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An overview

Equations: focusing nonlinear Klein-Gordon, Schrödinger,
critical wave

Review of local well-posedness theory, global existence vs.
finite-time blowup. Forward scattering set S+

Stationary solutions, ground states, variational analysis

Some questions about S+, and some answer

Payne-Sattinger theory: global dynamics below the ground
state energy, functionals J and K .

Raising the bar: energies above the ground state energy.

Stable, Unstable, Center manifolds

Hyperbolic dynamics, ejection lemma

One-pass theorem, absence of almost homoclinic orbits

Conclusion
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Introduction

Energy subcritical equations:

�u + u = |u|p−1u in R1+1
t,x (even),R1+3

t,x

i∂tu + ∆u = |u|2u in radial R1+3
t,x

Energy critical case:

�u = |u|2∗−2u in radial R1+d
t,x (1)

d = 3, 5.

Goals: Describe transition between blowup/global existence and
scattering, “Soliton resolution conjecture”. Results apply only to
the case where the energy is at most slightly larger than the energy
of the “ground state soliton”.
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Basic well-posedness, focusing cubic NLKG in R3

∀ u[0] ∈ H there ∃! strong solution u ∈ C ([0,T ); H1),
u̇ ∈ C 1([0,T ); L2) for some T ≥ T0(‖u[0]‖H) > 0. Properties:
continuous dependence on data; persistence of regularity; energy
conservation:

E (u, u̇) =

∫
R3

(1

2
|u̇|2 +

1

2
|∇u|2 +

1

2
|u|2 − 1

4
|u|4
)

dx

If ‖u[0]‖H � 1, then global existence; let T ∗ > 0 be maximal
forward time of existence: T ∗ <∞ =⇒ ‖u‖L3([0,T∗),L6(R3)) =∞.
If T ∗ =∞ and ‖u‖L3([0,T∗),L6(R3)) <∞, then u scatters:
∃ (ũ0, ũ1) ∈ H s.t. for v(t) = S0(t)(ũ0, ũ1) one has

(u(t), u̇(t)) = (v(t), v̇(t)) + oH(1) t →∞

S0(t) free KG evol. If u scatters, then ‖u‖L3([0,∞),L6(R3)) <∞.
Finite prop.-speed: if ~u = 0 on {|x − x0| < R}, then u(t, x) = 0 on
{|x − x0| < R − t, 0 < t < min(T ∗,R)}.
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Finite time blowup, forward scattering set

T > 0, exact solution to cubic NLKG

ϕT (t) ∼ c(T − t)−α as t → T+

α = 1, c =
√

2.
Use finite prop-speed to cut off smoothly to neighborhood of cone
|x | < T − t. Gives smooth solution to NLKG, blows up at t = T
or before.
Small data: global existence and scattering. Large data: can
have finite time blowup.
Is there a criterion to decide finite time blowup/global existence?

Forward scattering set: S(t) = nonlinear evolution

S+ :=
{

(u0, u1) ∈ H := H1 × L2 | u(t) := S(t)(u0, u1) ∃ ∀ times

and scatters to zero, i.e., ‖u‖L3([0,∞);L6) <∞
}
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Forward Scattering set

S+ satisfies the following properties:

S+ ⊃ Bδ(0), a small ball in H,

S+ 6= H,

S+ is an open set in H,

S+ is path-connected.

Some natural questions:

1 Is S+ bounded in H?

2 Is ∂S+ a smooth manifold or rough?

3 If ∂S+ is a smooth mfld, does it separate regions of FTB/GE?

4 Dynamics starting from ∂S+? Any special solutions on ∂S+?
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Stationary solutions, ground state
Stationary solution u(t, x) = ϕ(x) of NLKG, weak solution of

−∆ϕ+ ϕ = ϕ3 (2)

Minimization problem

inf
{
‖ϕ‖2H1 | ϕ ∈ H1, ‖ϕ‖4 = 1

}
has radial solution ϕ∞ > 0, decays exponentially, ϕ = λϕ∞
satisfies (2) for some λ > 0.
Coffman: unique ground state Q.
Minimizes the stationary energy (or action)

J(ϕ) :=

∫
R3

(1

2
|∇ϕ|2 +

1

2
|ϕ|2 − 1

4
|ϕ|4

)
dx

amongst all nonzero solutions of (2). Dilation functional:

K0(ϕ) = 〈J ′(ϕ)|ϕ〉 =

∫
R3

(|∇ϕ|2 + |ϕ|2 − |ϕ|4)(x) dx
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Some answers

Theorem

Let E (u0, u1) < E (Q, 0) + ε2, (u0, u1) ∈ Hrad. In t ≥ 0 for NLKG:

1 finite time blowup

2 global existence and scattering to 0

3 global existence and scattering to Q:
u(t) = Q + v(t) + OH1(1) as t →∞, and
u̇(t) = v̇(t) + OL2(1) as t →∞, �v + v = 0, (v , v̇) ∈ H.

All 9 combinations of this trichotomy allowed as t → ±∞.

Applies to dim = 3, cubic power, or dim = 1, all p > 5.

Under energy assumption (EA) ∂S+ is connected, smooth
mfld, which gives (3), separating regions (1) and (2). ∂S+

contains (±Q, 0). ∂S+ forms the center stable manifold
associated with (±Q, 0).

∃ 1-dimensional stable, unstable mflds at (±Q, 0). Stable
mfld: Duyckaerts-Merle, Duyckaerts-Holmer-Roudenko
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Hyperbolic dynamics
ẋ = Ax + f (x), f (0) = 0,Df (0) = 0, Rn = Xs + Xu + Xc ,
A-invariant spaces, A � Xs has evals in Re z < 0, A � Xu has evals
in Re z > 0, A � Xc has evals in iR.
If Xc = {0}, Hartmann-Grobman theorem: conjugation to etA.

If Xc 6= {0}, Center Manifold Theorem: ∃ local invariant mflds
around x = 0, tangent to Xu,Xs ,Xc .

Xs = {|x0| < ε | x(t)→ 0 exponentially fast as t →∞}
Xu = {|x0| < ε | x(t)→ 0 exponentially fast as t → −∞}

Example:

ẋ =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 x + O(|x |2)

spec(A) = {1,−1, i ,−i}
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Hyperbolic dynamics near ±Q

Linearized operator L+ = −∆ + 1− 3Q2.

〈L+Q|Q〉 = −2‖Q‖44 < 0

L+ρ = −k2ρ unique negative eigenvalue, no kernel over radial
functions

Gap property: L+ has no eigenvalues in (0, 1], no threshold
resonance (delicate!)

Plug u = Q + v into cubic NLKG:

v̈ + L+v = N(Q, v) = 3Qv2 + v3

Rewrite as a Hamiltonian system:

∂t

(
v

v̇

)
=

[
0 1
−L+ 0

](
v

v̇

)
+

(
0

N(Q, v)

)
Then spec(A) = {k ,−k} ∪ i [1,∞) ∪ i(−∞,−1] with ±k simple
evals. Formally: Xs = P1L2, Xu = P−1L2. Xc is the rest.
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The invariant manifolds

Figure: Stable, unstable, center-stable manifolds
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Variational properties of ground state Q

Variational characterization

J(Q) = inf{J(ϕ) | ϕ ∈ H1 \ {0}, K0(ϕ) = 0}

= inf{J(ϕ)− 1

4
K0(ϕ) | ϕ ∈ H1 \ {0}, K0(ϕ) ≤ 0}

(3)

Note: if minimizer ∃ ϕ∞ ≥ 0 (radial), then Euler-Lagrange:
J ′(ϕ∞) = λK ′0(ϕ∞), K0(ϕ∞) = 0. So

0 = K0(ϕ∞) = 〈J ′(ϕ∞)|ϕ∞〉 = λ〈K ′0(ϕ∞)|ϕ∞〉 = −2λ‖ϕ∞‖44

λ = 0 =⇒ J ′(ϕ∞) = 0 =⇒ ϕ∞ = Q.

Energy near ±Q a “saddle surface”: x2 − y2 ≤ 0

Better analogy q(ξ) = −ξ20 +
∑∞

j=1 ξ
2
j in `2(Z+

0 ), “needle like”

Similar picture for E (u, u̇) < J(Q). Solution trapped by
K ≥ 0, K < 0 in that set.
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Schematic depiction of J , K0

Figure: The splitting of J(u) < J(Q) by the sign of K = K0

Energy near ±Q a “saddle surface”: x2 − y2 ≤ 0

Better analogy q(ξ) = −ξ20 +
∑∞

j=1 ξ
2
j in `2(Z+

0 ), “needle like”

Similar picture for E (u, u̇) < J(Q). Solution trapped by
K ≥ 0, K < 0 in that set.
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Payne-Sattinger theory I
jϕ(λ) := J(eλϕ), ϕ 6= 0 fixed.

Figure: Payne-Sattinger well

Normalize so that λ∗ = 0. Then ∂λjϕ(λ)
∣∣
λ=λ∗

= K0(ϕ) = 0.
“Trap” the solution in the well on the left-hand side: need
E < inf{jϕ(0) | K0(ϕ) = 0, ϕ 6= 0} = J(Q) (lowest mountain pass).
Expect global existence in that case.
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Payne-Sattinger II
Invariant decomposition of E < J(Q):

PS+ := {(u0, u1) ∈ H | E (u0, u1) < J(Q), K0(u0) ≥ 0}
PS− := {(u0, u1) ∈ H | E (u0, u1) < J(Q), K0(u0) < 0}

In PS+ global existence in R: K0(u(t)) ≥ 0 implies

‖u(t)‖44 ≤ ‖u(t)‖2H1 =⇒ E ≥ 1

4
‖u(t)‖2H1 +

1

2
‖u̇(t)‖22 ' E

In PS− finite time blowup in both positive and negative times.
Convexity argument: y(t) := ‖u(t)‖2L2 satisfies K0(u(t)) < −δ,

ÿ = 2[‖u̇‖22 − K0(u(t))]

= 6‖u̇‖22 − 8E (u, u̇) + 2‖u‖2H1

∂tt(y−
1
2 ) = −1

2
y−

5
2
[
y ÿ − 3

2
ẏ2
]
< 0

So finite time blowup.
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Payne-Sattinger III

Corollary: Q unstable.

vj = λjρ+ wj , j = 0, 1, wj ⊥ ρ, ω =
√

L+P⊥ρ

E (Q + v0, v1) = J(Q) +
1

2
(〈L+v0|v0〉+ ‖v1‖22) + O(‖v0‖3H1)

= J(Q) +
1

2
(λ2

1 − k2λ2
0) +

1

2
(‖ωw0‖22 + ‖w1‖22) + O(‖v0‖3H1)

K0(Q + v0) = −2〈Q3|v0〉+ O(‖v0‖2H1)

Specialize: v0 = ερ, v1 = 0:

E (Q + v0, 0) = J(Q)− k2

2
ε2 + O(ε3) < J(Q)

K0(Q + v0) = −2ε〈Q3|ρ〉+ O(ε2)

So sign(K0) determined by sign(ε).
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Numerical 2-dim section through ∂S+ (with R. Donninger)

Figure: (Q + Ae−r2

,Be−r2

)

soliton at (A,B) = (0, 0), (A,B) vary in [−9, 2]× [−9, 9]

RED: global existence, WHITE: finite time blowup, GREEN:
PS−, BLUE: PS+

Our results apply to a neighborhood of (Q, 0), boundary of
the red region looks smooth (caution!)
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Beyond J(Q), center-stable manifold (radial)

Solve NLKG with u = ±(Q + v)→ v̈ + L+v = N(Q, v)→

λ̇+ − kλ+ =
1

2k
Nρ(Q, v) (4)

λ̇− + kλ− = − 1

2k
Nρ(Q, v) (5)

γ̈ + L+γ = P⊥ρ N(Q, v) (6)

PρN(Q, v) = Nρ(Q, v)ρ, v = λρ+ γ. ODE λ̈− k2λ = Nρ(Q, v) is
diagonalized by

λ± =
1

2
(λ± k−1λ̇)

(4) corresponds to eval k of A =

[
0 1
−L+ 0

]
; (5) eval −k ; (6) to

essential spectrum iR \ (−i , i) of A. “Stabilize” exponential
growth in (4): if Nρ ≡ 0, means λ+(0) = 0. In general:
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Solving the system (4)-(6)

Stability condition:

0 = λ+(0) +
1

2k

∫ ∞
0

e−skNρ(Q, v)(s) ds (7)

yields (recall v = λρ+ γ)

λ(t) = e−kt

[
λ(0) +

1

2k

∫ ∞
0

e−ksNρ(s) ds

]
+

1

2k

∫ ∞
0

e−k|t−s|Nρ(s) ds

γ̈ + L+γ = P⊥ρ N

Solve via Strichartz estimates for ∂tt + L+. Conclusion:
∃M 3 (±Q, 0) small smooth, codim 1 mfld, (u0, u1) ∈M⇒
u = Q + v + oH1(1) as t →∞, v free KG wave, M parametrized
by (λ(0), γ∞(0)), where γ∞ is the scattering solution of γ. Energy
partition: E (u, u̇) = J(Q) + E0(γ∞, γ̇∞) M unique: if u
∃∀ t ≥ 0, dist((u, u̇), (±Q, 0)) small ∀ t ≥ 0, ⇒ (u, u̇) ∈M.
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Stable and unstable manifolds
If (u, u̇)→ (Q, 0) as t →∞, then E (~u) = J(Q)⇒ γ∞ ≡ 0. So ~u
parametrized by λ(0).
Three cases: λ > 0, λ ≡ 0, λ < 0.
Main (λ, γ)-system ⇒ λ(t) decays exponentially as t →∞.
Duyckaerts-Merle type solutions: W±(t − t0).
as t → −I , W+ blows up in finite time, W− scatters to 0.
Remark: Construction more involved in the presence of symmetries
(non-radial NLKG, radial or nonradial NLS). Beceanu’s linear
estimates: H = H0 + V matrix NLS Hamiltonian, Z = PcZ ,

H =

(
∆− µ 0

0 −∆ + µ

)
+

(
W1 W2

−W2 W1

)
i∂tZ − iv(t)∇Z + A(t)σ3Z +HZ = F , Z (0) given,

‖A‖∞ + ‖v‖∞ < ε, no eigenvalues or resonances of H in
(−∞,−µ] ∪ [µ,∞). Then

‖Z‖
L∞t L2

x∩L2
t L

6,2
x
≤ C

(
‖Z (0)‖2 + ‖F‖

L1
t L

2
x+L2

t L
6/5,2
x

)
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Unstable dynamics off the center-stable mfld M
M is repulsive (restatement of uniqueness of M).
Goal: Stabilize sign(K0(u(t))), sign(K2(u(t))). Virial functional:

K2(u) = 〈J ′(u)|Au〉 = ∂λ|λ=0J(e
3λ
2 u(eλ·)), A = 1

2(x · ∇+∇ · x),

Figure: Sign of K = K0 upon exit

“Stabilize”: u(t) defined on [0,T∗), then sign(K (u(t)) ≥ 0 or < 0
on (T∗∗,T∗).
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Ejection of trajectories along unstable mode

Lemma (Ejection Lemma)

∃ 0 < δX � 1 s.t.: u(t) local solution of NLKG3 on [0,T ] with

R := dQ(~u(0)) ≤ δX , E (~u) < J(Q) + R2/2

and for some t0 ∈ (0,T ), one has the ejection condition:

dQ(~u(t)) ≥ R (0 < ∀t < t0). (8)

Then dQ(~u(t))↗ until it hits δX , and

dQ(~u(t)) ' −sλ(t) ' −sλ+(t) ' ektR,

|λ−(t)|+ ‖~γ(t)‖E . R + d2
Q(~u(t)),

min
s=0,2

sKs(u(t)) & dQ(~u(t))− C∗dQ(~u(0)),

for either s = +1 or s = −1.
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Variational structure above J(Q) (Noneffective!)

Figure: Signs of K = K0 away from (±Q, 0)

∀ δ > 0 ∃ ε0(δ), κ0, κ1(δ) > 0 s.t. ∀~u ∈ H with
E (~u) < J(Q) + ε0(δ)2, dQ(~u) ≥ δ, one has following dichotomy:

K0(u) ≤ −κ1(δ) and K2(u) ≤ −κ1(δ), or

K0(u) ≥ min(κ1(δ), κ0‖u‖2H1) and K2(u) ≥ min(κ1(δ), κ0‖∇u‖2L2).
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One-pass theorem I
Crucial no-return property: Trajectory does not return to balls
around (±Q, 0). Suppose it did; Use virial identity

∂t〈wu̇|Au〉 = −K2(u(t)) + error, A =
1

2
(x∇+∇x) (9)

where w = w(t, x) is a space-time cutoff that lives on a rhombus,
and the “error” is controlled by the external energy.

Figure: Space-time cutoff for the virial identity
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One-pass theorem II
Finite propagation speed ⇒ error controlled by free energy outside
large balls at times T1,T2.
Integrating between T1,T2 gives contradiction; the bulk of the
integral of K2(u(t)) here comes from exponential ejection
mechanism near (±Q, 0).

Figure: Possible returning trajectories
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One-pass theorem III
After integration of virial:

〈wu̇|Au〉
∣∣∣T2

T1

=

∫ T2

T1

[−K2(u(t)) + error] dt

where T1,T2 are exit, and first re-entry times into R-ball.
Left-hand side: absolute value

. R + SR2 . R inner radius

were S ' | log R| size of base (Q � R outside that ball).
Right-hand side: lower bound on |K2(u(t))| outside δ∗-ball by
variational lemma.
Exponentially increasing dynamics gives∫ T∗1

T1

|K2(u(t))| dt & δ∗ outer radius

where T ∗1 exit-time from δ∗-ball

J. Krieger, K. Nakanishi, W. S. Center Manifolds and Hamiltonian Evolution Equations



One-pass theorem IV
Some further issues:

For trajectories of type I , this argument works; for type II , use
ejection lemma at minimum point M.

In the K (u(t)) < 0 region the above argument is sufficient,
since error can be made small compared to κ(δ∗) by taking R
small (and thus S large).

In the K (u(t)) ≥ 0 case, one has a possible complication due

to
∫ T2

T1
‖∇u(t)‖22 dt being too small. In that case error

becomes a problem (since we have no control over T2 − T1).

Overcome that by showing ∃µ0 > 0 s.t.: if for some
µ ∈ (0, µ0]

‖~u‖L∞t (0,2;H) ≤ M,

∫ 2

0
‖∇u(t)‖2L2 dt ≤ µ2

then u exists globally and scatters to 0 as t → ±∞,
‖u(t)‖L3

t L
6
x (R×R3) � µ1/6.
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Further results I

Nonradial NLKG3: use relativistic energy (Lorentz invariant)

Em(~u)2 = E (~u)2 − |P(~u)|2

where P(~u) is the conserved momentum. This works if
|E | > |P|, the other case being reduced to Payne-Sattinger.
For the orbital stability form of 9-set theorem restrict to
normalized solutions, i.e., with P(~u) = 0. Center-stable mflds:
Instead of Q, need to work with 6-parameter family of ground
states (translated, “boosted”). Q gets squashed by Lorentz
contraction. Need a variant of Beceanu’s linear dispersive
estimates.

NLS equation: only radial; two modulation parameters for Q:
phase, mass e iα2t+γ αQ(αx). We “mod out” these
symmetries (at least for the orbital stability part which does
not involve the center-stable manifold); α is controlled by the
mass of the solution, for the phase write u = e iθ(Q + v).
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Further results II

NLS equation: Major difference in the one-pass theorem
from NLKG: absence of finite propagation speed. So crucial
virial argument is different; no time-dependent cutoffs.
K (u(t)) < 0 case (for blowup and one-pass theorem) treated
by a variant of the Ogawa-Tsutsumi argument. More difficult
to treat K (u(t)) ≥ 0. Use the following Morawetz identity
due to Nakanishi, 1999:

∂t

〈
u| t

4λ
u + i

r

2λ
ur

〉
=

∫
R3

{ t2

λ3
|∇Mu|2 − |u|

4

4

[
2

λ
+

t2

λ3

]
+

15t4

4λ7
|u|2
}

dx ,

where λ :=
√

t2 + r2 and M := e i |x |2/(4t). Right-hand side
can be rewritten in terms of K (u) = ‖∇u‖22 − 1

4‖u‖
4
4 and

expressions which are integrable in time.
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Critical wave equation I

ü−∆u = |u|2∗−2u, u(t, x) : R1+d → R, 2∗ =
2d

d − 2
(d = 3 or 5),

Static Aubin, Talenti solutions

Wλ = TλW , W (x) =

[
1 +

|x |2

d(d − 2)

]1− d
2

,

Tλ is Ḣ1 preserving dilation

Tλϕ = λd/2−1ϕ(λx)

Positive radial solutions of the static equation

−∆W − |W |2∗−2W = 0

Variational structure:

J(ϕ) :=

∫
Rd

[1

2
|∇ϕ|2 − 1

2∗
|ϕ|2∗

]
dx

K (ϕ) :=

∫
Rd

[|∇ϕ|2 − |ϕ|2∗ ] dx
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Critical wave equation II
Radial Ḣ1 × L2, E (~ϕ) < J(W ) + ε2, outside soliton tube

{± ~Wλ | λ > 0}+ O(ε)

There exists four open disjoint sets which lead to all combinations
of FTB/GE and scattering to 0 as t → ±I .
NOTE:

We do not have a complete description of all solutions with
energy E (~ϕ) < J(W ) + ε2.

We do not know if the center-stable manifold exists in
Ḣ1 × L2 (but in 05 Krieger-S. showed that there is such an
object in a stronger non-invariant topology).

Inside the soliton tube there exist blowup solutions, as found
by Krieger-S.-Tataru. Duykaerts-Kenig-Merle showed that all
type II blowup are of the KST form, as long as energy only
slightly above J(Q). So trapping by the soliton tube cannot
mean scattering to {Wλ} as it did in the subcritical case.
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