would not be an isolated fixed point of fσ(12)R(3). If F1 is the component of Fix(fσ(12)) containing
p then d(fR(3))p|TpF1 = −I2, i.e. fR(3) acts by an orientation-preserving diffeomorphism on F1 and
R(3)([F1]) = [F1]. Because σ(12)([F1]) = [F1], we know that [F1] ∈ Z{H,E1 + E2}.

Next, note that ψ and σ(12) commute and consider the action of fψ on Fix(σ(12)) = F1tF2. With
respect to the Z-basis (H − E1, H − E2, H − E1 − E2, E3) of H2(M3;Z),

ψ =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

1. Suppose ψ([F1]) = ±[F2]. Write [F1] = aH + b(E1 + E2) for some a, b ∈ Z. Then

QM3([F1], [F1]) +QM3([F2], [F2]) = 2(a2 − 2b2) = 0

since
QM3

([F2], [F2]) = QM3
(ψ([F1]), ψ([F1])) = QM3

([F1], [F1]) = a2 − 2b2.

The only integral solution (a, b) = (0, 0), a contradiction by Lemma 4.12.

2. If ψ([F1]) = −[F1] then [F1] ∈ Z{H − E1 − E2 − E3}. Compute that

Z{H,E1 + E2} ∩ Z{H − E1 − E2 − E3} = 0,

which implies that [F1] = 0. This is a contradiction again by Lemma 4.12.
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3. If ψ([F1]) = [F1] then [F1] ∈ Z{H − E1 − E2 + E3, H − E1, H − E2}. Compute that

Z{H − E1 − E2 + E3, H − E1, H − E2} ∩ Z{H,E1 + E2} = Z{2H − E1 − E2}.

So [F1] = c(2H − E1 − E2) for some c ∈ Z and QM3([F1], [F1]) = 2c2.

Next, note that R(3)([F2]) = ±[F2] because R(3)([F1]) = [F1] and fR(3) acts on Fix(fσ(12)).
Because σ(12)([F2]) = [F2], we know that [F2] ∈ Z{H,E1 + E2, E3}.

(a) If R(3)([F2]) = −[F2] then [F2] ∈ Z{E3}. So QM3([F2], [F2]) = −d2 for some d ∈ Z. Then

QM3
([F1], [F1]) +QM3

([F2], [F2]) = 2c2 − d2 = 0

has only the integral solution (c, d) = (0, 0), a contradiction by Lemma 4.12.

(b) If R(3)([F2]) = [F2] then [F2] ∈ Z{H,E1 +E2}. This means that ψ([F2]) 6= −[F2]. Compute
that

Z{H,E1 + E2} ∩ Z{H − E1 − E2 + E3, H − E1, H − E2} = Z{2H − E1 − E2}.

This shows that [F2] = d(2H −E1−E2) for some d ∈ Z, i.e. QM3
([F2], [F2]) = 2d2. Finally,

compute
QM3([F1], [F1]) +QM3([F2], [F2]) = 2c2 + 2d2 = 0

only has the integral solution (c, d) = (0, 0), a contradiction of Lemma 4.12.

It remains to show one realizability result before turning to the proof of the main theorem of this
section.

Corollary 4.16 ([Dol12, Theorem 8.4.2]). The group G = 〈ψ, σ(12), σ(23),−I4〉 is realized by biholomor-
phisms and anti-biholomorphisms of X = BlP CP2, where P = {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}.

Proof. By [Dol12, Theorem 8.4.2], the algebraic automorphism group is Aut(X) ∼= (C∗)2 o (S3 × S2).
Here, C∗ denotes the group of units C − {0} of C and Sn denotes the symmetric group on n letters.
The factor S3 × S2 of Aut(X) is a lift of 〈ψ〉 × 〈σ(12), σ(23)〉. More explicitly, [Dol12, p. 388] gives the
lift which we describe below.

Consider the maps hψ, hσ(ij) : CP2 99K CP2 for (ij) = (12), (23) given by

hψ : [X : Y : Z] 7→ [Y Z : XZ : XY ],

hσ(12) : [X : Y : Z] 7→ [Y : X : Z],

hσ(23) : [X : Y : Z] 7→ [X : Z : Y ].

Note that P is the set the basepoints of the rational map hψ , and hψ induces an automorphism fψ
of X . The maps hσ(12) and hσ(23) permute the points in P and so induce automorphisms fσ(12) and
fσ(23) respectively of X . Note that hψ ◦ hσ(ij) = hσ(ij) ◦ hψ for each (ij) and 〈hσ(12), hσ(23)〉 ∼= S3.
Hence 〈fψ, fσ(12), fσ(23)〉 ∼= Z/2Z×S3. Moreover, compute that [fψ] = RefH−E1−E2−E3 and [fσ(ij)] =
RefEi−Ej for (ij) = (12), (23).

On the other hand, consider the map h−I4 : CP2 → CP2 given by h−I4 : [X : Y : Z] 7→ [X : Y : Z].
Then h−I4 fixes each point in P . Locally for each p ∈ P , there is a holomorphic chart U ∼= C2 of CP2

around p such that h−I4 acts by complex conjugation of the coordinates. Parameterizing the space of
lines in U through (0, 0) by CP1, where the point [a : b] corresponds to the line aX+bY = 0, note that
h−I4 induces an action on CP1 by complex conjugation [a : b] 7→ [ā : b̄]. In particular, h−I4 induces a
diffeomorphism of Bl(0,0) C2 acting by complex conjugation on the exceptional divisor. Globally, h−I4
induces an order 2 diffeomorphism f−I4 : BlP CP2 → BlP CP2 which acts by complex conjugation on
each exceptional divisor and on CP2 −P ⊆ BlP CP2. Hence [f−I4 ] = −I4. Moreover, h−I4 commutes
with each hψ , hσ(ij), so f−I4 commutes with each fψ and fσ(ij). Therefore, 〈fg : g ∈ G〉 ≤ Diff+(M3)

is a lift of G to Diff+(M3).
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We are ready to prove the main theorem of this section, Theorem 1.6.

Proof of Theorem 1.6. By Lemma 2.8, the maximal finite subgroups of Mod(M3) are conjugate in Mod(M3)
to

1. 〈GH−E1−E2−E3
,−I4〉 = 〈RefE1−E2

,RefE2−E3
,RefE3

,−I4〉 = 〈σ(12), σ(23), R(3),−I4〉,

2. 〈GE2−E3 ,−I4〉 = 〈RefH−E1−E2−E3 ,RefE1−E2 ,RefE3 ,−I4〉 = 〈ψ, σ(12), R(3),−I4〉, or

3. 〈GE3 ,−I4〉 = 〈RefH−E1−E2−E3 ,RefE1−E2 ,RefE2−E3 ,−I4〉 = 〈ψ, σ(12), σ(23),−I4〉.

Propositions 4.14 and 4.15 show that 〈GH−E1−E2−E3 ,−I4〉 and 〈GE2−E3 ,−I4〉 respectively do not lift
to Diff+(M3). Corollary 4.16 shows that 〈GE3

,−I4〉 lifts to Aut(S)×〈τ〉 as described in the statement
of the theorem. The map π|Diff+(M3) : Diff+(M3) → Mod(M3) is surjective by Theorem 2.2. For any
maximal finite subgroup H = gGg−1 with G one of the maximal finite subgroups listed above, let
α ∈ Diff+(M3) be a representative of g ∈ G. Then if a lift G̃ ofG to Diff+(M3) exists then H̃ = αG̃α−1

is a lift of H and vice versa. Therefore, a lift G̃ of G to Diff+(M3) exists if and only if G is conjugate
to 〈GE3

,−I4〉.

4.4 Complex Nielsen realization problem for rational manifolds

In this section we show that the complex Nielsen realization problem differs from the smooth Nielsen
realization problem for any M = M∗ or Mn for all n ≥ 0, which we call rational manifolds. We also
show that for all n ≥ 1, there exist finite order mapping classes c ∈ Mod(Mn) such that there exists no
lift of c to a biholomorphic or anti-biholomorphic map in Diff+(Mn) for any complex structure ofMn.
This justifies why we consider complex equivariant connected sums rather than biholomorphisms
and anti-biholomorphisms in solving the Nielsen realization problem for del Pezzo manifolds.

A result of Friedman–Qin ([FQ95, Corollary 0.2]) says that ifX is a complex surface diffeomorphic
to a rational surface then X is a rational surface. Because any blowup of CP2 at finitely many points
and CP1 × CP1 are rational surfaces, any complex structure of M = M∗ or Mn for n ≥ 0 turns M
into a rational surface. By [GS99, Theorem 3.4.6], the complex surface M is geometrically ruled if
M = M∗ or Mn with n ≥ 1 and biholomorphic to CP2 if M = M0. Simply-connected, minimal,
geometrically ruled surfaces are isomorphic to a Hirzebruch surface Fm for some m ≥ 0 and m 6= 1
by ([GS99, Theorem 3.4.8]). This implies that the complex surface Mn is a blowup of CP2 at n points
or a blowup of a Hirzebruch surface Fm at (n− 1) points.

The following lemma gives some examples of restrictions on the possible fixed sets of biholomor-
phisms and anti-biholomorphisms.

Lemma 4.17. The fixed set of a biholomorphism of finite order is orientable. The fixed set of an anti-biholomorphic
involution has no isolated points.

Proof. Let Φ ∈ Diff+(M) and consider an almost complex structure J on M . Note that Fix(Φ) is a
disjoint union of surfaces and isolated points.

1. If Φ ∈ Diff+(M) is biholomorphic then the linear operators dΦp and J on TpM commute for all
p ∈ Fix(Φ). Because Tp(Fix(Φ)) is the fixed subspace of TpM under dΦp, the space Tp(Fix(Φ))
is preserved by J . Therefore, Fix(Φ) is orientable because J |T Fix(Φ) is an almost complex struc-
ture on Fix(Φ).

2. If Φ ∈ Diff+(M) is anti-biholomorphic then dΦp ◦J = −J ◦dΦp for all p ∈ Fix(Φ), meaning that
dΦp is not in the center of GL(TpM). On the other hand, observe that if Φ is an involution with
an isolated fixed point p ∈ M , the differential dΦp acts by negation on TpM , but the negation
map −I4 is in the center of GL(TpM).

In the following proposition we apply Lemma 4.17 and the results from Section 4.1 about fixed
sets of smooth actions of finite groups on 4-manifolds to derive some contradictions.
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Proposition 4.18. Fix n ≥ 1. Let c ∈ Mod(Mn) be

c =


RefH if n = 1

RefE1
RefE2

if n = 2

RefH RefE1−E2
if n = 3

RefH
∏n−1
k=1 RefEk

if n ≥ 4.

The mapping class c ∈ Mod(Mn) is not realizable by a biholomorphim or an anti-biholomorphim of order 2 of
any complex structure of Mn.

Proof. Suppose f ∈ Diff+(Mn) is of order 2 with [f ] = c. By Remark 4.2, χ(Fix(f)) = 3 − n if n 6= 3
and χ(Fix(f)) = 2 if n = 3; therefore, Fix(f) 6= ∅ for all n ≥ 1. By Proposition 4.1, the fixed set Fix(f)
must satisfy

β1(Fix(f)) = n, β0(Fix(f)) + β2(Fix(f)) = 3

if n 6= 3 and β1(Fix(f)) = 1 and β0(Fix(f)) + β2(Fix(f)) = 3 if n = 3. Because Fix(f) is a disjoint
union of surfaces and isolated points, Fix(f) ∼= S t {p}, where S is a connected surface and p is an
isolated fixed point of f . Lemma 4.17 implies that f cannot be anti-biholomorphic because it fixes an
isolated point. We now prove that f cannot be biholomorphic.

If n ≡ 1 (mod 2) then β1(S) ≡ 1 (mod 2) and so S is non-orientable. Suppose that n ≡ 0 (mod 2)
and that S is orientable. The fixed subspace H2(Mn;Z) by c is Z{En} if n 6= 2 and Z{H} if n = 2. By
the G-signature theorem (Theorem 4.3),

(1− n) +QMn
([S], [S]) =

{
−2 if n 6= 2,

2 if n = 2.

1. If n 6= 2 then QMn
([S], [S]) = n− 3. On the other hand, c([S]) = [S] and so [S] = aEn for some

a ∈ Z. This implies that QMn([S], [S]) = −a2 = n − 3. However, QMn([S], [S]) = n − 3 > 0
because n ≥ 4, but −a2 ≤ 0.

2. If n = 2 thenQM2
([S], [S]) = 3. On the other hand, c([S]) = [S] and so [S] = aH for some a ∈ Z,

and so QM2
([S], [S]) = a2 = 3. There exists no a ∈ Z such that a2 = 3.

In any case, S must be non-orientable. Lemma 4.17 implies that f is not biholomorphic.

The following lemma shows that the of the mapping classes c ∈ Mod(Mn) for n 6= 2 considered
in Proposition 4.18 are realizable by complex equivariant connected sums.

Lemma 4.19. If n = 3, let
c = RefH RefE1−E2

∈ Mod(M3).

If n ≥ 4, let

c = RefH

n−1∏
k=1

RefEk
∈ Mod(Mn).

Then c is realizable by a complex equivariant connected sum.

Proof. If n 6= 3, consider the blowup BlP CP2 where P ⊆ CP2 is a subset of (n − 1)-points that are
fixed by τ : CP2 → CP2 given by complex conjugation. Then τ induces an anti-biholomorphism
g : BlP CP2 → BlP CP2 of order 2 which induces the negation map on H2(Mn−1;Z) and fixes a
surface S ⊆ Mn−1. If n = 3, consider c0 = RefH RefE1−E2

∈ Mod(M2). Theorem 1.1 and Corollary
1.2 shows that c0 is realized by a complex equivariant connected sum with a smooth Z/2Z-action
given by a diffeomorphism g. By [Edm89, Corollary 1.4], χ(Fix(g)) = 1 and by Proposition 4.1,
β1(Fix(g)) = 1. Therefore, Fix(g) ∼= S := RP2 ⊆M2.
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On the other hand, consider the diffeomorphism f : CP2 → CP2 defined by [A : B : C] 7→ [−A :

B : C]; it fixes a surface S2 ⊆ CP2.
For any n ≥ 3, pick a point p ∈ S ⊆ Mn−1 fixed by g and q ∈ S2 ⊆ CP2. Both dgp and dfq act by

the linear maps (a, b, c, d) 7→ (−a,−b, c, d) with respect to appropriate positive bases BMn
and BCP2

of TpMn−1 and TqCP2 respectively. The tangential representations 〈g〉 → SO(TpMn−1) and 〈f〉 →
SO(TqCP2) therefore are equivalent by an orientation-reversing isometry TpMn−1 → TqCP2 given
by (a, b, c, d) 7→ (b, a, c, d) with respect to the bases BMn

and BCP2 . Therefore, there exists a complex

equivariant connected sum Mn−1#CP2 with a smooth Z/2Z-action given by a diffeomorphism g#f

acting by g onMn−1−{p} ⊆Mn−1#CP2 and acting by f on CP2−{q} ⊆Mn−1#CP2. By construction,
g#f acts by negation on the first factor H2(Mn−1;Z) of the direct sum H2(Mn;Z) ∼= H2(Mn−1;Z) ⊕
H2(CP2;Z) if n ≥ 4 and by c0 if n = 3. Moreover, g#f acts by the identity on the second factor
H2(CP2;Z). This is precisely the action of c on H2(Mn;Z).

Finally, we turn to the complex Nielsen realization problem for all rational manifolds.

Proof of Theorem 1.8. Consider c ∈ Mod(M0) acting on H2(M0;Z) by negation. Let f be any diffeo-
morphism of order 2 with [f ] = c. By Remark 4.2, χ(Fix(f)) = 1 so by Proposition 4.1, the fixed set
Fix(f) satisfies

β1(Fix(f)) = 1, β0(Fix(f)) + β2(Fix(f)) = 2.

Combining with the fact that Fix(f) is a disjoint union of surfaces and isolated points implies that
Fix(f) ∼= RP2. By Lemma 4.17, f is not biholomorphic for any complex structure of M .

Consider c ∈ Mod(M∗) acting on H2(M∗;Z) by negation. Let f be any diffeomorphism of order
2 with [f ] = c. By a result of Friedman–Qin ([FQ95, Corollary 0.2]), any complex structure on M∗
turns M∗ into a minimal rational surface. Therefore, M∗ is a Hirzebruch surface Fn for some n ≡ 0
(mod 2) by [GS99, Theorems 3.4.6, 3.4.8]. Consider Fn as the CP1-bundle over CP1 with the projection
p : Fn → CP1. Let C ⊆ Fn be the image of a section of p. Then C is a complex submanifold of Fn
isomorphic to CP1 and f(C) is a smooth submanifold of Fn diffeomorphic to CP1. The restriction
(p◦f)|C : CP1 → CP1 has degree−1 because (p◦f)∗([C]) = p∗ ◦f∗([C]) = −[CP1]. Therefore (p◦f)|C
is not holomorphic because it has negative degree. Because C is a complex submanifold of Fn and p
is holomorphic, f is not biholomorphic.

For M = M0 and M∗, Proposition 3.1 shows that there is a section of the map π : Diff+(M) →
Mod(M) and Mod(M) is realized by a complex equivariant connected sum. Therefore, the mapping
class c ∈ Mod(M) considered above is realizable by a complex equivariant connected sum.

It remains to consider the cases M = Mn with n ≥ 1. Let c ∈ Mod(M) be the mapping class
given in the statement of Proposition 4.18. Then c is not realizable by a biholomorphism or an anti-
biholomorphism of order 2 of any complex structure of M . For M = M1, Proposition 3.1 shows
that there is a section of the map π : Diff+(M) → Mod(M) and Mod(M) is realized by a complex
equivariant connected sum. For M = M2, Theorem 1.1 and Corollary 1.2 show that c is realized by a
complex equivariant connected sum. For M = Mn with n ≥ 3, Lemma 4.19 shows that c is realized
by a complex equivariant connected sum.
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