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The periodic problem

Consider the periodic second order ODE

− y ′′(x) + V (x)y(x) = Ey(x), E ∈ R (1)

on the line. Assume V (x + L) = V (x) real-valued (may take
L = 1). Then by Floquet theory any solution of (1) is of the form
y(x) = e ik(E)xa(x ,E ) where a(x + L,E ) = a(x ,E ). This comes
from considering the propagator (fundamental matrix) S(L) and its
eigenvalues. Since det S(L) = 1, either both eigenvalues lie on the
unit circle (and are complex conjugates), or they are real-valued
and reciprocal.
What does spec(H) look like, where

(Hy)(x) = −y ′′(x) + V (x)y(x) ?

We need to find those E for which k(E ) is real-valued.
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The periodic problem: Hill’s discriminant ∆

Figure: The bands in the spectrum

Here ∆ = trace(S(L)). The red intervals are precisely the ones
where the eigenvalues are on the unit circle.
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The periodic problem

Moreover, the spectrum of H is purely absolutely continuous.
Recall: as a self-adjoint operator H on a suitable domain has a
spectral resolution N(dE ) so that H =

∫
R E N(dE ) which means

that

〈Hf , g〉 =

∫
R

E 〈N(dE )f , g〉 ∀ f , g ∈ dom(H)

Lebesgue decomposition: L2(R) = L2(R)pp ⊕ L2(R)ac ⊕ L2(R)sc

orthogonal decomposition into closed subspaces such that the
measure

µf ,g (dE ) = 〈N(dE )f , g〉 ∀ f , g ∈ L2(R)X

is of type X, where X = pp/ac/sc .

How does one identify the spectrum as purely absolutely
continuous?
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Stone formula
∀ f , g ∈ L2(R) and any test function ϕ one has

lim
ε→0

1

2πi

∫ 〈
[(H − (λ+ iε))−1 − (H − (λ− iε))−1]f , g

〉
ϕ(λ) dλ

=

∫
R
ϕ(λ)µf ,g (dλ)

So there is a clear connection between the spectral measure and
the resolvent. For example,

1

π
Im (H − (λ+ i0))−1 dλ = Nac(dλ) := N(dλ)�Hac

This is especially useful on the line, since we can compute the
resolvent (i.e., Green function) from a fundamental system of (1)
(W =Wronskian)

(H − z)−1(x , x ′) =
y+(x , z)y−(x ′, z)

W (y+(·, z), y−(·, z))
x > x ′

where Im z > 0 and y±(x , z) decay as x → ±∞, respectively.
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Physical relevance
In the early days of quantum mechanics crystals (such as metals
and other electric conductors) were modeled by Schrödinger
operators with periodic potentials. The wave functions are
precisely the Floquet solutions, as noted by Bloch. The fact that
these “eigenfunctions” are not localized, or extended is interpreted
physically as mobility of the electrons which then translates into
electric conductivity. Works in any dimension. Mathematically
speaking: the spectrum is (absolutely) continuous. Typically, the
issue of characterizing singular continuous spectrum is very subtle
and many open problems remain (see e.g. Damanik-Killip-Lenz).

In QM it was then an important problem to understand what
happens to a crystal (conductor) if random impurities are
introduced. The common belief was after Bloch that a.c. spectrum
is stable and not destroyed. In 1957 Phil Anderson surprised
many by showing (non-rigorously) that for sufficiently strong
random, independent potentials on the whole lattice there is only
pure point spectrum and the eigenfunctions decay exponentially.
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P. Anderson’s work
For this he received the Nobel prize, since experimental
confirmation followed. More precisely, consider the random
operator

H = −∆Zd + λV (2)

on the lattice Zd where V = {vn}n∈Zd with i.i.d. random variables
vn. E.g., take vn = ±1.

d = 1 and any λ 6= 0: pure point spectrum and exponentially
localized eigenfunctions (AL). Fürstenberg’s theorem on
positive Lyapunov exponents for products of random matrices
is the basic mathematical ingredient.
d = 2, 3, . . . and LARGE λ 6= 0: AL as shown by
Fröhlich-Spencer in the 1980s.
Conjecture: d = 2 and any λ 6= 0 have AL.
Conjecture: d = 3 and SMALL λ 6= 0 have SOME AC
SPECTRUM (problem of extended states). In other words,
one expects a METAL-INSULATOR PHASE TRANSITION
depending on the size of the disorder.
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Dynamical properties
If H exhibits localization, then for any s ≥ 0 one has

sup
t
‖〈x〉se itHψ‖2 <∞

for any ψ ∈ L2. In other words, nothing spreads.
Contrast this to the free case: if 〈x〉ψ ∈ L2, then
‖〈x〉e it∆ψ‖2 ' 〈t〉. Same for other powers.
On the other hand, we have the following behavior on the
continuous spectrum: for all ψ ∈ L2

c one has

1

T

∫ T

0
‖χBe itHψ‖2

2 dt → 0

as T →∞. Here B is any ball. In the free case we have

‖e it∆f ‖∞ ≤ |t|−d/2‖f ‖1

This is the standard dispersive estimate (wave packets of different
frequencies travel at different speeds).
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P. Anderson’s work

Needless to say, all of this is about random potentials in INFINITE
VOLUME. Finitely many “impurities” have no effect on the
essential spectrum by Weyl’s criterion (on resolvent-compact
perturbations of self-adjoint operators).

Anderson’s quote: Localization is a GAME OF RESONANCES.

A resonance here means that on any given finite volume Λ ⊂ Zd

such as alarge cube, and any given energy E the spectrum of the
restricted operator H�Λ comes “very close” to E .
Of course, one needs to make this quantitative, but the basic idea
is to control (or rule out) the presence of long chains of such
resonant cubes. Indeed, if they are present, then the associated
eigenfunction will have equal mass on each of these cubes, and
therefore be extended.
Not surprisingly, it is easier to exclude this type of tunneling than
to show that it occurs and leads to infinitely extended states.
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The game of resonances

Figure: Resonant cubes
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The game of resonances

If we have a periodic structure then there are clearly infinitely
extended periodic chains of cubes which have identical spectrum.
So this is what is captured — without any reference to the finite
volume analysis — by Floquet-Bloch solutions in infinite volume.
In the random case, we can exploit that disjoint cubes are
independent and thus the probability of having an eigenvalue close
to E in a given cube (which is called “Wegner estimate”) is
SQUARED. This essentially leads to the same rapid convergence
as for a Newton scheme in the AL proof at large disorder.

But what if we have strong dependence between the values of the
potential at different sites, such as in quasi-crystals? To be more
specific, suppose vn(x) = F (T nx) where T : X → X is an ergodic
transformation on some measure space X 3 x and F : X → R.
Here n ∈ Z, in higher dimension can consider the analogue
vn(x) = F (T n1

1 ◦ T n2
2 ◦ . . . ◦ T nd

d x).
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Deterministic potentials

Such potentials go by the name of deterministic potentials, and all
the “randomness” sits in the variable x ∈ X . To play the game of
resonances, we clearly have to face the issue of recurrence of the
dynamical system. But we need much more (such as a quantitative
ergodic theorem) since we must precisely control the small
divisors which arise in the resolvent (H�Λ− z)−1.

In this generality only have “soft” results such as constancy of
spectrum etc. Any result which requires dealing with small divisors
can only be done with very specific dynamics such as the
shift=rotation and very limited potentials (trigonometric
polynomials such as cos, or analytic functions, Gevrey class also
studied). In many ways, our understanding is very poor.
For example, our methods give weaker conclusions for
higher-dimensional shifts, although they should exhibit “more
randomness” and thus the results should be closer to the random
case – and not further as the current techniques would suggest.
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Spectrum of ergodic Schrödinger operators

Consider the self-adjoint operators

(Hxψ)n = ψn+1 + ψn−1 + vn(x)ψn, n ∈ Z

with vn(x) an “ergodic potential”, i.e., vn(x) = V (T nx) and
T : X → X ergodic transformation on a probability space X , and
V : X → R measurable. Then there exists fixed compact set
K ⊂ R with spec(Hx) = K for a.e. x ∈ X . This follows from
ergodic theorem and property of the spectral resolution Nx of Hx

Nx = S−1 ◦ NTx ◦ S , S = right translation

In addition, specpp(Hx), specac(Hx), specsc(Hx) are also
deterministic. Eigenvalues are NOT deterministic, but their
closure is.
Very delicate: Structure of the spectrum such as Cantor set
(dense collection of open gaps), versus no gaps.
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Basic gap formation resulting from a double resonance,
Sinai’s work

Figure: Crossing of graphs of eigenvalues creates a gap

det

(
λ1(x)− E ε

ε λ2(x)− E

)
= 0, λ1(x0) = λ2(x0) = E0

E±(x) =
1

2
(λ1(x) + λ2(x))±

√
(λ1(x)− λ2(x))2 + 4ε2

(3)

This is a reflection of the fact that for the Dirichlet problem
eigenvalues are simple. On the level of eigenfunctions the following
is going on:
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Basic mechanism behind gap formation

Figure: Crossing of graphs of eigenvalues create two peaks
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Organization of lectures

The goal of these lectures is to present a body of techniques based
on two main ingredients

Estimates for subharmonic functions (Cartan estimate);
requires analytic potentials. Basic analytical ingredient which
controls the small divisors. The dynamics enters here.

Bounds for semi-algebraic sets. These require polynomial
potentials or such that can be (exponentially) well
approximated by polynomials. Goal: control the “complexity”
(connected components) of “bad sets” in the “random
parameter” x ∈ X to recapture independence of events that
both x , T nx are “bad” with LARGE n ∈ Z. The specific type
of dynamics enters here, treat on a case-by-case basis. This
second step prevents chains of resonant cubes.

Vary the dynamics analytically in a parameter
(=frequency/rotation number); eliminate bad frequencies.
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Overview
Much of our presentation is for the basic shift=rotation on the
circle. Parameter equals rotation number and we eliminate a thin
set of bad rotation numbers in the process of controlling small
divisors. We will also make reference to shifts on
higher-dimensional tori, as well as skew shifts. The final Lecture 4
is devoted to operators on higher-dimensional lattices.

Lecture 1: subharmonic functions, Riesz representation,
transfer matrices, Lyapunov exponent, large deviation
estimates, avalanche principle.

Lecture 2: Localization, semi-algebraic sets, elimination of
double resonances, positivity of the Lyapunov exponent

Lecture 3: Cartan estimates, derivation of LDT from Cartan,
BMO and subharmonic functions, matrix-valued Cartan,
splitting lemma

Lecture 4: higher-dimensional lattices, resolvent expansions,
applying the matrix-valued Cartan estimate, dealing with large
collections of resonant boxes.
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Overview

Many open problems remain, some very basic. Of course, the
random case stands out with the problem of extended states.
Appears very difficult. For “deterministic potentials”,
higher-dimensional shifts are very poorly understood (gaps in the
spectrum?). Endless variations of dynamical systems possible,
combine different types of dynamics – for example, mixing with
not mixing: F (x1 + nω, 2nx2)

A basic reference for these lectures is Bourgain’s book “Green’s
function estimates for lattice Schrödinger operators and
applications”. We do not cover all of it by any means, but go
beyond it in some ways (the higher-dimensional lattices, for
example, or the systematic developments of Cartan estimates). A
major omission are the KAM applications at the end of Bourgain’s
book aiming at the construction of (quasi)periodic solutions to
various Hamiltonian wave equations.
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