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1 Topology of del Pezzo surfaces

The main object of study in these notes are del Pezzo manifolds and their topological mapping class
groups.

Definition 1.1. A del Pezzo manifold is any of:

M = CP1 × CP1 or BlP CP2;

where P is a set of 0 ≤ n ≤ 8 points in CP2.

Remark 1.2. 1. One reason these manifolds are grouped together is that as projective algebraic
varieties, these are the surfaces whose anticanonical bundles are ample (when P ⊆ CP2 consists
of points in general position).

2. Topologically, the behavior changes dramatically once n ≥ 9; this will be addressed in Benson’s
subsequent lectures.

1.1 Underlying smooth manifold

Given the discussion of blowups of complex surfaces from the previous lecture, we can describe the
topology of del Pezzo manifolds using connected sums.

Lemma 1.3. There’s a diffeomorphism BlP CP2 → CP2#nCP2 where |P | = n.

Remark 1.4. This diffeomorphism is independent of the set of points P . The exceptional divisors of

BlP CP2 correspond to the lines in each copy of CP2.

Proof Sketch. The exceptional divisor E has self-intersection number −1, and so the normal neigh-
borhood of of an exceptional divisor E is isomorphic as a complex vector bundle to O(−1) whose

total space is diffeomorphic to CP2 − p for some point p ∈ CP2. The blowup can be constructed by

replacing a neighborhood of each point q ∈ P by CP2 − p; this construction can be used to give a

diffeomorphism between BlP CP2 and CP2#nCP2.

Definition 1.5. Let Mn denote the smooth manifold CP2#nCP2.

Remark 1.6. There are other descriptions of Mn as a smooth manifold that may be useful in thinking

about its topology. One such way is via the diffeomorphism Mn
∼= (CP1×CP1)#(n−1)CP2. Another

way is via a conic bundle π : Mn → CP1, which will be discussed in the second lecture.
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1.2 Algebraic topology of Mn

Let’s elaborate on the algebraic topology of Mn.

• π1(Mn) = 1 by Van Kampen’s theorem, with Mn = (Mn−1 − ∗) ∪ (CP2 − ∗).

• By Mayer–Vietoris, there is an isomorphism

Zn+1 ∼= H2(CP2;Z)⊕
n⊕

i=1

H2(CP2;Z)
∼−→ H2(Mn;Z).

Let {H,E1, . . . , En} be the Z-basis of H2(Mn;Z) coming from the direct sum decomposition.
Then H is the class of a hyperplane in Bln CP2 that does not pass through any point in P and
E1, . . . , En are the classes of the exceptional divisors.

To compute the intersection form, note that

QCP2#nCP2
∼= QCP2 ⊕ nQCP2

∼= (1)⊕ n(−1).

In matrix notation, the intersection form is given by

QMn
= diag(1,−1, . . . ,−1).

More explicitly, we can see geometrically that the off-diagonal terms of the matrix above must be zero
since:

1. Exceptional divisors Ej and Ek over distinct points pj and pk in P ⊆ CP2 are disjoint, so
Ej · Ek = 0 if j 6= k.

2. The classH is represented by a line in CP2 that does not pass through any points of P . Therefore,
this line also does not intersect any exceptional divisor in BlP CP2, so H · Ek = 0 for all k.

2 Intersection form, mapping class group, and some diffeo-
morphisms

Applying theorems of Freedman ([Fre82]) and Quinn ([Qui86]) to Mn gives an isomorphism of groups

Mod(Mn) ∼= Aut(H2(Mn;Z), QMn
) = O(1, n)(Z)

where O(1, n)(Z) is the group consisting of all (n+ 1)× (n+ 1)-matrices A with integral coefficients
such that for all v, w ∈ H2(Mn;Z),

QMn
(A · v,A · w) = QMn

(v, w).

Equivalently, A is an element of O(1, n)(Z) if and only if

A · diag(1,−1, . . . ,−1) ·AT = diag(1,−1, . . . ,−1).

Example 2.1. For any v ∈ H2(Mn;Z) with QMn(v, v) = ±1 or ±2, define a reflection Refv to be the
map

Refv(w) = w − 2
w · v
v · v

v.

One can check that any such reflection Refv is a linear map preserving the intersection form QMn
,

i.e. Refv ∈ O(1, n)(Z). It has order 2.
Moreover, it is the unique element of O(1, n)(Z) with the property that

Refv(v) = −v, and Refv(w) = w if w ⊥ v, i.e. w · v = 0.

In the special case if v · v = −2,
Refv(w) = w + (w · v)v.
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Example 2.2. Consider E1−E2 ∈ H2(Mn;Z) which has self-intersection number −2. Then RefE1−E2

acts by
H2(Mn;Z) = Z{H,E3, . . . , En}︸ ︷︷ ︸

⊥E1−E2 =⇒ 	Id

⊕Z{E1, E2}︸ ︷︷ ︸
	

0 1
1 0


.

To compute the action of RefE1−E2
on the second summand, note that RefE1−E2

has order 2 and
that

RefE1−E2(E1) = E1 + (E1 · (E1 − E2))(E1 − E2) = E2.

There is an embedded 2-sphere S in Mn representing the class E1 − E2. One way to see this is
take two spheres, S1 and S2, representing E1 and −E2 and tube them together. So RefE1−E2

is the
class of a Dehn twist about the sphere S.

2.1 Some examples of diffeomorphisms of connected sums

Recall the following two examples from previous lectures.

Example 2.3. Any g ∈ Aut(CP2) = PGL3(C) induces the identity map on H2(CP2;Z).

Example 2.4. The diffeomorphism c : CP2 → CP2 given by complex conjugation on the coordinates,

c : [X : Y : Z] 7→ [X̄ : Ȳ : Z̄]

induces the negation map on H2(CP2;Z).

We can “glue” diffeomorphisms of the pieces in connected sums together to realize certain actions
on homology.

Example 2.5. In this example, we will take two order-2 diffeomorphisms

f : CP2 → CP2, g : CP2 → CP2

and glue them together to form a new order-2 diffeomorphism of M1 = CP2#CP2. More specifically,
take

f([X : Y : Z]) = [−X : Y : Z] and g([X : Y : Z]) = [X̄ : Ȳ : Z̄].

Then f∗ = Id on H2(CP2) and g∗ = − Id on H2(CP2). These two diffeomorphisms generate a subgroup

G ∼= Z/2Z in Diff+(CP2) and Diff+(CP2) respectively.

The pointwise fixed sets of f and g each contain1 2-dimensional submanifolds in CP2 and CP2;
one can check that

Fix(f) ∼= CP1 t {[1 : 0 : 0]} ⊆ CP2, Fix(g) ∼= RP2 ⊆ CP2.

Now choose some points p ∈ CP1 ⊆ Fix(f) and q ∈ Fix(g). There exist 4-dimensional disks D1 ⊆ CP2

and D2 ⊆ CP2 centered at p and q which are preserved by f and g respectively. Now form a particular

instance of the connected sum M1 = CP2#CP2 by letting

M1 = (CP2 −D1) ∪∂D1∼∂D2 (CP2 −D2)

where the gluing ∂D1 ∼ ∂D2 is by an orientation-reversing map that respects the Z/2Z-action by 〈f〉
and 〈g〉 on ∂D1 and ∂D2 respectively. (See Figure 1.) Then define F ∈ Diff+(M1) by

F (x) =

{
f(x) if x ∈ CP2 −D1,

g(x) if x ∈ CP2 −D2.
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Figure 1: Construction of the equivariant connected sum in Example 2.5

This diffeomorphism is well-defined by the construction of M1. Moreover, F∗ acts by

H2(M1) ∼= H2(CP2)︸ ︷︷ ︸
	f∗

⊕H2(CP2)︸ ︷︷ ︸
	g∗

.

This corresponds to the action of RefE1 on H2(M1).

3 Hyperbolic space and reflection groups

With these examples in hand, we examine the group O(1, n)(Z) in earnest by studying the action of
an index 2-subgroup of O(1, n)(Z) on hyperbolic space. The simplest way to see such an action is via
the hyperboloid model of Hn.

3.1 Hyperboloid model

Consider the diagonal, bilinear symmetric form of signature (1− n) and type (1, n) on Rn+1,

Qn = diag(1,−1, . . . ,−1).

The hyperboloid model of Hn sits in Rn+1 via

Hn := {p = (x, y1, . . . , yn) ∈ Rn+1 : x > 0, Qn(p, p) = 1}.

The restriction of Qn to each TpHn is negative definite and −Qn defines the hyperbolic metric on Hn.
Note that {Qn(p) = 1} has two connected components, and we restrict to one of these components.
See Figure 2.

Also, the isometry group Isom(Hn) is isomorphic to O+(1, n)(R), the group of matrices preserving
Qn and each sheet of the hyperboloid. It has index 2 as a subgroup of O(1, n)(R). Then since
O(1, n)(Z) is a subgroup of O(1, n)(R), we consider the index-2 subgroup of O(1, n)(Z)

O+(1, n)(Z) := O(1, n)(Z) ∩O+(1, n)(R)︸ ︷︷ ︸
Isom(Hn)

≤ O(1, n)(R)

1In lecture, I had omitted the unique isolated fixed point of Fix(f). However, this construction only depends on the
existence of 2-dimensional components in each Fix(f) and Fix(g).
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Figure 2: The hyperboloid model of H2 ⊆ R3.

that acts by isometries on Hn.
Reflections Refv where v ∈ Rn+1 with Qn(v, v) = ±1,±2 act by an actual reflection of Hn (and

Rn+1) across the hyperplane v⊥. For small n, the group O+(1, n)(Z) is generated by such reflections.

Theorem 3.1 (Vinberg [Vin72, Section 4, Table 4]). For all n ≤ 17, the group O+(1, n)(Z) contains
a finite index, hyperbolic reflection subgroup acting by isometries on Hn.

Finally, recall the classification of isometries of Hn. All isometries of Hn fall under one of three
types:

1. elliptic – fixes a point in Hn; e.g. isometries of finite order,

2. hyperbolic – acts by translation along a unique axis; it fixes two points on the boundary sphere
∂Hn,

3. parabolic – neither elliptic nor hyperbolic; it fixes a unique point on the boundary sphere ∂Hn.

We will consider cases (1) and (3) in these lectures.

4 Representing mapping classes by diffeomorphisms

4.1 The subgroup of Mod(Mn) represented by diffeomorphisms

For any n ≥ 0, consider the quotient map

qn : Homeo+(Mn)→ Mod(Mn) ∼= O(1, n)(Z).

Theorem 4.1 (Wall [Wal64a, Special case of Theorem 2]). Let 0 ≤ n ≤ 9. The restriction of qn to
Diff+(Mn) is surjective onto O(1, n)(Z).

Remark 4.2. This theorem is a special case of a more general theorem by Wall. The proof idea given
below only applies to this special case and is not the proof given by Wall.

Proof idea. Take all the generators of O(1, n)(Z) and exhibit them by diffeomorphisms. The generators
are determined given in Wall ([Wal64b, (1.4), (1.6)]):

1. For n = 2,
O(1, 2)(Z) = 〈RefH−E1−E2

, RefE1−E2
, RefE2

, RefH〉.
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2. For 3 ≤ n ≤ 9,

O(1, n)(Z) = 〈RefH−E1−E2−E3
, RefE1−E2

, RefE2−E3
, . . . , RefEn−1−En

, RefEn
, RefH〉.

In the case 3 ≤ n ≤ 9, note that all the generators RefEk−Ek+1
and RefH−E1−E2−E3

are repre-
sented by Dehn twists about (−2)-spheres. For the last two generators, adapt the construction of a
diffeomorphism representative of RefE1 in M1 to Mn for all 3 ≤ n ≤ 9.

Here is one way in which the behavior changes as n grows on the mapping class group side.

Theorem 4.3 (Friedman–Morgan [FM88, Theorem 10]). Let n ≥ 10. The image of Diff+(Mn) under
qn in Mod(Mn) ∼= O(1, n)(Z) has infinite index.

Compare with Vinberg’s result, which here says that there are some reflections that cannot be
represented by diffeomorphisms.

4.2 Elliptic diffeomorphisms

The Nielsen realization problem asks: For any finite subgroup G ≤ Mod(M), does there exist a section
s : G → Homeo+(M) of the map π : Homeo+(M) → Mod(M)? For today, we will insist that the
section has image contained in Diff+(M) ≤ Homeo+(M).

In the case of G = Z/2Z, there is a positive answer:

Theorem 4.4 (Lee [Lee22, Theorem 1.3, Corollary 1.5]). Let n ≤ 8. Any mapping class g ∈ Mod(Mn)
of order 2 is realized by a diffeomorphism of order 2. Moreover, g is the mapping class of a Geiser,
Bertini, or de Jonquiéres (of algebraic degree d > 2) involution if:

1. g ∈ Mod(Mn) ∩O+(1, n)(Z), and

2. there’s no isomorphism of lattices

H2(Mn;Z) ∼= H2(M)⊕H2(#kCP2)

for any k ≥ 1 and any del Pezzo M that g preserves.

Remark 4.5. The three involutions above (Geiser, Bertini, and de Jonquiéres) arise together naturally
in the classification of conjugacy classes of order 2 in the group Cr(2) of birational automorphisms of
CP2; see Bayle–Beauville [BB00, Theorem 2.6].

The second condition should be thought of as an obstruction to the mapping class being realized
by a diffeomorphism constructed by gluing as in Example 2.5.

Since the mapping class of any Dehn twist has order 2 in Mod(Mn), we obtain the following
corollary:

Corollary 4.6. Any Dehn twist of a del Pezzo manifold is realizable by a diffeomorphism of order 2.

In contrast, Dehn twists are not isotopic to any finite-order diffeomorphism

1. in a K3 manifold (Farb–Looijenga [FL21, Corollary 1.10]), or

2. more generally, in any spin manifold of nonzero signature (Konno [Kon22, Theorem 1.1]).
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4.3 Proof methods to show nonrealizability

On the other hand, there do exist finite subgroups G ≤ Mod(Mn) that have no lift to Diff+(Mn).
Here, we consider an example of such a subgroup and give a proof outline of its nonrealizability by
diffeomorphisms. For more examples and details of proofs of nonrealizability, see [Lee21].

The example of a nonrealizable subgroup is:

G := 〈RefE1−E2 , RefH−E1−E2〉 ≤ Mod(M2).

We will use the following two tools from the theory of finite group actions on 4-manifolds. Here, p ∈ Z
denotes any prime number.

Theorem 4.7 (Edmonds [Edm89, Proposition 2.4]). Let G = Z/pZ act on a closed, oriented, simply-
connected 4-manifold M . For the sake of simplicity, let p < 23; see [Edm89] for the theorem for all
primes p. There is a decomposition

H2(M ;Z) ∼= Zt ⊕ Z[ζp]c ⊕ Z[G]r

as a G-representation, where G acts trivially on Z, acts by multiplication-by-ζp on Z[ζp], and by
left-multiplication on Z[G]. If Fix(G) is the fixed set of G and is nonempty, then

β1(Fix(G)) = c, β0(Fix(G)) + β2(Fix(G)) = t+ 2

where βm(Fix(G)) denotes the mod p Betti number of Fix(G).

This is useful because the fixed set of a finite, cyclic group is a union of 2- and 0-dimensional
submanifolds.2

Theorem 4.8 (Hirzebruch G-signature theorem [HZ74, Section 9.2, (12)]). Let G = Z/pZ act on a
closed, oriented M4 by orientation-preserving diffeomorphisms. Then

pσ(M/G) = σ(M) +
∑

C2⊆Fix(G)

2-dim’l components

defect(C) +
∑

z∈Fix(G)

isolated fixed points

defect(z)

where

1. σ(M/G) is the signature of the restriction of QM to the fixed subspace H2(M ;R)G,

2. defect(z) is a quantity that is determined by the action of G on TzM which happens to vanish
for p = 2, and

3. defect(C) is
(

p2−1
2

)
QM ([C], [C]) if C is orientable.

We now show that G does not have a lift to Diff+(M2). For the sake of contradiction, suppose
there exist diffeomorphisms f, g ∈ Diff+(M2) such that [f ] = RefE1−E2

and [g] = RefH−E1−E2
and

〈f, g〉 ∼= Z/2Z× Z/2Z.

Step 1. Apply Edmonds (Theorem 4.7) to see that

Fix(f) ∼= S2 t {p} or {p1, p2, p3}.

Apply G-signature theorem (Theorem 4.8) to see that

Fix(f) = S2 t {p}, [S2] · [S2] = 1.

Let S := S2 ⊆ Fix(f).

2In lecture, I had mistakenly claimed this also holds for any finite group but this is not the case.
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Figure 3: A fiber L of π in Blp CP2 containing the point q.

Step 2. Because f and g commute, g must act by a diffeomorphism on S. Therefore, g∗([S]) = ±[S].
Moreover, H2(M2;Z) decomposes into a direct sum of eigenspaces of g∗:

H2(M2) = Z{H − E1 − E2}︸ ︷︷ ︸
	− Id

⊕Z{H − E1, H − E2}︸ ︷︷ ︸
	Id

.

Step 3. The class [S] must be contained in the (1)- or (−1)-eigenspace of g∗ computed above. To reach
a contradiction, compute that there is no class in Z{H −E1 −E2} or Z{H −E1, H −E2} with
self-intersection number 1.

5 Examples of parabolic diffeomorphisms of del Pezzo mani-
folds

Fix n ≤ 8. Parabolic isometries of Hn fix a unique point on the boundary sphere ∂Hn. In the
hyperboloid model of Hn, points of the boundary sphere corresponds to the vectors in Rn+1 with zero
self-intersection (up to scaling by R+). The parabolic elements of O+(1, n)(R) fixes a vector v ∈ Rn+1

with Qn(v, v) = 0 (rather than merely preserving a line in Rn+1 spanned by v; see [Thu97, Problem
2.5.24]). Moreover, the parabolic elements of O+(1, n)(Z) fix an integral vector v ∈ H2(Mn;Z) with
v · v = 0.

There is a surface representing v ∈ H2(Mn) that has algebraic self-intersection 0. It turns out
that that there exist disjoint, distinct spheres representing v, and they come as the smooth fibers of a
conic bundle which we describe below. We would like to represent the mapping classes that fix v by
diffeomorphisms that not only preserve the homology class v but a surface representing v.

5.1 Topology of conic bundles

One way to view the topology of Mn is via a map π : Mn → CP1 which we now describe.
First, consider the case n = 1; fix a point p ∈ CP2 and let M1 = Blp CP2. Identify CP1 with the

space of lines in CP2 through p. For any point q ∈ CP2 − p ⊆ Blp CP2, let

π : q 7→ ` ∈ CP1

where ` is the point corresponding to the unique line L in CP2 through p and q. See Figure 3. One
can check that π extends to a well-defined map on Blp CP2. The fiber of π over any point ` ∈ CP1

corresponding to a line L in CP2 is the strict transform of L in Blp CP2.
One can also check that π : Blp CP2 → CP1 is a CP1-bundle over CP1. Topologically, this is the

unique, nontrivial S2-bundle over S2. Let v = [F ] ∈ H2(M1) be the class of a fiber F of π. Since
any two fibers of π are homologous and disjoint, we see that v is independent of the choice of F and
satisfies v2 = 0.
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Figure 4: Two ways to view a conic bundle π : Mn → CP1. Left: The pink line L is a smooth fiber
of π in M3. The union of blue line L′ and the red exceptional divisor E1 over p1 is a singular fiber of
π over L′. Right: Each smooth fiber is depicted by a vertical line. Over the specified finitely many
points of CP1, the fiber of π is a union of two copies of CP1.

Now, consider the case n ≥ 2. Identify Mn with BlP (Blp CP2) where P ⊆ CP2 − p is a set of
(n − 1)-points where no two points of P lie on a line containing p.3 There is a map Mn → Blp CP2

that blows down the exceptional divisors above the points of P . Let π be the composition of this
blowdown map and the map M1 → CP1 constructed above:

π : Mn → Blp CP2 → CP1.

This is an example of a conic bundle.
Let ` ∈ CP1 be a point corresponding to a line L through p in CP2. If L does not pass through any

point of P , then the preimage π−1(`) is still the line L. If L does pass through a point q ∈ P , then
the preimage π−1(`) is the union of L and the exceptional divisor Ek over q, intersecting positively
once.

Then π : Mn → CP1 defines a trivial fiber bundle over CP1 minus finitely many points with every
fiber isomorphic to CP1. The smooth fibers F ∼= CP1 of q : Mn → CP1 are homologous in Mn and
their homology class v := [F ] satisfies v2 = 0. Each singular fiber is diffeomorphic to the wedge of two
copies of CP1, the exceptional divisor E over q and the line L passing through p and q. See Figure 4.

5.2 A parabolic diffeomorphism

Here we give a quick description of an example of a parabolic diffeomorphism f on Mn for n odd. See
Figure 5.

Step 1 There exists an order-2 complex automorphism Φ (of certain complex structures on Mn) which

1. acts by a diffeomorphism of order 2 on each smooth fiber F , and

2. swaps the two spheres CP1 of each singular fiber.

The existence of a homeomorphism of Mn satisfying these properties requires that n is odd.

Step 2 Let f be a diffeomorphism that has support supp(f) contained in the union of normal neigh-
borhoods of all exceptional divisors E lying over the points of P such that f∗([E]) = −[E] for
all such E. Let F = f ◦ Φ.

Step 3 Compute that [F ] is an element of O+(1, n)(Z) that induces a parabolic isometry of Hn.

Remark 5.1. The diffeomorphism F above preserves smooth fibers of π away from a neighborhood of
each of the singular fibers.

3In lecture, I forgot to specify the last condition but it is necessary.
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Figure 5: An example construction of a parabolic diffeomorphism F = f ◦ Φ of Mn when n is odd.
Here, E1 and E2 denote the exceptional divisors over the two points of P in M3 = BlP (Blp CP2).
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