Mapping class groups of del Pezzo surfaces

Seraphina Eun Bi Lee

University of Chicago
Low-Dimensional Topology and Homeomorphism Groups Brin Mathematics Research Center

September 2022

del Pezzo manifolds

Definition

A del Pezzo manifold M is one of

$$
M=\mathbb{C P}^{1} \times \mathbb{C P}^{1} \quad \text { or } \quad \mathrm{BI}_{n} \mathbb{C P}^{2}
$$

where $0 \leq n \leq 8$.

Lemma

There is a diffeomorphism

$$
M_{n}:=\mathbb{C P}^{2} \# n \overline{\mathbb{C P}^{2}} \cong \mathrm{BI}_{n} \mathbb{C P}^{2}
$$

Goal

Examples of $G \leq \operatorname{Mod}\left(M_{n}\right):=\pi_{0}\left(\operatorname{Homeo}^{+}\left(M_{n}\right)\right)$ and their diffeomorphism representatives.

Examples of diffeomorphisms

Example

$$
\sigma:[X: Y: Z] \mapsto[-X: Y: Z] \curvearrowright \mathbb{C P}^{2}
$$

Then $\sigma \in \mathrm{PGL}_{3}(\mathbb{C})$ and $[\sigma]=\mathrm{Id}$.
Example

$$
\tau:[X: Y: Z] \mapsto[\bar{X}: \bar{Y}: \bar{Z}] \curvearrowright \mathbb{C P}^{2}
$$

Then $\tau_{*}=-\mathrm{Id}: \mathrm{H}_{2}(M) \rightarrow H_{2}(M)$ so $[\tau] \neq \mathrm{Id}$.

Example

Three classical involutions on (some) $\mathrm{BI}_{n} \mathbb{C P}^{2}$ from birational automorphisms of $\mathbb{C P}^{2}$:

Geiser, Bertini, de Jonquiére.

Classical example 1: Geiser involution

$$
\gamma \in \operatorname{Aut}\left(\mathrm{Bl}_{P} \mathbb{C P}^{2}\right) \quad P=\{7 \text { points in general position }\}
$$

For any $q \in \mathbb{C P}^{2}-P$,
$C_{1}, C_{2}=$ cubic curve through $P \cup\{q\}$
$\gamma(q)=q^{\prime}$ where $C_{1} \cap C_{2}=P \cup\left\{q, q^{\prime}\right\}$
(well-defined by Cayley-Bacharach)
γ extends to an order two diffeomorphism of $\mathrm{BI}_{P} \mathbb{C P}^{2} \cong \mathbb{C P}^{2} \# 7 \overline{\mathbb{C P}^{2}}$.

Mapping class groups of del Pezzo manifolds

Corollary (Special case of Freedman '82, Quinn '86)

$$
\begin{gathered}
\operatorname{Mod}\left(M_{n}\right) \rightarrow \operatorname{Aut}\left(H_{2}\left(M_{n}\right), Q_{M_{n}}\right) \cong \mathrm{O}(1, n)(\mathbb{Z}) \\
{[f] \mapsto f_{*}: H_{2}\left(M_{n}\right) \rightarrow H_{2}\left(M_{n}\right)}
\end{gathered}
$$

is an isomorphism.

$$
\underbrace{\mathrm{O}^{+}(1, n)(\mathbb{Z})}_{\left[\mathrm{O}(1, n)(\mathbb{Z}): \mathrm{O}^{+}(1, n)(\mathbb{Z})\right]=2} \leq \mathrm{O}^{+}(1, n)(\mathbb{R}) \cong \operatorname{Isom}\left(\mathbb{H}^{n}\right)
$$

(via the hyperboloid model for $\mathbb{H}^{n} \subseteq \mathbb{R}^{n+1}$)

$\mathrm{O}^{+}(1, n)(\mathbb{Z}) \leq \operatorname{Isom}\left(\mathbb{H}^{n}\right)$

Two specific examples:
(1) Elliptic: $G=\mathbb{Z} / 2 \mathbb{Z}$
(2) Parabolic: G fixes a unique point $v \in \partial \mathbb{H}^{n}$.

New mapping classes out of old
$M_{n} \cong M \# k \overline{\mathbb{C P}^{2}}$ and

$$
g_{0} \curvearrowright H_{2}(M), \quad g_{1} \curvearrowright H_{2}\left(\# k \overline{\mathbb{C P}^{2}}\right) .
$$

$\rightsquigarrow H_{2}\left(M_{n}\right) \cong H_{2}(M) \oplus H_{2}\left(k \overline{\mathbb{C P}^{2}}\right)$ and

$$
g=g_{0} \oplus g_{1} \curvearrowright H_{2}(M) \oplus H_{2}\left(k \overline{\mathbb{C P}^{2}}\right)
$$

Definition

Any mapping class g constructed as above is called reducible.

$G=\mathbb{Z} / 2 \mathbb{Z}$

Theorem (L. '22)
Let $1 \leq n \leq 8$ and let $g \in \mathrm{O}^{+}(1, n)(\mathbb{Z}) \leq \operatorname{Mod}\left(M_{n}\right)$ have order 2. Exactly one of the following holds:
(1) g is reducible.

(2) g is realized by a de Jonquiéres $(d>2)$, Geiser, or Bertini involution on $\mathrm{Bl}_{P} \mathbb{C P}^{2}$ for some $P \subseteq \mathbb{C P}^{2}$.

Nielsen realization for $G=\mathbb{Z} / 2 \mathbb{Z}$

Corollary (L. '22)

Let M be a del Pezzo manifold. Any order- 2 element $g \in \operatorname{Mod}(M)$ has a diffeomorphism representative of order 2 .

Proof idea.

(1) Reducible: construct a diffeomorphism of order 2 inductively by equivariant connected sums,
(2) Otherwise, g is realized by one of three classical involutions.

$\mathrm{O}^{+}(1, n)(\mathbb{Z}) \leq \operatorname{Isom}\left(\mathbb{H}^{n}\right)$

Two specific examples:
(1) Elliptic: $G=\mathbb{Z} / 2 \mathbb{Z}$
(2) Parabolic: G fixes a unique point $v \in \partial \mathbb{H}^{n}$.

Properties of parabolic case

(1) Fixed isotropic class:

$$
\begin{array}{r}
A \in \mathrm{O}^{+}(1, n)(\mathbb{Z}) \text { parabolic } \longleftrightarrow \quad \exists \text { isotropic } v \in H_{2}\left(M_{n} ; \mathbb{Z}\right)_{\neq 0} \\
\text { such that } A \cdot v=v .
\end{array}
$$

(2) Short exact sequence:

$$
0 \rightarrow \underbrace{\wedge}_{\cong \mathbb{Z}^{n-1}} \rightarrow \operatorname{Stab}(v) \xrightarrow{q} \underbrace{\mathrm{O}\left(v^{\perp} / v\right)}_{\text {finite }} \rightarrow 0
$$

with Λ parabolic.
(3) For $n \leq 8$, there exists a unique $\mathrm{O}(1, n)(\mathbb{Z})$-orbit of primitive, isotropic vectors v.

Conic bundles

$$
\pi: M_{n} \rightarrow \mathbb{C P}^{1}
$$

"Project onto E_{1}."

(1) $b: M_{n} \rightarrow M_{1}$

Blow down E_{2}, \ldots, E_{n}
(2) $p: M_{1} \rightarrow \mathbb{C P}^{1}$

Space of lines through
$p_{1}=E_{1} \cong \mathbb{C P}^{1}$
$\left.p\right|_{L} \equiv[L] \in \mathbb{C P}^{1}$
(3) $p: M_{1} \rightarrow \mathbb{C P}^{1}$: Unique nontrivial \mathbb{S}^{2}-bundle over \mathbb{S}^{2}
$v \in \partial \mathbb{H}^{n}$ as fiber class of conic bundles
$\pi: M_{n} \rightarrow \mathbb{C P}^{1}$

(1) Smooth fibers $F \cong \mathbb{C P}^{1}$ with $[F]=v$,
(2) ($n-1$)-many singular fibers $\cong \mathbb{C P}^{1} \vee \mathbb{C} \mathbb{P}^{1}$.

Classical example 2: de Jonquiéres involution

$$
\pi: M_{n} \rightarrow \mathbb{C P}^{1}
$$

$\Phi \in \operatorname{Aut}\left(\mathrm{Bl}_{P} \mathbb{C P}^{2}\right), \quad P=$ certain subset of n-many points, n odd

More examples:

Example

(1) $\operatorname{supp}(f)=$ normal neighborhoods of E_{2}, \ldots, E_{n}
(0) $\left.f\right|_{E_{k}}=$ orientation-reversing reflection

Example

$$
[f \circ \underbrace{\Phi}_{\text {de Jonquiéres }}] \in \Lambda \cong \mathbb{Z}^{n-1}
$$

Theorem (L., in progress)

The subgroup $\Lambda \cong \mathbb{Z}^{n-1} \leq \operatorname{Mod}\left(M_{n}\right)$ is realized by diffeomorphisms.

All $\varphi \in s\left(\mathbb{Z}^{n-1}\right)$ preserve the fibers of π away from a neighborhood of all singular fibers.

