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Wave maps

Let (M, g) be a Riemannian manifold, and u : R1+d
t ,x → M smooth.

Wave maps defined by Lagrangian

L(u, ∂t u) =

∫
R1+d

t ,x

1
2

(−|∂t u|2g +
d∑

j=1

|∂ju|2g
)
dtdx

Critical points L′(u, ∂t u) = 0 satisfy “manifold-valued wave equation”.
M ⊂ RN embedded, this equation is

�u ⊥ TuM or �u = A(u)(∂u, ∂u),

A being the second fundamental form.

For example, M = Sn−1, then

�u = u(|∂t u|2 − |∇u|2)

Note: Nonlinear wave equation, null-form! Harmonic maps are solutions.



Wave maps

Intrinsic formulation: Dα∂αu = ηαβDβ∂αu = 0, in coordinates

−∂tt ui + ∆ui + Γi
jk (u)∂αuj∂αuk = 0

η = (−1, 1, 1, . . . , 1) Minkowski metric

• Similarity with geodesic equation: u = γ ◦ ϕ is a wave map provided �ϕ = 0,
γ a geodesic.

• Energy conservation: E(u, ∂t u) =

∫
Rd

(
|∂t u|2g +

∑d
j=1 |∂ju|2g

)
dx is conserved

in time.

• Cauchy problem:

�u = A(u)(∂αu, ∂αu), (u(0), ∂t u(0)) = (u0, u1)

smooth data. Does there exist a smooth local or global-in-time solution?

Local: Yes. Global: depends on the dimension of Minkowski space and the
geometry of the target.



Criticality and dimension

If u(t , x) is a wave map, then so is u(λt , λx), ∀λ > 0.

Data in the Sobolev space Ḣs × Ḣs−1(Rd). For which s is this space invariant
under the natural scaling? Answer: s = d

2 .

Scaling of the energy: u(t , x) 7→ λ
d−2

2 u(λt , λx) same as Ḣ1 × L2.

• Subcritical case: d = 1 the natural scaling is associated with less regularity than
that of the conserved energy. Expect global existence. Logic: local time of existence
only depends on energy of data, which is preserved.

• Critical case: d = 2. Energy keeps the balance with the natural scaling of the
equation. For S2 can have finite-time blowup, whereas for H2 have global existence.
Krieger-S.-Tataru 06, Krieger-S. 09, Rodnianski-Raphael 09, Sterbenz-Tataru 09.

• Supercritical case: d ≥ 3. Poorly understood. Self-similar blowup Q(r/t) for
sphere as target, Shatah 80s. Also negatively curved manifolds possible in high
dimensions: Cazenave, Shatah, Tahvildar-Zadeh 98.



Wellposedness of Wave Maps

• Energy methods: Hs(Rn) × Hs−1(Rn) with s > n
2 + 1.

• Klainerman-Machedon, Klainerman-Selberg 1990s: X s,b spaces which use
symbols of both ∆,�, bilinear estimates involving null forms of
Christodoulou, Klainerman gives s > n

2 .

• Push to s = n
2 since then local=global. Tataru 1998 introduced null frame

spaces and achieved small data global regularity, Tao 2000 employed gauge
invariance and obtained the desired small energy result, with d = 2 the
hardest case. Shatah-Struwe 2003: simpler proof, Coulomb gauge in d ≥ 4

• Large data have dichotomy between blowup/global regularity. For the latter
use induction on energy (Bourgain 1990s), for example via Kenig-Merle 2007
concentration compactness (Krieger-S. 2009). Implementation is very
complicated: gauge, Tataru/Tao spaces, no linear profile extraction possible
(manifold valued functions, no superposition principle).

• Equivariant case (discussed later) is more accessible, Christodoulou, Shatah,
Tahvildar-Zadeh, Struwe1990s made fundamental contributions. Many open
problems remain for the non-equivariant case (more about this later).

• Next: Concentration-compactness illustrated by a more elementary
semi-linear model.



A nonlinear defocusing Klein-Gordon equation

Consider in R1+3
t ,x

�u + u + u3 = 0, (u(0), u̇(0)) = (f , g) ∈ H := H1 × L2(R3)

Conserved energy

E(u, u̇) =

∫
R3

(1
2
|u̇|2 +

1
2
|∇u|2 +

1
2
|u|2 +

1
4
|u|4

)
dx

With S(t) the linear propagator of �+ 1 we have

~u(t) = (u, u̇)(t) = S(t)(f , g) −

∫ t

0
S(t − s)(0, u3(s)) ds

whence by a simple energy estimate, I = (0,T)

‖~u‖L∞(I;H) . ‖(f , g)‖H + ‖u3‖L1(I;L2) . ‖(f , g)‖H + ‖u‖3L3(I;L6)

. ‖(f , g)‖H + T‖~u‖3L∞(I;H)

Contraction for small T implies local wellposedness for H data.



Defocusing NLKG3

T depends only on H-size of data. From energy conservation we obtain global
existence by time-stepping.

Scattering (as in linear theory): ‖~u(t) − ~v(t)‖H → 0 as t → ∞ where �v + v = 0
energy solution.

~v(0) := ~u(0) −

∫ ∞

0
S(−s)(0, u3)(s) ds provided ‖u3‖L1

t L2
x
< ∞

Strichartz estimate uniformly in intervals I

‖~u‖L∞(I;H) + ‖u‖L3(I;L6) . ‖(f , g)‖H + ‖u‖3L3(I;L6)

Small data scattering: ‖~u‖L3(I;L6) . ‖(f , g)‖H � 1 for all I. So I = R as desired.

Large data scattering valid; induction on energy, concentration compactness
(Bourgain, Bahouri-Gerard, Kenig-Merle).



Scattering blueprint

Let ~u be nonlinear solution with data (u0, u1) ∈ H . Forward scattering set

S+ = {(u0, u1) ∈ H |~u(t) exists globally, scatters as t → +∞}

We claim that S+ = H . This is proved via the following outline:

• (Small data result): ‖(u0, u1)‖H < ε implies (u0, u1) ∈ S+

• (Concentration Compactness): If scattering fails, i.e., if S+ , H , then
construct ~u∗ of minimal energy E∗ > 0 for which ‖u∗‖L3

t L6
x

= ∞. There exists
x(t) so that the trajectory

K+ = {~u∗(· − x(t), t) | t ≥ 0}

is pre-compact in H .

• (Rigidity Argument): If a forward global evolution ~u has the property that K+

pre-compact in H , then u ≡ 0.

Kenig-Merle 2006, Bahouri-Gérard decomposition 1998; Merle-Vega.



Bahouri-Gérard: symmetries vs. dispersion

Let {un}
∞
n=1 free Klein-Gordon solutions in R3 s.t.

sup
n
‖~un‖L∞t H

< ∞

∃ free solutions v j bounded in H , and (t j
n, x

j
n) ∈ R × R3 s.t.

un(t , x) =
∑

1≤j<J

v j(t + t j
n, x + x j

n) + wJ
n (t , x)

satisfies ∀ j < J, ~wJ
n (−t j

n,−x j
n) ⇀ 0 in H as n → ∞, and

• limn→∞(|t j
n − tk

n |+ |x
j
n − xk

n |) = ∞ ∀ j , k

• dispersive errors wk
n vanish asymptotically:

lim
J→∞

lim sup
n→∞

∥∥∥wJ
n

∥∥∥
(L∞t Lp

x ∩L3
t L6

x )(R×R
3)

= 0 ∀ 2 < p < 6

• orthogonality of the energy:

‖~un‖
2
H

=
∑

1≤j<J

‖~v j‖2
H

+ ‖~wJ
n ‖

2
H

+ o(1)



Profiles and Strichartz sea

We can extract further profiles from the Strichartz sea if w4
n does not vanish as

n → ∞ in a suitable sense. In the radial case this means limn→∞ ‖w4
n ‖L∞t Lp

x (R
3) > 0.



Lorentz transformations


t ′

x ′1
x ′2
x ′3

 =
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coshα sinhα 0 0
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0 0 1 0
0 0 0 1
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t
x1

x2

x3



Figure: Causal structure of space-time



Further remarks on Bahouri-Gérard

• Noncompact symmetry groups: space-time translations and Lorentz
transforms.

Compact symmetry groups: Rotations
Lorentz transforms do not appear in the profiles: Energy bound
compactifies them.

• Dispersive error wJ
n is not an energy error!

• In the radial case only need time translations



The focusing NLKG equation

The focusing NLKG
�u + u = ∂tt u −∆u + u = u3

has indefinite conserved energy

E(u, u̇) =

∫
R3

(1
2
|u̇|2 +

1
2
|∇u|2 +

1
2
|u|2 −

1
4
|u|4

)
dx

• Local wellposendness for H1 × L2(R3) data

• Small data: global existence and scattering

• Finite time blowup u(t) =
√

2(T − t)−1(1 + o(1)) as t → T−
Cutoff to a cone using finite propagation speed to obtain finite energy
solution.

• stationary solutions −∆ϕ + ϕ = ϕ3, ground state Q(r) > 0



Payne-Sattinger theory; saddle structure of energy near Q

Criterion: finite-time blowup/global existence?
Yes, provided the energy is less than the ground state energy Payne-Sattinger 1975.

J(ϕ) =

∫
R3

(1
2
|∇ϕ|2 +

1
2
|ϕ|2 −

1
4
|ϕ|4

)
dx

K(ϕ) =

∫
R3

(
|∇ϕ|2 + |ϕ|2 − |ϕ|4

)
dx

Uniqueness of Q is the foundation!



Payne-Sattinger theory

jϕ(λ) := J(eλϕ), ϕ , 0 fixed.

Figure: Payne-Sattinger well

Normalize so that λ∗ = 0. Then ∂λjϕ(λ)
∣∣∣
λ=λ∗

= K(ϕ) = 0.

“Trap” the solution in the well on the left-hand side: need
E < inf{jϕ(0) | K(ϕ) = 0, ϕ , 0} = J(Q) (lowest mountain pass). Expect global
existence in that case.



Above the ground state energy

Theorem (Nakanishi-S. 2010)
Let E(u0, u1) < E(Q , 0) + ε2, (u0, u1) ∈ Hrad. In t ≥ 0 for NLKG:

1. finite time blowup

2. global existence and scattering to 0

3. global existence and scattering to Q: u(t) = Q + v(t) + oH1 (1) as t → ∞,
and u̇(t) = v̇(t) + oL2 (1) as t → ∞, �v + v = 0, (v , v̇) ∈ H .

All 9 combinations of this trichotomy allowed as t → ±∞.

• Applies to dim = 3, |u|p−1u, 7/3 < p < 5, or dim = 1, p > 5.

• Third alternative forms the center stable manifold associated with (±Q , 0).
Linearized operator L+ = −∆ + 1 − 3Q2 has spectrum {−k 2} ∪ [1,∞)
on L2

rad(R3). Gap [0, 1) difficult to verify, Costin-Huang-S., 2011.

• ∃ 1-dim. stable, unstable manifolds at (±Q , 0). Stable manifolds:
Duyckaerts-Merle, Duyckaerts-Holmer-Roudenko 2009



The invariant manifolds

Figure: Stable, unstable, center-stable manifolds



Hyperbolic dynamics near ±Q

Linearized operator L+ = −∆ + 1 − 3Q2

• 〈L+Q |Q〉 = −2‖Q‖44 < 0

• L+ρ = −k 2ρ unique negative eigenvalue, no kernel over radial functions

• Gap property: L+ has no eigenvalues in (0, 1], no threshold resonance
(delicate!) Use Kenji Yajima’s Lp-boundedness for wave operators.

Plug u = Q + v into cubic NLKG:

v̈ + L+v = N(Q , v) = 3Qv2 + v3

Rewrite as a Hamiltonian system:

∂t

(
v
v̇

)
=

[
0 1
−L+ 0

] (
v
v̇

)
+

(
0

N(Q , v)

)
Then spec(A) = {k ,−k } ∪ i[1,∞) ∪ i(−∞,−1] with ±k simple evals. Formally:

Xs = P1L2, Xu = P−1L2, Xc is the rest.



Spectrum of matrix Hamiltonian

Figure: Spectrum of nonselfadjoint linear operator in phase space



Numerical 2-dim section through ∂S+ (with R. Donninger)

Figure: (Q + Ae−r2
,Be−r2

)

• soliton at (A ,B) = (0, 0), (A ,B) vary in [−9, 2] × [−9, 9]

• RED: global existence, WHITE: finite time blowup, GREEN: PS+, BLUE:
PS−

• Our results apply to a neighborhood of (Q , 0), boundary of the red region
looks smooth (caution!)



Variational structure above E(Q , 0)

• Solution can pass through the balls. Energy is no obstruction anymore as in
the Payne-Sattinger case.

• Key to description of the dynamics: One-pass (no return) theorem. The
trajectory can make only one pass through the balls.

• Point: Stabilization of the sign of K(u(t)).



One-pass theorem (non-perturbative)

Figure: Possible returning trajectories

Such trajectories are excluded by means of an indirect argument using a variant
of the virial argument that was essential to the rigidity step of concentration
compactness.



One-pass theorem

Crucial no-return property: Trajectory does not return to balls around
(±Q , 0). Suppose it did; Use virial identity

∂t 〈wu̇ |Au〉 = −

∫
R3

(|∇u|2 −
3
4
|u|4) dx + error, A =

1
2

(x∇+ ∇x)

where w = w(t , x) is a space-time cutoff that lives on a rhombus, and the “error”
is controlled by the external energy.

Finite propagation speed⇒ error controlled by free energy outside large balls at
times T1,T2.
Integrating between T1,T2 gives contradiction; the bulk of the integral of K2(u(t))
here comes from exponential ejection mechanism near (±Q , 0).

Non-perturbative argument.



Figure: Space-time cutoff for the virial identity



Open problem

Complete description of possible long-term dynamics: Given focusing NLKG3 in
R3 with radial energy data, show that the solution either

• blows up in finite time

• exists globally, scatters to one of the stationary solutions −∆ϕ + ϕ = ϕ3

(including 0)

Moreover, describe dynamics, center-stable manifolds associated with ϕ.

Evidence: With dissipation given by −α∂t u term, result holds (Burq-Raugel-S.).

Critical equation: �u = u5 in R3, Duyckaerts-Kenig-Merle proved analogous result
with rescaled ground-state profiles

√
λW(λx), W(x) = (1 + |x |2/3)−

1
2 .

Obstruction: Exterior energy estimates in DKM scheme fail in the KG case due to
speed of propagation < 1.



Center-stable manifold, u5 critical equation

Nakanishi-S theorem applies to nonradial NLKG, NLS, different subcritical
powers and dimensions. Critical equations exhibit similar, yet qualitatively
essentially different phenomena due to scaling symmetry.

ü −∆u = |u|2
∗−2u, u(t , x) : R1+d → R, 2∗ =

2d
d − 2

,

Static Aubin, Talenti solutions

Wλ = TλW , W(x) =

[
1 +

|x |2

d(d − 2)

]1− d
2

,

Tλ is Ḣ1 preserving dilation

Tλϕ = λd/2−1ϕ(λx)

Positive radial solutions −∆W − |W |2
∗−2W = 0. Functionals:

J(ϕ) :=

∫
Rd

[1
2
|∇ϕ|2 −

1
2∗
|ϕ|2

∗
]
dx, K(ϕ) :=

∫
Rd

[|∇ϕ|2 − |ϕ|2
∗

] dx



Critical wave equation

Radial Ḣ1 × L2, E(~ϕ) < J(W) + ε2, outside soliton tube

S = {± ~Wλ | λ > 0}+ O(ε)

There exists four open disjoint sets which lead to all combinations of FTB/GE
and scattering to 0 as t → ±I.

• Krieger-Nakanishi-S. 2013: complete description of all solutions with energy
E(~ϕ) < J(W) + ε2. Type-I conjecture!

• center-stable manifold exists in Ḣ1 × L2, contains all Wλ, solutions with
λ→ 0,∞ (but Krieger-S. 05 showed that in a stronger non-invariant topology
exists codim-1 manifold with global solutions, λ(t)→ λ∗ ∈ (0,∞)).

• Inside the soliton tube there exist blowup solutions, as found by
Krieger-S.-Tataru 06. Then Duyckaerts-Kenig-Merle 09 showed that all type II
blowup are of the KST form, as long as energy below 2J(Q). So trapping by
the soliton tube cannot mean scattering to {Wλ} as it did in the subcritical
case.



Equivariant wave maps
u : R1+2

t ,x → S
2 satisfies WM equation

�u ⊥ TuS
2 ⇔ �u = u(|∂t u|2 − |∇u|2)

as well as equivariance assumption u ◦ R = R ◦ u for all R ∈ SO(2)

Figure: Equivariance and Riemann sphere



Equivariant wave maps

u(t , r , φ) = (ψ(t , r), φ), spherical coordinates, ψ angle from north pole satisfies

ψtt − ψrr −
1
r
ψr +

sin(2ψ)

2r2
= 0, (ψ, ψt )(0) = (ψ0, ψ1)

• Conserved energy

E(ψ, ψt ) =

∫ ∞

0

(
ψ2

t + ψ2
r +

sin2(ψ)

r2

)
r dr

• ψ(t ,∞) = nπ, n ∈ Z, homotopy class = degree = n

• stationary solutions = harmonic maps = 0,±Q(r/λ), where
Q(r) = 2 arctan r . This is the identity S2 → S2 with stereographic projection
onto R2 as domain (conformal map!).



Large data results for equivariant wave maps

Theorem (Côte, Kenig, Lawrie, S. 2012)
Let (ψ0, ψ1) be smooth data.

1. Let E(ψ0, ψ1) < 2E(Q , 0), degree 0. Then the solution exists globally, and
scatters (energy on compact sets vanishes as t → ∞). For any δ > 0 there
exist data of energy < 2E(Q , 0) + δ which blow up in finite time.

2. Let E(ψ0, ψ1) < 3E(Q , 0), degree 1. If the solution ψ(t) blows up at time
t = 1, then there exists a continuous function, λ : [0, 1)→ (0,∞) with
λ(t) = o(1 − t), a map ~ϕ = (ϕ0, ϕ1) ∈ H with E(~ϕ) = E(~ψ) − E(Q , 0), and a
decomposition

~ψ(t) = ~ϕ + (Q (·/λ(t)) , 0) + ~ε(t) (?)

s.t. ~ε(t) ∈ H , ~ε(t)→ 0 in H as t → 1.



Large data results for equivariant wave maps

• For degree 1 have an analogous classification to (?) for global solutions.

• Côte 2013: bubble-tree classification for all energies along a sequence of
times.
Open problems: (A) all times, rather than a sequence (B) construction of
bubble trees.

• Duyckaerts, Kenig, Merle 12 established classification results for �u = u5 in
Ḣ1 × L2(R3) with W(x) = (1 + |x |2/3)−

1
2 instead of Q .

• Construction of (?) by Krieger-S.-Tataru 06 in finite time, Donninger-Krieger 13 in
infinite time (for critical NLW)

• Crucial role is played by Michael Struwe’s bubbling off theorem
(equivariant): if blowup happens, then there exists a sequence of times
approaching blowup time, such that a rescaled version of the wave map
approaches locally in energy space a harmonic map of positive energy.



Struwe’s cuspidal energy concentration

Rescalings converge in L2
t ,r -sense to a stationary wave map of positive energy,

i.e., a harmonic map.



Asymptotic exterior energy

�u = 0, u(0) = f ∈ Ḣ1(Rd), ut (0) = g ∈ L2(Rd) radial

Duyckaerts-Kenig-Merle 2011: for all t ≥ 0 or t ≤ 0 have Eext (~u(t)) ≥ cE(f , g)
provided dimension odd. c > 0, c = 1

2

Heuristics: incoming vs. outgoing data.



Exterior energy: even dimensions

Côte-Kenig-S. 2012: This fails in even dimensions.

d = 2, 6, 10, . . . holds for data (0, g) but fails in general for (f , 0).
d = 4, 8, 12, . . . holds for data (f , 0) but fails in general for (0, g).

Fourier representation, Bessel transform, dimension d reflected in the phase of
the Bessel asymptotics, computation of the asymptotic exterior energy as
t → ±∞.

For our 3E(Q , 0) theorem we need d = 4 result; rather than d = 2 due to
repulsive ψ

r2 -potential coming from sin(2ψ)
2r2 .

(f , 0) result suffices by Christodoulou, Tahvildar-Zadeh, Shatah results from mid
1990s. Showed that at blowup t = T = 1 have vanishing kinetic energy

lim
t→1

1
1 − t

∫ 1

t

∫ 1−t

0
|ψ̇(t , r)|2 rdr dt = 0

No result for Yang-Mills since it corresponds to d = 6



Exterior energy: odd dimensions

Duyckaerts-Kenig-Merle: in radial R3 one has for all R ≥ 0

max
±

lim
t→±∞

∫
|x |>t+R

|∇t ,xu|2 dr ≥ c
∫
|x |>R

[(ru)2
r + (ru)2

t ] dr

Note: RHS is not standard energy! Orthogonal projection perpendicular to
Newton potential (r−1, 0) in H1 × L2(R3 : r > R).

Kenig-Lawrie-S. 13 noted this projection and extended the exterior energy estimate
to d = 5: project perpendicular to plane (ξr−3, ηr−3) in H1 × L2(R5 : r > R)

Kenig-Lawrie-Liu-S. 14 all odd dimensions, projections off of similar but larger and
more complicated linear subspaces.

Relevance: Exterior wave maps in R3 with arbitrary degree of equivariance lead
to all odd dimensions.



Exterior wave maps

Consider equivariant wave maps from R3 \B(0, 1)→ S3 with Dirichlet condition at
R = 1. Supercritical becomes subcritical, easy to obtain global smooth solutions.

Conjecture by Bizon-Chmaj-Maliborski 2011: All smooth solutions scatter to the
unique harmonic map in their degree class.

Results:

• Lawrie-S. 2012: Proved for degree 0 and asymptotic stability for degree 1.
Follows Kenig-Merle concentration compactness approach with rigidity
argument carried out by a virial identity (complicated).

• Kenig-Lawrie-S. 2013: Proved for all degrees in equivariance class 1. Uses
exterior energy estimates instead of virial.

• Kenig-Lawrie-Liu-S. 2014: Proved for all degrees and all equivariance classes.
Requires exterior energy estimates in all odd dimensions.

Soliton resolution conjecture holds in this case.
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