\[f(r) = A \cdot r \cdot \exp(-r)/(1+r^2) \]
\[g(r) = B \cdot \sin(6r) \cdot \exp(-r^2) \]

data for C-program are these multiplied by \(r \).

The interesting feature here is that the spikes cross the B-axes again. In other words, for \(A=0 \) one first leaves, and then re-enters the dispersive region again when increasing \(B \). This must be due to the oscillations in the \(g \)-function.