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Abstract

Consider options on a nonnegative underlying random variable with arbitrary distribution. In the

absence of arbitrage, we show that at any maturityT, the large-strike tail of the Black-Scholes implied

volatility skew is bounded by the square root of2|x|/T, wherex is log-moneyness. The smallest coeffi-

cient that can replace the2 depends only on the number of finite moments in the underlying distribution.

We prove themoment formula, which expresses explicitly this model-independent relationship. We

prove also the reciprocal moment formula for the small-strike tail, and we exhibit the symmetry between

the formulas. The moment formula, which evaluates readily in many cases of practical interest, has

applications to skew extrapolation and model calibration.
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1 Introduction

This section outlines briefly the contribution of this paper, deferring to sections 2 and 3 the explicit defini-

tions of some terminology.

Let us write the squared Black-Scholes implied volatilityI2 as a coefficient times|x|/T, the ratio of

absolute-log-moneyness to maturity. In Section 3, we show that asx→ ∞, the limsup of this coefficient is a

numberβR∈ [0,2], which can be termed the right-hand or OTM-call or large-striketail slope. Similarly, we

show that asx→−∞, the limsup is a numberβL ∈ [0,2], which can be termed the left-hand or OTM-put or

small-striketail slope.

Then we establish the explicit one-to-one correspondence

large-strike tail slope ←→ number of finite moments of the underlyingST .

In particular,βR = 2 if and only if the underlying hasno finite moments of order greater than1; at the

opposite extreme,βR = 0 if and only if the underlying has finite moments ofall positive orders. In general,

we prove themoment formula for implied volatilityat large strikes:

(1.1)
1

2βR
+

βR

8
− 1

2
= sup{p : ES1+p

T < ∞}.

In the opposite tail, we establish the reciprocal relationship:

small-strike tail slope ←→ number of finite moments of1/ST ,

by proving themoment formula for implied volatilityat small strikes:

(1.2)
1

2βL
+

βL

8
− 1

2
= sup{q : ES−q

T < ∞}.

Note that the right-hand sides of (1.1) and (1.2) are real numbers or infinity; the phrase “number of finite

moments” does not necessarily refer to an integer.

Section 4 exhibits the symmetry between the large-strike and small-strike moment formulas.

Section 5 presents some applications. For extrapolating the volatility skew with splines, the moment

formula raises warnings against spline functions that grow faster than|x|1/2, and against those that grow

slowerthan|x|1/2. For calibrating models to the volatility skew, note that each moment formula’s left-hand

side is, in principle, observable from options data; while the right-hand side is, in a wide class of models,

easily calculated from the parameters. By building this direct link between data and parameters, the moment

formula can facilitate the calibration procedure.
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The moment formula assumes only the existence of a martingale measure. The underlying, a nonnega-

tive random variable, is required to have positive and finite expectation; but this is no restriction because the

concepts of “moneyness” and “implied volatility” each already entail this condition. Beyond this, we make

no assumptionson the distribution ofST .

1.1 Related work

Hodges (1996) and Gatheral (1999) provide arbitrage bounds on the slope∂ I/∂x of the implied volatility

skew, bounds derived from the strike-monotonicity of call and put prices. These∂ I/∂x bounds depend on

I , so bounds onI itself would follow by solving ODEs; and Lipton (2001) mentions that the resultingI

bounds areO(|x|1/2) for large|x|. Our approach and our results differ from theirs in significant ways. First,

our direct concise proof of theO(|x|1/2) bound avoids ODEs and indeed avoids differentiability assump-

tions altogether; second, we give thebest possible constantin that bound; third, and most importantly, our

moment formula shows explicitly how the best constant depends only on thenumber of finite momentsin

the underlying distribution; and fourth, our model-calibration application and part of our skew-extrapolation

application will depend on the moment formula, not merely on theO(|x|1/2) bound.

We take note of two other papers, which have used steepest-descent/saddle-point methods (instead of

moment analysis) to calculate implied volatility asymptotics far-from-the-money. Each assumes a specific

diffusion model for volatility: Avellaneda-Zhu (1998) use a non-mean-reverting model for instantaneous

volatility, and Gatheral-Matytsin-Youssfi (2000) use the Heston square-root model. In contrast, our formula

is distinguished by its fullmodel-independentgenerality and its explication of the fundamental correspon-

dence betweenmomentsand implied volatility tails.

2 Call and Put Prices

Let Vt be the time-t price of a claim paying at some fixed timeT > 0 the random variableVT .

Let Bt be the time-t price of a discount bond maturing atT.

Assuming that the prices (ofB, V, and any other assets under consideration) admit no arbitrage, there

must exist a probability measureP, called the (T-)forward measure, under which allBt-discounted asset

prices are martingales. For definitions of “admit no arbitrage” that make this statement true, see for example

Delbaen and Schachermayer (1994).

LetE denote expectation with respect toP. Then the price of the claim satisfies

V0 = B0EVT .
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Under deterministic interest rates, the forward measure is identical to the usual risk-neutral measure; but

under stochastic interest rates, the forward measure has the advantage that the discounting takes place outside

the expectation.

In the cases of interest here,VT is the payoff of a call or put on a nonnegative underlying randomness

ST . WriteC andP for the time-0 call and put prices as a function of strike:

C(K) = B0E(ST −K)+

P(K) = B0E(K−ST)+

for K > 0.

2.1 Upper Bounds

The standard conventions about∞ are in force, so each of the following bounds holds automatically if the

expectation on the right-hand side is infinite. Also, forq > 0, the random variableS−q
T is understood to take

the value∞ in the event thatST = 0.

The following theorem is nearly identical to results obtained in Broadie-Cvitanic-Soner (1998). The

differences, though minor, make it appropriate to present briefly a full proof. Then, in the subsequent

remarks, we investigate its implications for the extreme-strike behavior of option prices.

Theorem 2.1. For eachp > 0 we have for allK > 0 the call price bound

(2.1) C(K) 6 B0ESp+1
T

p+1

(
p

p+1

)p 1
Kp .

For eachq > 0 we have for allK > 0 the put price bound

(2.2) P(K) 6 B0ES−q
T

1+q

(
q

1+q

)q

K1+q.

Proof. For alls> 0 we have

s−K 6 sp+1

p+1

(
p

p+1

)p 1
Kp ,

because the left-hand side and right-hand side, as functions ofs, have equal values and first derivatives at

s= (p+1)K/p, but the right-hand side has positive second derivative. Moreover, since the right-hand side

is nonnegative, the left-hand side can be improved to(s−K)+. Now substituteST for s, take expectations,

and multiply byB0 to obtain (2.1).

Similarly, a convexity argument shows that for alls> 0,

(K−s)+ 6 s−q

1+q

(
q

1+q

)q

K1+q

which implies (2.2).
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Remark2.1. Although both (2.1) and (2.2) are true for allK, the bound (2.1) is useful mainly forK large,

while (2.2) is useful mainly forK small.

Remark2.2. By put-call parity, the call price bound (2.1) leads to a large-K put price bound, and the put

price bound (2.2) leads to a small-K call price bound.

Remark2.3. Takingp↓ 0 in (2.1) recovers the familiar boundC(K) 6 B0EST . Takingq↓ 0 in (2.2) recovers

the familiar boundP(K) 6 B0K.

Remark2.4. In a wide class of specifications for the underlying dynamics,logST has a distribution whose

characteristic functionf is explicitly known. In such cases, one calculatesESp+1
T simply by extendingf

analytically to a strip inC containing−i(p+ 1), and evaluatingf there; if no such extension exists, then

ESp+1
T = ∞.

Remark2.5. Extreme-strike option price bounds are useful in controlling the error, atall strikes, in discrete

Fourier transform methods for option pricing. See Lee (2001).

Corollary 2.2. If ESp+1
T < ∞, thenC(K) = O(K−p) asK → ∞.

If ES−q
T < ∞, thenP(K) = O(K1+q) asK → 0.

Proof. This follows immediately.

3 Implied Volatility and the Moment Formula

Define

F0 = EST ,

which one interprets as today’sT-forward price of the payoffST . For example, ifS is a stock paying no

dividends, thenF0 = S0/B0.

Since we intend to study how implied volatility relates to moneyness, we assume0 < F0 < ∞. This

assumption is innocuous, because the very concepts of “implied volatility” and “moneyness” would both

degenerate, if the forward price were to be zero or infinite. Moreover, ifS is the price of a traded asset, then

no-arbitrage dictates thatEST < ∞ must hold.

Fixing F0, the (log-)moneynessx is related to strike by the definition

(3.1) x≡ log(K/F0),

so letK(x) := F0ex be the strike at moneynessx. Note that we have chosen the sign convention such thatK

increases asx increases.
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The Black-Scholesimplied volatilityat moneynessx is defined as theI(x) that uniquely solves

(3.2) C(K(x)) = CBS(x, I(x)),

where

CBS(x,σ) := B0(F0Φ(d+)−K(x)Φ(d−)), d± :=
−x

σ
√

T
± σ

√
T

2
,

andΦ is the normal cumulative distribution function.

Equivalently, it is theI(x) that uniquely solves

(3.3) P(K(x)) = PBS(x, I(x)),

where

PBS(x,σ) := B0(K(x)Φ(−d−)−F0Φ(−d+)).

So, using bond and forward prices, we have defined implied volatility in a general way which allows

stochastic interest rates and dividends. This definition ofI(x) could also be described as a “Black (1976)”

implied volatility. In the special case of constant interest rates and dividends,I(x) coincides with the usual

Black-Scholes (1973) implied volatility.

The terminology “[implied] volatilityskew” will refer to the functionI .

The following pair of identities will be useful. For anyβ > 0 andx > 0,

CBS(x,
√

β |x|/T) = B0F0Φ(−
√

f−(β )|x|)−B0F0exΦ(−
√

f+(β )|x|),

and for anyβ > 0 andx < 0,

PBS(x,
√

β |x|/T) = B0F0exΦ(−
√

f−(β )|x|)−B0F0Φ(−
√

f+(β )|x|),

where

f±(β ) :=
1
β

+
β
4
±1.

3.1 The Large-Strike Tail

Consider the right-hand (or large-K or positive-x or OTM-call) tail of the square of implied volatility. First

we show that this tail slope is no larger than2.

Lemma 3.1. There existsx∗ > 0 such that for allx > x∗,

I(x) <
√

2|x|/T.
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Proof. By the strict monotonicity ofCBS in its second argument, we need only establish that

(3.4) CBS(x, I(x)) < CBS(x,
√

2|x|/T),

wheneverx > x∗. On the left-hand side of (3.4), we have

lim
x→∞

C(K(x)) = lim
K→∞

B0E(ST −K)+ = 0

by dominated convergence, becauseEST < ∞. On the right-hand side,

lim
x→∞

CBS(x,
√

2|x|/T) = B0F0[Φ(0)− lim
x→∞

exΦ(−
√

2|x|)] = B0F0/2

by L’Hôpital’s rule. This proves (3.4).

Now we prove the explicit formula relating the right-hand tail slope to how many finite moments the

underlying possesses.

Theorem 3.2 (The Moment Formula, part 1). Let

p̃ := sup{p : ES1+p
T < ∞} βR := limsup

x→∞

I2(x)
|x|/T

.

ThenβR∈ [0,2] and

p̃ =
1

2βR
+

βR

8
− 1

2
,

where1/0 := ∞. Equivalently,

βR = 2−4(
√

p̃2 + p̃− p̃),

where the right-hand expression is to be read as zero, in the casep̃ = ∞.

Proof. Lemma 3.1 impliesβR∈ [0,2]. We need to show that̃p = f−(βR)/2.

For anyβ ∈ (0,2), L’H ôpital’s rule implies that

lim
x→∞

e−cx

CBS(x,
√

β |x|/T)
=





0 for c > f−(β )/2

∞ for c 6 f−(β )/2,

which we will use in both stages of the proof.

To prove p̃ 6 f−(βR)/2, note thatf− : (0,2) onto−−→ (0,∞) is strictly decreasing. So it suffices to show

that for anyβ ∈ (0,2) with f−(β )/2 < p̃, we haveβR 6 β . Choosep∈ ( f−(β )/2, p̃). By Corollary 2.2, as

x→ ∞,
CBS(x, I(x))

CBS(x,
√

β |x|/T)
=

O(e−px)
CBS(x,

√
β |x|/T)

−→ 0.
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The result follows from the monotonicity ofCBS in its second argument.

To provep̃ > f−(βR)/2, it suffices to show that for anyp∈ (0, f−(βR)/2), we haveES1+p
T < ∞. Choose

β such thatQ := f−(β )/2∈ (p, f−(βR)/2). Forx sufficiently large,

C(K(x))
e−Qx 6 CBS(x,

√
β |x|/T)

e−Qx −→ 0 asx→ ∞,

so there existsK∗ such that for allK > K∗, we haveC(K) < K−Q. Then, as claimed,

ES1+p
T = E

∫ ∞

0
(p+1)pKp−1(ST −K)+dK

6 p(p+1)B−1
0

[∫ K∗

0
Kp−1C(K)dK+

∫ ∞

K∗
Kp−Q−1dK

]
< ∞,

where the first step uses a mixture of calls to span the twice-differentiable payoffS1+p; see the appendix of

Carr-Madan (1998).

3.2 The Small-Strike Tail

Consider the left-hand (or small-K or negative-x or OTM-put) tail of the square of implied volatility. First

we show that this tail slope is no larger than2.

Lemma 3.3. For anyβ > 2 there existsx∗ such that for allx < x∗,

I(x) <
√

β |x|/T.

For β = 2, the same conclusion holds,if and only if ST satisfiesP(ST = 0) < 1/2.

Proof. For caseβ > 2 and the “if” part of caseβ = 2: There existsx∗ such that for allx < x∗,

P(ST < F0ex) < Φ(−
√

f−(β )|x|)−e−xΦ(−
√

f+(β )|x|)

because asx→−∞, the left-hand side approachesP(ST = 0), while the right-hand side approaches either1

(in caseβ > 2) or 1/2 (in caseβ = 2). So

PBS(x, I(x)) = B0E(K(x)−ST)+ 6 B0K(x)P(ST < F0ex) < PBS(x,
√

β |x|/T)

for all x < x∗. The result follows from strict monotonicity ofPBS in its second argument.

For the “only if” part of caseβ = 2: By monotonicity ofPBS, we have

B0K(x)/2 > PBS(x,
√

2|x|/T) > B0E(K(x)−ST)+ > B0K(x)P(ST = 0)

for arbitraryx > x∗. Divide byB0K(x) to obtain the result.
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Now we prove the explicit formula relating the left-hand tail slope to how many finite moments the

underlying’s reciprocal possesses.

Theorem 3.4 (The Moment Formula, part 2). Let

q̃ := sup{q : ES−q
T < ∞} βL := limsup

x→−∞

I2(x)
|x|/T

.

ThenβL ∈ [0,2] and

q̃ =
1

2βL
+

βL

8
− 1

2
,

where1/0 := ∞. Equivalently,

βL = 2−4(
√

q̃2 + q̃− q̃),

where the right-hand expression is to be read as zero, in the caseq̃ = ∞.

Proof. Lemma 3.3 impliesβL ∈ [0,2]. We need to show that̃q = f−(βL)/2.

For anyβ ∈ (0,2), L’H ôpital’s rule implies that

lim
x→−∞

e(1+c)x

PBS(x,
√

β |x|/T)
=





0 for c > f−(βL)/2

∞ for c 6 f−(βL)/2,

which we will use in both stages of the proof.

To proveq̃ 6 f−(βL)/2, note thatf− : (0,2) onto−−→ (0,∞) is strictly decreasing. So it suffices to show

that for anyβ ∈ (0,2) with f−(β )/2 < q̃, we haveβL 6 β . Chooseq∈ ( f−(β )/2, q̃). By Corollary 2.2, as

x→−∞,
PBS(x, I(x))

PBS(x,
√

β |x|/T)
=

O(e(1+q)x)
PBS(x,

√
β |x|/T)

−→ 0.

The result follows from the monotonicity ofPBS in its second argument.

To proveq̃ > f−(βL)/2, it suffices to show that for anyq∈ (0, f−(βL)/2), we haveES−q
T < ∞. Choose

β such thatQ := f−(β )/2∈ (q, f−(βL)/2). For |x| sufficiently large,

P(K(x))
e(1+Q)x 6 PBS(x,

√
β |x|/T)

e(1+Q)x −→ 0 asx→−∞,

so there existsK∗ such that for allK < K∗, we haveP(K) < K1+Q. Then, as claimed,

ES−q
T = E

∫ ∞

0
−q(−q−1)K−q−2(K−ST)+dK

6 q(q+1)B−1
0

[∫ K∗

0
KQ−q−1dK+

∫ ∞

K∗
K−q−2P(K)dK

]
< ∞,

where the first step uses a mixture of puts to span the twice-differentiable payoffS−q; see the appendix of

Carr-Madan (1998).
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Remark3.1. The proofs of Theorems 3.2 and 3.4 make rigorous the following idea. By the Black-Scholes

formula, the tail behavior of the implied volatility skew carries the same information as the tail behavior of

option prices. In turn, the tail behavior of option prices carries the same information as the number of finite

moments – intuitively, option prices are bounded by moments, according to Theorem 2.1; on the other hand,

moments are bounded by option prices, because power payoffs are mixtures, across a continuum of strikes,

of call or put payoffs.

Remark3.2. In a wide class of specifications for the state dynamics, as discussed in Remark 2.4, the maximal

moment exponents̃p andq̃ are readily computable functions of the model’s parameters. Examples include

Lévy processes and affine jump-diffusion processes popular in financial modelling.

4 The Symmetry of the Small-Strike and Large-Strike Formulas

Section 3.2 gave a stand-alone proof of the small-strike moment formula. An alternative approach is to

deduce the small-strike formula from the large-strike formula, proved in Section 3.1, together with a sym-

metry argument, which will be proved in this section. The symmetry argument explains, moreover, why the

definition ofq̃ is “missing a factor ofST” compared top̃. We give this alternative proof in three steps.

First we exhibit the symmetry.

Theorem 4.1. AssumeP(ST = 0) = 0. Define the probability measureS by the likelihood ratiodS/dP =

ST/F0. LetES denote expectation with respect toS. Then for each moneynessx,

ES(S−1
T −K−1)+ = ES(S−1

T )Φ
(

log(ES(S−1
T )/K−1)

I
√

T
+

I
√

T
2

)
−K−1Φ

(
log(ES(S−1

T )/K−1)
I
√

T
− I

√
T

2

)
,

whereK := K(x) andI := I(x) are defined as in(3.1)–(3.3).

Proof. By the definition (3.3) ofI , and then the definition ofS, we have

B0

[
KΦ

(
log(K/F0)

I
√

T
+

I
√

T
2

)
−F0Φ

(
log(K/F0)

I
√

T
− I

√
T

2

)]

= B0E(K−ST)+ = B0KEST(S−1
T −K−1)+ = B0F0KES(S−1

T −K−1)+.

Dividing both sides byB0F0K shows that

ES(S−1
T −K−1)+ =

1
F0

Φ
(

log(F−1
0 /K−1)
I
√

T
+

I
√

T
2

)
− 1

K
Φ

(
log(F−1

0 /K−1)
I
√

T
− I

√
T

2

)
.

SinceES(S−1
T ) = F−1

0 , this completes the proof.
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Remark4.1. This proves that a Dollar-denominatedK-strike option on the Euro has the same implied volatil-

ity as a Euro-denominated1/K-strike option on the Dollar.

Remark4.2. Depending on the context,S is sometimes called “foreign” risk-neutral measure or “share”

measure; it is the appropriate pricing measure if one takes as numeraire a claim onST . See El Karoui,

Geman, Rochet (1995).

Now we restate Theorem 3.2 in a way which makes explicit the role of the probability measure.

Theorem 4.2. Let T > 0. LetU be a nonnegative random variable with finite positive expectationEQU

with respect to some probability measureQ. For eachz∈R, let k(z) := (EQU)ez, and assume there exists a

uniqueIQ(z) satisfying

EQ(U−k(z))+ = (EQU)Φ
( −z

IQ(z)
√

T
+

IQ(z)
√

T
2

)
−k(z)Φ

( −z

IQ(z)
√

T
− IQ(z)

√
T

2

)
.

Then the moment formula holds for largez. Specifically, withp̃Q := sup{p : EQU1+p < ∞},

limsup
z→∞

I2
Q(z)
|z|/T

= 2−4
(√

p̃2
Q+ p̃Q− p̃Q

)
,

where the right-hand expression is to be read as zero, in the casep̃Q = ∞.

Proof. This just restates what was already established by the proof of Theorem 3.2.

Finally, we combine these two results to produce the alternative proof of Theorem 3.4.

Theorem 4.3. The small-strike moment formula holds. Specifically, withq̃ := sup{q : ES−q
T < ∞},

βL := limsup
x→−∞

I2(x)
|x|/T

= 2−4(
√

q̃2 + q̃− q̃),

where the right-hand expression is to be read as zero, in the caseq̃ = ∞.

Proof. If P(ST = 0) = 0, then letQ := S andU := S−1
T . We havep̃Q = q̃, because for eachp,

EQU1+p = ESS−1−p
T =

1
F0
ES−p

T .

By Theorem 4.1, takingIQ(z) := I(−z) satisfies the hypotheses of Theorem 4.2. Hence, as claimed,

limsup
x→−∞

I2(x)
|x|/T

= limsup
z→∞

I2
Q(z)
|z|/T

= 2−4
(√

p̃2
Q+ p̃Q− p̃Q

)
= 2−4(

√
q̃2 + q̃− q̃).

If P(ST = 0) > 0, thenq̃ = 0, so we need to proveβL = 2. Lemma 3.1 impliesβL 6 2. To show thatβL > 2,

note that for anyβ < 2, there existsx∗ such that for allx < x∗,

PBS(x, I(x)) = B0E(K(x)−ST)+ > B0K(x)P(ST = 0)

> B0K(x)[Φ(−
√

f−(β )|x|)−e−xΦ(−
√

f+(β )|x|)] = PBS(x,
√

β |x|/T),

because the second line approaches0 asx→−∞. By monotonicity ofPBS, we are done.
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Remark4.3. Therefore the “factor ofST missing fromq̃” compared top̃ can be explained as follows: It was

consumed in the measure change from “domestic” measureP to “foreign” measureS.

5 Applications

Applications of the moment formula include skew extrapolation and model calibration.

5.1 Skew extrapolation

By theO(|x|1/2) bound, the linear or convex skews sometimes observed in near-the-money implied volatility

cannot persist into the away-from-the-money tails. Likewise, any approximation of near-the-money implied

volatility as linear or quadratic inx (such as in Fouque-Papanicolaou-Sircar (2000)) may be accurate in its

intended domain, but must fail forK sufficiently large or small. So, when using splines to parametrically

extrapolate volatility skews beyond the actively traded strikes, we donot recommend functional forms which

allow either tail to growfasterthan|x|1/2. Moreover, unless the underlying has finite moments of all orders,

we do not recommend functional forms which allow either tail to growslower than |x|1/2, because the

moment formula rejects such functions.

5.2 Model calibration

The moment formula facilitates the calibration of model parameters to observed volatility skews. By ob-

serving the tail slopes of the skew, and applying the moment formula, one obtainsp̃ andq̃. Combined with

analysis of the characteristic function, as discussed in Remarks 2.4 and 3.2, this produces two identifying

restrictions on the model’s parameters. Indeed, in models such as the examples below, thep̃ andq̃ values

determinetwo of the parameters. We do not propose that the moment formula alone should replace a full

optimization algorithm, but it can facilitate the process by providing justifiable initial “guesses” for some or

all of the parameters.

Example5.1. In the double-exponential jump-diffusion model of Kou (2002), the asset price follows a

geometric Brownian motion between jumps, which occur at event times of a Poisson process. The sizes

of the up-jumps and down-jumps in returns are exponentially distributed with the parametersη1 andη2

respectively, and hence the means1/η1 and1/η2 respectively. Using the explicitly known characteristic

function, one finds that

(5.1) q̃ = η2 p̃ = η1−1.
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Soη1 andη2 can be inferred from̃p andq̃, and hence (via the moment formula) from the tail slopesβL and

βR of the volatility skew, which are in principle observable.

The intuition of (5.1) is as follows: the larger the expected size of an up-jump, the fatter theST distribu-

tion’s right-hand tail, and the fewer the finite moments of positive order; similar intuition relates down-jumps

and moments of negative order. Note that the jumpfrequencyparameters have no effect on the tail slopes,

by (5.1) and the moment formula.

Example5.2. In the normal inverse Gaussian model of Barndorff-Nielsen (1998), returns have the NIG

distribution, which can be described as follows. Consider two dimensional Brownian motion starting at

(a,0), with drift vector(b,c) wherec > 0. The NIG(a,b,c,d) law is the distribution of the first coordinate

of the Brownian motion at the stopping time when the second coordinate hits a barrierd > 0. Using the

explicitly known characteristic function, one finds that

(5.2) q̃ =
√

b2 +c2 +b p̃ =
√

b2 +c2−b−1.

Sob andc can be inferred from̃p andq̃, and hence (via the moment formula) from the tail slopesβL andβR.

The intuition of (5.2) is as follows: increasing thec brings earlier stopping, hence thinner tails and more

moments (of both positive and negative order) in the distribution ofST ; increasing the driftb fattens the

right-hand tail and thins the left-hand tail, decreasing the number of positive-order moments and increasing

the number of negative-order moments. Note that the parametersa andd have no effect on the tail slopes,

by (5.2) and the moment formula.

6 Conclusions

Lemmas 3.1 and 3.3 give anO(|x|1/2) bound on the tails of the volatility skew. Then themoment formula,

established in Theorems 3.2 and 3.4, makes precise how small the constant in that bound can be chosen

for eachT: in one tail, it depends only onsup{q : ES−q
T < ∞}; in the other, it depends only onsup{p :

ES1+p
T < ∞}. This fundamental linkage between moments and tail slopes is model-independent: it assumes

only that a martingale measure exists, and that0 < EST < ∞, a condition already implicit in the concepts of

moneyness and implied volatility. Then Theorems 4.1-4.3 show that a “domestic/foreign” symmetry relates

the large-strike and the small-strike formulas.

The moment formula has implications for skew extrapolation: it rejects functions that grow faster than

|x|1/2, and unlessST has finite moments of all orders, it rejects those that grow slower than|x|1/2. The

moment formula also has application to model calibration: given a tractable characteristic function and

13



sufficient options data, it relates explicitly the observable tail slopes to known functions of the model’s

parameters, yielding two identifying restrictions on those parameters; moreover, in models such as Examples

5.1 and 5.2, these restrictions indeed determine two of the parameters, with minimal computational effort.
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