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Wave maps

Let (M, g) be a Riemannian manifold, and u : ngjd — M smooth.

Wave maps defined by Lagrangian

1 d
L(u,du) = fR L, 3o+ > 19ul3) diax
tx j=1

Critical points £’ (u, d;u) = 0 satisfy “manifold-valued wave equation”.
M c RN embedded, this equation is

ou L Ty,M or ou = A(u)(du,du),
A being the second fundamental form.
For example, M = S"', then
ou = u(|6;uf? - |[Vul?)

Note: Nonlinear wave equation, null-form! Harmonic maps are solutions.



Wave maps
Intrinsic formulation: D*d,u = n“ﬁDﬁaau = 0, in coordinates
—OpU' + AU + T (u)0, 10" u* =0
n=(-1,1,1,...,1) Minkowski metric

« Similarity with geodesic equation: u = y o ¢ is a wave map provided Op = 0,
v a geodesic.

e Energy conservation: E(u,d;u) = f d(lc’),ulg + Zj; |<9,-u|§) dx is conserved

. . R
in time.

e Cauchy problem:
gu = A(u)(87u,d,u), (u(0),d;u(0)) = (o, uy)
smooth data. Does there exist a smooth local or global-in-time solution?

Local: Yes. Global: depends on the dimension of Minkowski space and the
geometry of the target.



Criticality and dimension

If u(t, x) is a wave map, then so is u(At, Ax), ¥4 > 0.

Data in the Sobolev space H° x H5~"(R?). For which s is this space invariant
under the natural scaling? Answer: s = 4.

Scaling of the energy: u(t, x) — 1% u(At, Ax) same as H' x L2.

e Subcritical case: d = 1 the natural scaling is associated with less regularity than
that of the conserved energy. Expect global existence. Logic: local time of existence
only depends on energy of data, which is preserved.

o Critical case: d = 2. Energy keeps the balance with the natural scaling of the
equation. For S2 can have finite-time blowup, whereas for H? have global existence.
Krieger-S.-Tataru 06, Krieger-S. 09, Rodnianski-Raphael 09, Sterbenz-Tataru 09.

e Supercritical case: d > 3. Poorly understood. Self-similar blowup Q(r/t) for
sphere as target, Shatah 80s. Also negatively curved manifolds possible in high
dimensions: Cazenave, Shatah, Tahvildar-Zadeh 98.



Wellposedness of Wave Maps

Energy methods: H¥(R") x H*"'(R") with s > 2 + 1.
Klainerman-Machedon, Klainerman-Selberg 1990s: Xs:b spaces which use

symbols of both A, O, bilinear estimates involving null forms of
Christodoulou, Klainerman gives s > 7.

Push to s = 3 since then local=global. Tataru 1998 introduced null frame
spaces and achieved small data global regularity, Tao 2000 employed gauge
invariance and obtained the desired small energy result, with d = 2 the
hardest case. Shatah-Struwe 2003: simpler proof, Coulomb gauge in d > 4

Large data have dichotomy between blowup/global regularity. For the latter
use induction on energy (Bourgain 1990s), for example via Kenig-Merle 2007
concentration compactness (Krieger-S. 2009). Implementation is very
complicated: gauge, Tataru/Tao spaces, no linear profile extraction possible
(manifold valued functions, no superposition principle).

Equivariant case (discussed later) is more accessible, Christodoulou, Shatah,
Tahvildar-Zadeh, Struwe1990s made fundamental contributions. Many open
problems remain for the non-equivariant case (more about this later).

Next: Concentration-compactness illustrated by a more elementary
semi-linear model.



A nonlinear defocusing Klein-Gordon equation
Consider in R} *
ou+u+u® =0, (u(0),u0))=(f.g) e H :=H"xL3R®
Conserved energy
Ew.) = [ (10 + HI90f + JIuf + gl e
ks \2 2 2 4

With S(t) the linear propagator of o + 1 we have
(1) = (u, 0)(t) = S(1)(F,q) fs (t - 5)(0, 3(s)) ds

whence by a simple energy estimate, | = (0, T)

Ty  1CF @byt + 16 iy < (@)l + Nl 6
S I1(F. @)l + TIE <

Contraction for small T implies local wellposedness for H data.



Defocusing NLKG3

T depends only on H-size of data. From energy conservation we obtain global
existence by time-stepping.

Scattering (as in linear theory): ||t(t) — V(t)lly — 0 as t — cowhereov +v =10
energy solution.

f S(- u*)(s) ds provided ||u® ||L1L2 < oo

Strichartz estimate uniformly in intervals [

Ilesizey + Nulles ey < ICF @l + NUllFs 6
L3(hL

Small data scattering: ||L7||L3(,;Le) < I(f, 9)ller < 1 for all I. So I = R as desired.

Large data scattering valid; induction on energy, concentration compactness
(Bourgain, Bahouri-Gerard, Kenig-Merle).



Scattering blueprint

Let U be nonlinear solution with data (ug, uy) € . Forward scattering set
Si = {(up, uy) € H | (t) exists globally, scatters as t — +oo}
We claim that S, = H. This is proved via the following outline:

o (Small data result): ||(u, us)ll < & implies (ug, uy) € S

¢ (Concentration Compactness): If scattering fails, i.e., if S # H, then
construct 4, of minimal energy E, > 0 for which ||U*||L3L§ = oo0. There exists

x(t) so that the trajectory
Ky = {U.(- = x(t), 1) |t > 0}

is pre-compact in H.

o (Rigidity Argument): If a forward global evolution & has the property that K,
pre-compact in H, then u = 0.

Kenig-Merle 2006, Bahouri-Gérard decomposition 1998; Merle-Vega.



Bahouri-Gérard: symmetries vs. dispersion

Let {up}>_, free Klein-Gordon solutions in R® s.t.

sup [lUnllew < o0
n

3 free solutions v/ bounded in H, and (t,, x,) € R x R3 s.t.

Un(t,x) = D VI(t+ thx + %) + wil(1,X)

1<j<d
satisfies ¥ j < J, w!(~t,, -x.) — 0in H as n — oo, and
o limu (It =t + X = xK) = co ¥V j £ k
o dispersive errors wX vanish asymptotically:
Jm"Tfogp ||W#|'(Lf°LfﬁLfo)(RxR3) =0 V2<p<6
e orthogonality of the energy:

2 112 J12
NGl = D" V1B, + w312, + o(1)

1<j<d



Profiles and Strichartz sea

n

We can extract further profiles from the Strichartz sea if w; does not vanish as
n — oo in a suitable sense. In the radial case this means lim,_,, ”Wr‘:”Lt”Lf(Ra) > 0.



Lorentz transformations

t cosha sinha 0 O]t
X;| _|sinh@ cosha 0O O0]|x
x5 0 0 1 0ff{x
X3 0 0 0 1][x3

Minkowski spacetir*e

Figure: Causal structure of space-time



Further remarks on Bahouri-Gérard

¢ Noncompact symmetry groups: space-time translations and Lorentz
transforms.

Compact symmetry groups: Rotations
Lorentz transforms do not appear in the profiles: Energy bound
compactifies them.

o Dispersive error w? is not an energy error!

¢ In the radial case only need time translations



The focusing NLKG equation

The focusing NLKG
Ou+u=2adyu—-Au+u=0u

has indefinite conserved energy

. 1. 1 1 1
E(u, i) = f (§|u|2 + SV + S - Z'“'4)dx

R

Local wellposendness for H' x L2(R®) data

Small data: global existence and scattering

Finite time blowup u(t) = V2(T —t)"'(1 + o(1)) as t — T-
Cutoff to a cone using finite propagation speed to obtain finite energy
solution.

o stationary solutions —Ag + ¢ = ¢®, ground state Q(r) > 0



Payne-Sattinger theory; saddle structure of energy near Q

Criterion: finite-time blowup/global existence?
Yes, provided the energy is less than the ground state energy Payne-Sattinger 1975.

J=lws Q) =1,

[ (Lvor + Lo = Lo
J(‘ﬁ)—Ls(ZIWI + 5lel® = Zlel*) ox
K(g) = f (IV6 + lp — lel*) ax

R3

Uniqueness of Q is the foundation!



Payne-Sattinger theory

Jo () = J(e'p), ¢ # 0 fixed.

Figure: Payne-Sattinger well

Normalize so that A. = 0. Then d,j,(4)|,_, = K(¢) = 0.

“Trap” the solution in the well on the left-hand side: need
E < inf{j,(0) | K(¢) = 0,¢ # 0} = J(Q) (lowest mountain pass). Expect global
existence in that case.



Above the ground state energy

Theorem (Nakanishi-S. 2010)

Let E(up, uy) < E(Q,0) + &2, (Up, U1) € Haa. In't > 0 for NLKG:
1. finite time blowup
2. global existence and scattering to 0

3. global existence and scattering to Q: u(t) = Q + v(t) + oy (1) ast — oo,
and u(t) = v(t) + 0,2(1) ast - c0,Ov+v =0, (v,v) € H.
All'9 combinations of this trichotomy allowed as t — +co.

e Applies to dim = 3, |uP'u, 7/3 < p < 5, ordim =1, p > 5.

o Third alternative forms the center stable manifold associated with (xQ, 0).
Linearized operator L, = —A + 1 — 3Q? has spectrum {-k2} U [1, )
on L2 (R®). Gap [0, 1) difficult to verify, Costin-Huang-S., 2011.

e 3 1-dim. stable, unstable manifolds at (+Q, 0). Stable manifolds:
Duyckaerts-Merle, Duyckaerts-Holmer-Roudenko 2009



The invariant manifolds

Figure: Stable, unstable, center-stable manifolds



Hyperbolic dynamics near +Q

Linearized operator L, = —-A + 1 — 3Q?

* (L QIQ) =-2lQll; <0
e L,p = —k2p unique negative eigenvalue, no kernel over radial functions

o Gap property: L. has no eigenvalues in (0, 1], no threshold resonance
(delicate!) Use Keniji Yajima’s LP-boundedness for wave operators.

Plug u = Q + v into cubic NLKG:

V4 Liv=N(Q,v)=3Q/%+V*

Rewrite as a Hamiltonian system:

o)=L 0+ e

Then spec(A) = {k,—k} U i[1, c0) U i(—oc0, —1] with £k simple evals. Formally:
Xs = PiL?, X, = P_{L?, X; is the rest.



Spectrum of matrix Hamiltonian

€8S spec

—k k

€8S spec

Figure: Spectrum of nonselfadjoint linear operator in phase space



Numerical 2-dim section through dS (with R. Donninger)

- - 2 0 2

Figure: (Q + Ae~", Be"z)

e soliton at (A, B) = (0,0), (A, B) vary in [-9,2] x [-9, 9]
* RED: global existence, WHITE: finite time blowup, GREEN: £S, , BLUE:
PS_

o Our results apply to a neighborhood of (Q, 0), boundary of the red region
looks smooth (caution!)



Variational structure above E(Q, 0)

E:=E(u,u )>J(Q)+€2=:]

| ;; ,5 E<J

L KR<0

(-Q.0) E>J
e Solution can pass through the balls. Energy is no obstruction anymore as in
the Payne-Sattinger case.

o Key to description of the dynamics: One-pass (no return) theorem. The
trajectory can make only one pass through the balls.

« Point: Stabilization of the sign of K(u(t)).



One-pass theorem (non-perturbative)

Figure: Possible returning trajectories

Such trajectories are excluded by means of an indirect argument using a variant
of the virial argument that was essential to the rigidity step of concentration
compactness.



One-pass theorem

Crucial no-return property: Trajectory does not return to balls around
(£Q, 0). Suppose it did; Use virial identity

. 1
Awi| Auy = —f (IVu? - %lul“) dx +error, A= E(XV + Vx)
RS

where w = w(t, x) is a space-time cutoff that lives on a rhombus, and the “error”
is controlled by the external energy.

Finite propagation speed = error controlled by free energy outside large balls at
times Ty, T>.

Integrating between T, T, gives contradiction; the bulk of the integral of Kx(u(t))
here comes from exponential ejection mechanism near (+Q, 0).

Non-perturbative argument.



Figure: Space-time cutoff for the virial identity



Open problem

Complete description of possible long-term dynamics: Given focusing NLKG3 in
R3 with radial energy data, show that the solution either

e blows up in finite time

e exists globally, scatters to one of the stationary solutions —Ag + ¢ = ¢°
(including 0)

Moreover, describe dynamics, center-stable manifolds associated with ¢.

Evidence: With dissipation given by —ad;u term, result holds (Burg-Raugel-S.).

Critical equation: oOu = u® in R®, Duyckaerts-Kenig-Merle proved analogous resuilt
. . 1
with rescaled ground-state profiles VAW(Ax), W(x) = (1 + |x[?/3)"=.

Obstruction: Exterior energy estimates in DKM scheme fail in the KG case due to
speed of propagation < 1.



Center-stable manifold, u® critical equation
Nakanishi-S theorem applies to nonradial NLKG, NLS, different subcritical
powers and dimensions. Critical equations exhibit similar, yet qualitatively
essentially different phenomena due to scaling symmetry.

U—Au=uf2u, u(t,x):R" SR, 2"=_—,

Static Aubin, Talenti solutions

X ]E
W/l = T)W, W(X) =11 —+ m] R

T, is H' preserving dilation
Twp = A7 p(Ax)

Positive radial solutions —AW — |W]* 2W = 0. Functionals:

1 1 . .
Ag) = [ [31768 - goief |ox. Ko = [ 196 - 14 1o
RA RrRd



Critical wave equation

Radial H' x L2, E(g) < J(W) + &2, outside soliton tube
S={xW,|1>0}+ O(¢g)

There exists four open disjoint sets which lead to all combinations of FTB/GE
and scatteringto 0 as t — +I.

o Krieger-Nakanishi-S. 2013: complete description of all solutions with energy
E(@) < J(W) + £. Type-| conjecture!

e center-stable manifold exists in H' x L2, contains all W,, solutions with
A — 0, 0o (but Krieger-S. 05 showed that in a stronger non-invariant topology
exists codim-1 manifold with global solutions, A(t) — A. € (0, »)).

¢ Inside the soliton tube there exist blowup solutions, as found by
Krieger-S.-Tataru 06. Then Duyckaerts-Kenig-Merle 09 showed that all type I
blowup are of the KST form, as long as energy below 2J(Q). So trapping by
the soliton tube cannot mean scattering to {W,} as it did in the subcritical
case.



Equivariant wave maps
u:R}}? — 2 satisfies WM equation

ou L T,8% & ou = u(|6;uf’ - |Vul?)
as well as equivariance assumption uo R = R o ufor all R € SO(2)

Y e

Figure: Equivariance and Riemann sphere



Equivariant wave maps

u(t,r,¢) = (¢(t,r), ¢), spherical coordinates, ¥ angle from north pole satisfies

sin(2y)
o2 0, (¥.y1)(0) = (Yo, ¥1)

1
'//tr - wrr - er +

¢ Conserved energy

00 P2
E(w,l//[):fo («//,2+w$+smr2(¢’))rdr

e Y(t, o) = nm,n € Z, homotopy class = degree = n

e stationary solutions = harmonic maps = 0, +Q(r/1), where
Q(r) = 2arctan r. This is the identity S — S? with stereographic projection
onto R? as domain (conformal map!).



Large data results for equivariant wave maps

Theorem (Céte, Kenig, Lawrie, S. 2012)
Let (0, ¥1) be smooth data.

1. Let E(yo,¥1) < 2E(Q,0), degree 0. Then the solution exists globally, and
scatters (energy on compact sets vanishes as t — o). For any § > 0 there
exist data of energy < 2E(Q, 0) + & which blow up in finite time.

2. Let E(wo,¥1) < 3E(Q,0), degree 1. If the solution y(t) blows up at time
t = 1, then there exists a continuous function, A : [0,1) — (0, co) with
At) = o(1 —t),amap & = (g0, 1) € H with E(@) = E(¥) - E(Q,0), and a
decomposition
(1) = @+ (Q(-/a(1).0) + &(t) (%)

st ét)eH, &t)—>0inH ast— 1.



Large data results for equivariant wave maps

For degree 1 have an analogous classification to (%) for global solutions.

Cote 2013: bubble-tree classification for all energies along a sequence of
times.

Open problems: (A) all times, rather than a sequence (B) construction of
bubble trees.

Duyckaerts, Kenig, Merle 12 established classification results for ou = udin
H' x L2(R®) with W(x) = (1 + [x[2/3)"2 instead of Q.

Construction of (x) by Krieger-S.-Tataru 06 in finite time, Donninger-Krieger 13 in
infinite time (for critical NLW)

Crucial role is played by Michael Struwe’s bubbling off theorem

(equivariant): if blowup happens, then there exists a sequence of times
approaching blowup time, such that a rescaled version of the wave map
approaches locally in energy space a harmonic map of positive energy.



Struwe’s cuspidal energy concentration

L)

Rescalings converge in Lfr-sense to a stationary wave map of positive energy,
i.e., a harmonic map.



Asymptotic exterior energy

ou =0, u(0) = f e H'(RY), u;(0) = g € L2(RY) radial

Duyckaerts-Kenig-Merle 2011: for all t > 0 or t < 0 have E.(U(t)) > cE(f, g)
provided dimension odd. ¢ > 0, ¢ = }

Heuristics: incoming vs. outgoing data.



Exterior energy: even dimensions

Cote-Kenig-S. 2012: This fails in even dimensions.
d=2,6,10,... holds for data (0, g) but fails in general for (f,0).
d=4,8,12,... holds for data (f, 0) but fails in general for (0, g).

Fourier representation, Bessel transform, dimension d reflected in the phase of
the Bessel asymptotics, computation of the asymptotic exterior energy as

t — +oo.

For our 3E(Q, 0) theorem we need d = 4 result; rather than d = 2 due to
repulsive -potential coming from S'”(Z"’).

(f,0) result suffices by Christodoulou, Tahvildar-Zadeh, Shatah results from mid
1990s. Showed that at blowup t = T = 1 have vanishing kinetic energy

't'”h_ff g/(t, r)P rdrdt = 0

No result for Yang-Mills since it corresponds to d = 6



Exterior energy: odd dimensions

Duyckaerts-Kenig-Merle: in radial R® one has for all R > 0

+ tooo

max lim f ViUl dr > cf [(ru)? + (ru)?] dr
IxI>t+R IxI>R
Note: RHS is not standard energy! Orthogonal projection perpendicular to
Newton potential (r~*,0) in H' x L3(R® : r > R).

Kenig-Lawrie-S. 13 noted this projection and extended the exterior energy estimate
to d = 5: project perpendicular to plane (¢r2,7r2)in H' x L3(R : r > R)

Kenig-Lawrie-Liu-S. 14 all odd dimensions, projections off of similar but larger and
more complicated linear subspaces.

Relevance: Exterior wave maps in R® with arbitrary degree of equivariance lead
to all odd dimensions.



Exterior wave maps

Consider equivariant wave maps from R\ B(0, 1) — S® with Dirichlet condition at
R = 1. Supercritical becomes subcritical, easy to obtain global smooth solutions.

Conjecture by Bizon-Chmaj-Maliborski 2011: All smooth solutions scatter to the
unique harmonic map in their degree class.

Results:
e Lawrie-S. 2012: Proved for degree 0 and asymptotic stability for degree 1.
Follows Kenig-Merle concentration compactness approach with rigidity
argument carried out by a virial identity (complicated).

e Kenig-Lawrie-S. 2013: Proved for all degrees in equivariance class 1. Uses
exterior energy estimates instead of virial.

e Kenig-Lawrie-Liu-S. 2014: Proved for all degrees and all equivariance classes.
Requires exterior energy estimates in all odd dimensions.

Soliton resolution conjecture holds in this case.



THANK YOU FOR YOUR ATTENTION!



