Mapping class groups of del Pezzo surfaces

Seraphina Eun Bi Lee

University of Chicago

Low-Dimensional Topology and Homeomorphism Groups Brin Mathematics Research Center September 2022

del Pezzo manifolds

Definition

A del Pezzo manifold M is one of

$$M = \mathbb{CP}^1 \times \mathbb{CP}^1$$
 or $\mathsf{BI}_n \mathbb{CP}^2$

where $0 \le n \le 8$.

Lemma

There is a diffeomorphism

$$M_n := \mathbb{CP}^2 \# n \overline{\mathbb{CP}^2} \cong \mathsf{BI}_n \, \mathbb{CP}^2.$$

Goal

Examples of $G \leq \text{Mod}(M_n) := \pi_0(\text{Homeo}^+(M_n))$ and their diffeomorphism representatives.

Examples of diffeomorphisms

Example

$$\sigma: [X:Y:Z] \mapsto [-X:Y:Z] \curvearrowright \mathbb{CP}^2$$

Then $\sigma \in \mathsf{PGL}_3(\mathbb{C})$ and $[\sigma] = \mathsf{Id}$.

Example

$$\tau: [X:Y:Z] \mapsto [\overline{X}:\overline{Y}:\overline{Z}] \curvearrowright \mathbb{CP}^2$$

Then $\tau_* = -\operatorname{Id}: H_2(M) \to H_2(M)$ so $[\tau] \neq \operatorname{Id}$.

Example

Three classical involutions on (some) $Bl_n \mathbb{CP}^2$ from birational automorphisms of \mathbb{CP}^2 :

Geiser, Bertini, de Jonquiére.

Classical example 1: Geiser involution

$$\gamma \in \operatorname{Aut}(\operatorname{Bl}_P \mathbb{CP}^2)$$

$$\gamma \in Aut(Bl_P \mathbb{CP}^2)$$
 $P = \{7 \text{ points in general position}\}$

For any
$$q \in \mathbb{CP}^2 - P$$
, $C_1, C_2 = ext{cubic curve through } P \cup \{q\}$

$$\gamma(q) = q'$$
 where $C_1 \cap C_2 = P \cup \{q, q'\}$

(well-defined by Cayley-Bacharach)

 γ extends to an order two diffeomorphism of $Bl_P \mathbb{CP}^2 \cong \mathbb{CP}^2 \# 7\overline{\mathbb{CP}^2}$.

Mapping class groups of del Pezzo manifolds

Corollary (Special case of Freedman '82, Quinn '86)

$$\mathsf{Mod}(M_n) o \mathsf{Aut}(H_2(M_n), Q_{M_n}) \cong \mathsf{O}(1, n)(\mathbb{Z}) \ [f] \mapsto f_* : H_2(M_n) o H_2(M_n)$$

is an isomorphism.

$$\underbrace{\mathrm{O}^+(1,n)(\mathbb{Z})}_{[\mathrm{O}(1,n)(\mathbb{Z}):\mathrm{O}^+(1,n)(\mathbb{Z})]=2} \leq \mathrm{O}^+(1,n)(\mathbb{R}) \cong \mathsf{Isom}(\mathbb{H}^n)$$

(via the hyperboloid model for $\mathbb{H}^n \subseteq \mathbb{R}^{n+1}$)

$O^+(1, n)(\mathbb{Z}) \leq \mathsf{Isom}(\mathbb{H}^n)$

Two specific examples:

1 Elliptic: $G = \mathbb{Z}/2\mathbb{Z}$

2 Parabolic: G fixes a unique point $v \in \partial \mathbb{H}^n$.

New mapping classes out of old

$$M_n\cong M\# k\overline{\mathbb{CP}^2}$$
 and

$$g_0 \curvearrowright H_2(M), \qquad g_1 \curvearrowright H_2(\# k \overline{\mathbb{CP}^2}).$$

$$\leadsto H_2(M_n) \cong H_2(M) \oplus H_2(k\overline{\mathbb{CP}^2})$$
 and

$$g = g_0 \oplus g_1 \curvearrowright H_2(M) \oplus H_2(k\mathbb{CP}^2)$$

Definition

Any mapping class g constructed as above is called reducible.

$$G = \mathbb{Z}/2\mathbb{Z}$$

Theorem (L. '22)

Let $1 \le n \le 8$ and let $g \in O^+(1, n)(\mathbb{Z}) \le Mod(M_n)$ have order 2. Exactly one of the following holds:

g is reducible.

② g is realized by a de Jonquiéres (d > 2), Geiser, or Bertini involution on $\mathsf{Bl}_P \mathbb{CP}^2$ for some $P \subseteq \mathbb{CP}^2$.

Nielsen realization for $G = \mathbb{Z}/2\mathbb{Z}$

Corollary (L. '22)

Let M be a del Pezzo manifold. Any order-2 element $g \in Mod(M)$ has a diffeomorphism representative of order 2.

Proof idea.

- Reducible: construct a diffeomorphism of order 2 inductively by equivariant connected sums,
- \bigcirc Otherwise, g is realized by one of three classical involutions.

$O^+(1, n)(\mathbb{Z}) \leq \mathsf{Isom}(\mathbb{H}^n)$

Two specific examples:

1 Elliptic: $G = \mathbb{Z}/2\mathbb{Z}$

2 Parabolic: G fixes a unique point $v \in \partial \mathbb{H}^n$.

Properties of parabolic case

Fixed isotropic class:

$$A \in \mathrm{O}^+(1,n)(\mathbb{Z})$$
 parabolic \longleftrightarrow \exists isotropic $v \in H_2(M_n;\mathbb{Z})_{\neq 0}$ such that $A \cdot v = v$.

Short exact sequence:

$$0 \to \underbrace{\Lambda}_{\cong \mathbb{Z}^{n-1}} \to \mathsf{Stab}(v) \stackrel{q}{\to} \underbrace{\mathsf{O}(v^{\perp}/v)}_{\mathsf{finite}} \to 0$$

with Λ parabolic.

③ For $n \le 8$, there exists a unique O(1, n)(\mathbb{Z})-orbit of primitive, isotropic vectors v.

Conic bundles

$$\pi: M_n \to \mathbb{CP}^1$$

"Project onto E_1 ."

- $\begin{array}{c} \bullet: M_n \to M_1 \\ \text{Blow down } E_2, \dots, E_n \end{array}$
- $\begin{array}{l} \textbf{2} \quad p: M_1 \to \mathbb{CP}^1 \\ \text{Space of lines through} \\ p_1 = E_1 \cong \mathbb{CP}^1 \\ p|_L \equiv [L] \in \mathbb{CP}^1 \end{array}$
- **3** $p: M_1 \to \mathbb{CP}^1$: Unique nontrivial \mathbb{S}^2 -bundle over \mathbb{S}^2

$v \in \partial \mathbb{H}^n$ as fiber class of conic bundles

- Smooth fibers $F \cong \mathbb{CP}^1$ with [F] = v,
- ② (n-1)-many singular fibers $\cong \mathbb{CP}^1 \vee \mathbb{CP}^1$.

Classical example 2: de Jonquiéres involution

 $\Phi \in Aut(Bl_P \mathbb{CP}^2)$, P = certain subset of n-many points, n odd

More examples:

Example

- supp(f) = normal neighborhoods of E_2, \ldots, E_n
- ② $f|_{E_k}$ = orientation-reversing reflection

Example

$$[f \circ \underbrace{\Phi}_{\mathsf{de Jonqui\acute{e}res}}] \in \Lambda \cong \mathbb{Z}^{n-1}$$

Theorem (L., in progress)

The subgroup $\Lambda \cong \mathbb{Z}^{n-1} \leq \operatorname{Mod}(M_n)$ is realized by diffeomorphisms.

All $\varphi \in s(\mathbb{Z}^{n-1})$ preserve the fibers of π away from a neighborhood of all singular fibers.

