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Abstract

We find robust model-free hedges and price bounds for options on the realized variance of
[the returns on] an underlying price process. Assuming only that the underlying process is a
positive continuous semimartingale, we superreplicate and subreplicate variance options and
forward-starting variance options, by dynamically trading the underlying asset, and statically
holding European options. We thereby derive upper and lower bounds on values of variance
options, in terms of Europeans.

1 Introduction

Variance swaps, which pay the realized variance of [the returns on] an underlying price process,

have become a leading tool for managing exposure to volatility risk. As reported in the Financial

Times, [19],

Volatility is becoming an asset class in its own right. A range of structured derivative

products, particularly those known as variance swaps, are now the preferred route for

many hedge fund managers and proprietary traders to make bets on market volatility.

Dealers have met the demand for variance swaps with the help of the model-free log contract

methodology which replicates realized variance, and which became in 2003 the basis for the CBOE’s

calculation of the VIX index. Extending that methodology, we replicate the forward-starting

weighted variance of general functions of continuous semimartingales – but mainly we focus on

variance options.

Variance options – calls and puts on realized variance – allow portfolio managers greater control

over volatility risk exposure, offering them the ability to go long or short variance while limiting the
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downside to the premium paid for the option. However, they present greater hedging difficulties to

the dealer. According to one practitioner [1] in 2007,

The industry is taking a big risk writing such products [options on variance] and at some

point that will be a risk that you can’t assess. This industry has to fulfill investors’

needs, but at the same time I don’t want to write a ticking bomb.

We take a robust model-free approach to this hedging problem. Assuming only that the underlying

process is a positive continuous semimartingale, we superreplicate and subreplicate variance options

and forward-starting variance options, by dynamically trading the underlying asset, and statically

holding European options. We thereby derive upper and lower bounds on the values of variance

options, in terms of Europeans.

1.1 Related Work

In [7], Carr-Geman-Madan-Yor priced options on realized variance, assuming returns follow pure

jump dynamics with independent increments; whereas we work with arbitrary continuous dynam-

ics – without assuming independent increments. They did not address hedging, whereas we de-

velop both subhedges and superhedges. They found pricing formulas in terms of the characteris-

tics/parameters of the underlying process; whereas we derive bounds directly in terms of European-

style option prices – without imposing a model on the underlying dynamics, hence without bearing

the risks of misspecification and miscalibration associated with any specific model.

Indeed, we regard our results as part of a broad program which aims to use European options

– which pay functions of the time-T underlying YT – to extract information model-independently

about risks dependent on the entire path of Y , and to hedge or replicate those risks robustly.

Three prominent examples of such path-dependent risks are: first, the maximum of a price process,

robustly hedged in Hobson [20] by holding a call option to subreplicate, and by gradually selling off

a portfolio of calls to superreplicate (also see Hobson-Pedersen [21] for subreplication of a forward-

starting digital on the maximum); second, barrier-contingent call and put payoffs, robustly hedged

in Brown-Hobson-Rogers [6] using European options together with a transaction in the underlying

at the barrier passage time; and third, the variance swap payoff, robustly replicated in Neuberger

[23], Dupire [16], Carr-Madan [9], Derman et al [14], and Britten-Jones/Neuberger [5], using a

log contract together with dynamic trading of the underlying. This paper includes extension and

unification of the replication strategies for the various flavors of variance swaps (including gamma

swaps, corridor variance, and variance of transformed prices), but our main contribution to this

program is to extend the management of path-dependent risks to include sub/superreplication of

variance options.

In [8], Carr-Lee took a model-free approach to the exact pricing and replication of general

functions of realized variance, but that paper made an independence assumption on the volatility

process (while carefully immunizing its pricing and trading methodology, to first order, against
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violations of the independence assumption). Here we do not assume independence; instead we

work in the very general setting of an arbitrary continuous semimartingale price process. Such

minimal assumptions do not determine uniquely the prices of variance options; but we will show

that they do imply bounds on those prices, enforceable by superreplicating and subreplicating

portfolio strategies.

In [17], Dupire found lower bounds and subhedges for spot-starting variance options. Here we

extend those bounds and subhedges to forward -starting options. Moreover, we find upper bounds

and superhedges for spot-starting and forward-starting options.

1.2 Assumptions

Let Y denote the price of a share of the underlying asset, together with all reinvested dividends. As-

sume that Y is a positive continuous semimartingale on a filtered probability space (Ω,F , {Ft}, P )

satisfying the usual conditions. We interpret P as physical probability measure, so Y is not nec-

essarily a local P -martingale. Except in Section 5, our proofs will have no need of risk-neutral

measure.

Fix some T > 0. If we say that [a claim on] some FT -measurable payoff A is tradeable, we mean

that at times t ≤ T , it may be bought and sold frictionlessly at some finite price, denoted by VtA.

Assume the absence of arbitrage in the class of predictable self-financing semi-static strategies in

the tradeable payoffs. By semi-static we mean strategies which trade at most once in (0, T ).

We assume the existence of the following tradeables: the underlying asset, with payoff YT and

price VtYT = Yt; and a bond, with payoff 1 and price Vt1 = 1. Depending on the context, we may

add other tradeables. We view the tradeables as the “basic assets” from which we will synthesize

contracts on realized variance.

Let Xt := ϕ(Yt) where ϕ is the difference of convex functions, for example ϕ(y) = log y. Let

〈X〉 and 〈Y 〉 denote the quadratic variation of X and Y respectively, with the convention that

quadratic variation at time 0 is zero.

We will model-independently (super/sub)-replicate claims written on 〈X〉 – including options on

forward-starting variance 〈X〉T −〈X〉θ for any constant θ ∈ [0, T ) – using predictable self-financing

strategies which dynamically trade Y and statically hold European-style claims on YT and Yθ.

Superreplication implies upper bounds on variance option prices, by the standard logic that

shorting an option bid above the upper bound, and going long the superreplicating strategy, pro-

duces an arbitrage. However, our notion of a superreplicating strategy does not promise any notion

of tameness or admissibility, so to be careful and complete, we show moreover that our strategies

satisfy natural margin constraints at all times [0, T ]. We do likewise for the subreplication strategies

which give lower bounds.

To summarize, we impose consistency among the prices of the tradeable basic assets by assuming

the absence of semi-static arbitrage among them. We impose consistency between each variance

option and its super/sub-replicating portfolios of tradeable basic assets (including Y , which we trade
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fully dynamically), by assuming, moreover, the absence of dynamic arbitrage satisfying natural

margin constraints.

Remark 1.1. The constant bond price assumption does not restrict us to zero interest rates, because

we regard all prices in this paper (except Y ′ and Z ′ in this Remark) to be denominated in units of

the bond. If in practice we wish to use a different unit of denomination – let us say the “dollar”

– then we have the following conversions. Letting Y ′ denote the dollar-denominated share price

and Z ′ denote the dollar-denominated bond price (for a bond that pays 1 dollar at maturity T ),

we have the bond-denominated share price Yt = Y ′t /Z
′
t, and the bond-denominated bond price

Zt = Z ′t/Z
′
t = 1.

In practice, variance contracts are written on dollar-denominated logarithmic variance, not on

bond-denominated logarithmic variance; but under arbitrary deterministic (including non-constant)

interest rates given by a short rate process rt, the two notions of variance are identical. Indeed,

we have Z ′t = exp(−
∫ T
t rtdt), hence the bond-denominated share price Y = Y ′/Z ′ has logarithmic

quadratic variation〈
log Y·

〉
=
〈

log(Y ′· /Z
′
·)
〉

=
〈

log Y ′· +
∫ T

·
rtdt

〉
=
〈

log Y ′·
〉

(1.1)

because the dt integral has finite variation. Therefore a T -maturity contract on any function of

〈log Y ′〉T is identical to a T -maturity contract on that function of 〈log Y 〉T . This holds true even

if the former contract pays in dollars while the latter contract pays in bonds, because 1 time-T

dollar equals 1 time-T bond. In conclusion, our constant bond price assumption entails no loss of

generality relative to arbitrary non-random interest rates.

Note that the irrelevance of interest rates shown in (1.1) contrasts to the cases of lookback and

barrier options [6, 20] where more care was required, because maxt(Y ′t /Z
′
t) does not equal maxt(Y ′t ).

2 Model-free replication

By Meyer-Itô we have

dXt = ϕy(Yt)dYt +
1
2

∫
R
Latϕyy(da), (2.1)

where ϕy denotes the left-hand derivative of ϕ, and ϕyy denotes the second derivative in the sense

of distributions, and La denotes the local time of X at a. Since ϕyy is the difference of two positive

measures and La is increasing, the local time term has finite variation. Therefore

d〈X〉t = ϕ2
y(Yt)d〈Y 〉t. (2.2)

Let h(y, q) be C2,1. Then for all t, by Itô’s rule,

h(Yt, 〈X〉t) = h(Y0, 0) +
∫ t

0
hydYs +

∫ t

0

1
2
hyyd〈Y 〉s +

∫ t

0
hqd〈X〉s

= h(Y0, 0) +
∫ t

0
hydYs +

∫ t

0

(1
2
hyy + ϕ2

yhq

)
d〈Y 〉s
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where subscripts on h denote partial differentiation.

More generally, we will need Propositions 2.1 and 2.2 which are slight extensions of Bick [3] to

a larger class of stopping times.

Proposition 2.1. Let U be an open set with (Y0, 0) ∈ U ⊆ R2. Let h be C2,1 on U and continuous

on Ū . Then for all T and all stopping times τ ≤ inf{t : (Yt, 〈X〉t) /∈ U},

h(YT∧τ , 〈X〉T∧τ ) = h(Y0, 0) +
∫ T∧τ

0
hydYs +

∫ T∧τ

0

(1
2
hyy + ϕ2

yhq

)
d〈Y 〉s. (2.3)

If moreover ϕy(y) > 0 for all y then

h(YT∧τ , 〈X〉T∧τ ) = h(Y0, 0) +
∫ T∧τ

0
hydYs +

∫ T∧τ

0

(1
2
hyy
ϕ2
y

+ hq

)
d〈X〉s. (2.4)

In the integrands, the the hy, hyy, and hq are evaluated at (Ys, 〈X〉s), and ϕy is evaluated at Ys.

Proof. Let τn := inf{t : there exist (y, q) ∈ (R × R+) \ U such that |Yt − y| + |〈X〉t − q| < 1/n}.
Itô’s rule applies to the stopped process (Yt∧τn , Xt∧τn), so for all T

h(YT∧τn , 〈X〉T∧τn) = h(Y0, 0) +
∫ T∧τn

0
hydYs +

∫ T∧τn

0

(1
2
hyy + ϕ2

yhq

)
d〈Y 〉s

Now let n→∞. By continuity of Y and h, we have (2.3). By (2.2) we have (2.4).

2.1 Vanishing 〈X〉 integral

To proceed from (2.4), we can choose h to make the d〈X〉 integral vanish. Then the 〈X〉-dependent

LHS can be created, using the trading strategy in bonds and shares given by the two remaining

terms on the RHS.

Proposition 2.2. Under the hypotheses of Proposition 2.1, we assume, moreover, that

1
2
hyy
ϕ2
y

+ hq = 0 for (y, q) ∈ U. (2.5)

Then for any T the payoff h(YT∧τ , 〈X〉T∧τ ) can be replicated by holding at each time t ≤ T ∧ τ

hy(Yt, 〈X〉t) shares

h(Yt, 〈X〉t)− Ythy(Yt, 〈X〉t) bonds.
(2.6)

The replicating portfolio has time-0 value h(Y0, 0).

Proof. With Zt := 1 denoting the bond price, the portfolio’s value at any time t ≤ τ ∧ T is

Vt := (h(Yt, 〈X〉t)− Ythy(Yt, 〈X〉t))× Zt + hy(Yt, 〈X〉t)× Yt

= h(Yt, 〈X〉t)

= h(Y0, 0) +
∫ t

0
hy(Ys, 〈X〉s)dYs + 0,
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by (2.4) and (2.5). Therefore

dVt = hy(Yt, 〈X〉t)dYt + (h(Yt, 〈X〉t)− Ythy(Yt, 〈X〉t))dZt

which is by definition the self-financing condition.

Remark 2.3. Equation (2.5) is a backward Kolmogorov PDE, with quadratic variation playing the

role of time. We return to this point in Remark 2.12.

We will need the following slight extension of Bick [3], who has the case that f is a put payoff.

Let R+ = (0,∞) denote the positive reals.

Proposition 2.4 (Claims on price when variance reaches a barrier). Let Xt = log(Yt/Y0).

Let τ be the first passage time of 〈X〉 to level Q.

For any y > 0, any v ≥ 0, and any continuous f : R+ → R such that |f(ez)| ≤ F (e|z|) for some

polynomial F and all z ∈ R, let

BS(y, v; f) :=


∫∞
−∞ f(yez) 1√

2πv
exp

[
− (z+v/2)2

2v

]
dz if v > 0

f(y) if v = 0
(2.7)

and let BSy denote its y-derivative. Then the strategy of holding at each time t ≤ T ∧ τ

BSy(Yt, Q− 〈X〉t; f) shares

BS(Yt, Q− 〈X〉t; f)− YtBSy(Yt, Q− 〈X〉t; f) bonds
(2.8)

replicates the time-(T ∧ τ) payoff

f(Yτ )Iτ≤T +BS(YT , Q− 〈X〉T ; f)Iτ>T (2.9)

The replicating portfolio has time-0 value BS(Y0, Q; f).

Proof. Let h(y, q) := BS(y,Q− q; f). Directly verify that 1
2y

2hyy + hq = 0 on U = R+ × (−∞, Q)

and h is continuous on Ū ; then apply Proposition 2.2.

Remark 2.5. No longer purely theoretical, similar contracts, of perpetual type, have been traded

by Société Générale [2], and described as “timer” options.

Remark 2.6. Intuitively the BS(y, v; f) function gives the value of the payoff f(Yτ ), which is

computed by the Black-Scholes formula with dimensionless volatility parameter Q − q. We say

dimensionless to emphasize that this parameter represents a total “unannualized” variance until

expiration, not variance per unit time. Proposition 2.4 shows that starting with bonds and shares

of total value BS(Y0, 0), and at each time t “delta-hedging at dimensionless BS volatility Q−〈X〉t”
will produce f(Yτ ) if and when 〈X〉 reaches Q.
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Corollary 2.7 (How to make profit/loss if realized volatility ≤ / ≥ implied BS volatility). Under

the conditions of Proposition 2.4, further assume convexity of f , which therefore has a left derivative

f ′. Then strategy (2.8), extended to times t > τ by holding at all t ∈ (T ∧ τ, T ] the static portfolio

f ′(Yτ ) shares

f(Yτ )− f ′(Yτ )Yτ bonds
(2.10)

subreplicates (resp. superreplicates) f(YT ) if τ ≤ T (resp. τ ≥ T ).

Proof. If τ ≥ T , then by (2.9) the portfolio has time-T value BS(YT , Q − 〈X〉T ; f) ≥ f(YT ) by

convexity. If τ ≤ T , then the portfolio has time-T value f(Yτ ) + f ′(Yτ )(YT − Yτ ) ≤ f(YT ).

Remark 2.8. Suppose a contract paying f(YT ) has time-0 value BS(Y0, Q, f); for example, this

holds if f is a call, and Q is its BS implied volatility. Then Corollary 2.7 implies immediately that

going long the f(YT ) contract and short the portfolio (2.8,2.10) is a zero-initial-cost strategy whose

time-T value is nonnegative if τ ≤ T , nonpositive if τ ≥ T .

In addition to variance-barrier contracts, we also replicate price-barrier contracts.

Proposition 2.9 (Claims on variance until price reaches a down-barrier). Let Xt = log(Yt/Y0).

Let τ be the first passage time of Y to a barrier b ∈ (0, Y0).

For any continuous g : R→ R such that |g| ≤ G for some polynomial G, let

BP (y, q; b, g) :=


∫∞
0 g(q + z) | log(b/y)|√

2πz3
exp

[
− (log(b/y)+z/2)2

2z

]
dz if y 6= b

g(q) if y = b
(2.11)

and let BPy denote its y-derivative. Then the strategy of holding at each time t ≤ T ∧ τ

BPy(Yt, 〈X〉t; b, g) shares

BP (Yt, 〈X〉t; b, g)− YtBPy(Yt, 〈X〉t; b, g) bonds
(2.12)

replicates the time-(T ∧ τ) payoff

g(〈X〉τ )Iτ≤T +BP (YT , 〈X〉T ; b, g)Iτ>T . (2.13)

If g is monotonically increasing, then the strategy superreplicates g(〈X〉τ∧T ).

The replicating portfolio has time-0 value BP (Y0, 0; b, g).

Proof. Let h(y, q) := BP (y, q; b, g). Then directly verify that 1
2y

2hyy + hq = 0 on U = (b,∞)× R,

and that h is continuous on Ū .

Proposition 2.2 implies replication of (2.13), and superreplication of g(〈X〉τ∧T ) follows because

BP (y, q; b, g) ≥ g(q) for increasing g.

We chose the notation BP for “Brownian passage,” to be explained in Remark 2.11; but first

we give the analogue of Proposition 2.9 for a double barrier – more precisely, for claims on the

variance from time 0 until the price’s exit time from a finite interval.
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Proposition 2.10 (Claims on variance to an exit time). Let Xt = log(Yt/Y0).

Let 0 < bd < Y0 < bu, and let τ be the exit time of Y from the interval (bd, bu).

For any continuous g : R→ R such that |g| ≤ G for some polynomial G, let

BP (y, q; bd, bu, g) :=


∫∞
0 g(q + z)p(log(y/bd), log(y/bu), z)dz if bd < y < bu

g(q) otherwise
(2.14)

p(βd, βu, z) := e−z/8[e−βd/2 ψ(βu, βu − βd, z) + e−βu/2 ψ(−βd, βu − βd, z)] (2.15)

ψ(r,R, z) :=
∞∑

k=−∞

R− r + 2kR√
2πz3/2

e−(R−r+2kR)2/(2z). (2.16)

Then the strategy of holding at each time t ≤ T ∧ τ

BPy(Yt, 〈X〉t; bd, bu, g) shares

BP (Yt, 〈X〉t; bd, bu, g)− YtBPy(Yt, 〈X〉t; bd, bu, g) bonds
(2.17)

replicates the time-(T ∧ τ) payoff

g(〈X〉τ )Iτ≤T +BP (YT , 〈X〉T ; bd, bu, g)Iτ>T . (2.18)

If g is monotonically increasing, then the strategy superreplicates g(〈X〉τ∧T ).

The replicating portfolio has time-0 value BP (Y0, 0; bd, bu, g).

Proof. Let h(y, q) := BP (y, q; bu, bd, g). Then directly verify that 1
2y

2hyy+hq = 0 on U = (bd, bu)×
R, and that h is continuous on Ū .

Proposition 2.2 implies replication of (2.18), and superreplication of g(〈X〉τ∧T ) follows because

BP (y, q; b, g) ≥ g(q) for increasing g.

Remark 2.11. By Borodin-Salminen [4] Formula 2.3.0.2, the p function is the density of the exit

time of drift −1/2 Brownian motion from the interval (βd, βu). Intuitively, the BP function gives

the expected value of g at this “Brownian Passage” time.

Remark 2.12. The formulas (2.7) and (2.11) and (2.14)-(2.16) can be understood via time change.

We have

dXt =
1
Yt

dYt −
1

2Y 2
t

d〈Y 〉t =
1
Yt

dYt −
1
2

d〈X〉t.

Under risk-neutral measure the underlying Y is a continuous local martingale, hence so is M where

Mt :=
∫ t

0

1
Ys

dYs = Xt +
1
2
〈X〉t.

By Dambis/Dubins-Schwarz ([12, 15]; henceforth DDS), there exists (on an enlarged probability

space if needed) a Brownian motion W with W〈X〉t = Mt for all t ≤ T . So Xt = W〈X〉t−
1
2〈X〉t and

hence Yt = G〈X〉t where Gu := Y0 exp(Wu−u/2). Therefore, with respect to business time 〈X〉t, the

underlying Y is driftless geometric Brownian motion. So, even in our completely general continuous

8



semimartingale setting, Black-Scholes prevails under the stochastic clock which identifies time with

quadratic variation.

Forde [18] independently notes the relevance of DDS to pricing variance-to-a-barrier claims.

Dupire [17] uses DDS to cast volatility derivatives into the framework of the Skorokhod embedding

problem. Our hedging proofs do not rely on DDS – indeed they do not even rely on the existence

of a risk-neutral measure – but the time change perspective adds insight.

In the case of a call payoff, we find an easily computable formula for BP .

Proposition 2.13 (Fourier representation for calls on variance until an exit time). For a call payoff

g(q) = (q −Q)+, the function BP of Proposition 2.10 for y ∈ (bd, bu) has the representation

BP =
∫ ∞−αi
−∞−αi

√
y/bu sinh(log(bd/y)

√
1/4− 2iz)−

√
y/bd sinh(log(bu/y)

√
1/4− 2iz)

2πz2ei(Q−q)z sinh(log(bu/bd)
√

1/4− 2iz)
dz

where α > 0; any such α gives the same value for the integral.

Remark 2.14. Abusing notation, we will write BP (y, q; bd, bu, Q) to mean BP (y, q; bd, bu, g), where

g(q) := (q −Q)+.

Proof. Combine Borodin-Salminen [4] Formula 2.3.0.1, which gives the Laplace transform of p, with

Lee [22] Theorem 5.1 (for the “G2” payoff), which obtains BP from that transform.

Proposition 2.15 (Properties of BP for a call). For any q ≥ 0, Q ≥ 0, y > 0,

BP (y, q; bd, bu, Q)−BP (y, 0; bd, bu, Q) ≥ (q −Q)+. (2.19)

For q = Q = 0 and bd < y < bu,

BP (y, 0; bd, bu, 0) = 2 log(y/bu)− 2
log(bu/bd)
bu − bd

(y − bu). (2.20)

Proof. For y /∈ (bd, bu), inequality (2.19) clearly holds. For y ∈ (bd, bu),

BP (y, q; bd, bu, Q) =
∫ ∞

0
(q + z −Q)+p(log(y/bd), log(y/bu), z) dz

≥
∫ ∞

0
[(q −Q)+ + (z −Q)+]p(log(y/bd), log(y/bu), z) dz

= (q −Q)+ +BP (y, 0; bd, bu, Q),

and (2.19) again holds.

Equation (2.20) holds because each side equals the expectation of the exit time of drift −1/2

Brownian motion from the interval (log(bd/y), log(bu/y)): the LHS by definition of BP and Remark

2.11, and the RHS by the usual method of extracting an expectation from the known Laplace

transform of the exit time density.
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2.2 Nonvanishing 〈X〉 integral

An alternative way to proceed from (2.4) is to generate the quadratic variation dependence in the

d〈X〉s integral, instead of in h(YT , 〈X〉T ). In particular, by making h(x, q) depend on x alone, the

quadratic-variation-dependent integral on the RHS of (2.3) can be created from the LHS (which

has thereby become simply a European claim) minus the bonds and shares terms on the RHS.

Proposition 2.16 ((Sub)replication of forward-starting weighted variance of ϕ(Y )). Let the weight

w : R+ → [0,∞) be a Borel function and let τ be a stopping time. Let λ : R+ → R be a difference

of convex functions, let λy denote its left-hand derivative, and assume that its second derivative in

the distributional sense has a (signed) density, denoted λyy, which satisfies for all y ∈ R+

λyy(y) ≤ 2ϕ2
y(y)w(y). (2.21)

If claims on λ(YT ) and λ(Yτ∧T ) are tradeable, then the strategy of holding at each time t ∈ (0, τ ∧T ]

1 claim on λ(YT )

1 claim on −λ(Yτ∧T )
(2.22a)

and holding at each time t ∈ (τ ∧ T, T ]

1 claim on λ(YT )

−λy(Yt) shares

−λ(Yτ∧T )−
∫ t

τ∧T
λy(Ys)dYs + Ytλy(Yt) bonds,

(2.22b)

subreplicates the forward-starting weighted variance of X = ϕ(Y ), defined by

〈X〉wτ,T :=
∫ T

τ∧T
w(Ys) d〈X〉s.

The subreplicating portfolio has time-0 value V0λ(YT )− V0λ(Yτ∧T ).

If equality holds in (2.21) then the strategy replicates 〈X〉wτ,T exactly.

Proof. The strategy clearly self-finances and has the claimed time-0 value. By Meyer-Itô

λ(YT ) = λ(Y0) +
∫ T

0
λy(Ys)dYs +

∫ T

0

1
2
λyy(Ys) d〈Y 〉s

and, by Meyer-Itô applied to the stopped process Yt∧τ ,

λ(Yτ∧T ) = λ(Y0) +
∫ τ∧T

0
λy(Ys)dYs +

∫ τ∧T

0

1
2
λyy(Ys) d〈Y 〉s.
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Taking the difference,

λ(YT ) = λ(Yτ∧T ) +
∫ T

τ∧T
λy(Ys)dYs +

∫ T

τ∧T

1
2
λyy(Ys) d〈Y 〉s (2.23)

≤ λ(Yτ∧T ) +
∫ T

τ∧T
λy(Ys)dYs +

∫ T

τ∧T
ϕ2
y(Ys)w(Ys) d〈Y 〉s (2.24)

= λ(Yτ∧T ) +
∫ T

τ∧T
λy(Ys)dYs +

∫ T

τ∧T
w(Ys) d〈X〉s, (2.25)

hence

λ(YT )− λ(Yτ∧T )−
∫ T

τ∧T
λy(Ys)dYs ≤ 〈X〉wτ,T , (2.26)

which proves subreplication of 〈X〉wτ,T . If equality holds in (2.21), then it holds in (2.24) and (2.26),

which proves exact replication.

Remark 2.17. The strategy (2.22) can be described as delta-hedging the λ claim “at zero vol,”

because its share holding −λy(Yt) is identical to −BSy(Yt, v;λ)
∣∣
v=0

.

Proposition 2.16 includes as special cases the classical results on replication of various flavors

of variance swaps.

Example 2.18 (Replication of forward-starting variance of log Y ). Consider the weight function

w(y) := 1. If

λ(y) = A1y +A0 − 2 log y (2.27)

where A0, A1 are arbitrary constants, then (2.21) holds with equality, so if claims on λ(YT ) and

λ(Yτ∧T ) are tradeable, then the strategy (2.22) replicates 〈X〉T − 〈X〉τ∧T , where X = log Y . This

recovers the known strategy (Neuberger [23], Dupire [16], Carr-Madan [9], Derman et al [14]) of

using a log contract to replicate logarithmic quadratic variation.

Example 2.19 (Replication of forward-starting corridor variance of ϕ(Y )). Let the corridor C be

a Borel set and let the weight function be the indicator w(y) := I(y ∈ C). If λ is convex and

λyy = 2ϕ2
y in C and λyy = 0 outside of C, then (2.22) replicates corridor variance [9]∫ T

τ∧T
I(Ys ∈ C) d〈X〉s.

The replicating portfolio has time-0 value V0λ(YT )− V0λ(Yτ∧T ).

Taking C = R+ produces the full forward-starting variance of ϕ(Y ).

Example 2.20 (Replication of forward-starting gamma swap on ϕ(Y )). Let the weight function be

w(y) := ay where a is a constant, typically a = 1/Y0. If λ is convex and λyy(y) = 2aϕ2
y(y)y then

(2.22) replicates the gamma swap payout∫ T

τ∧T
aYs d〈X〉s.
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In particular, for the usual logarithmic case ϕ(y) = log(y), the ODE λyy(y) = 2a/y is solved by

λ(y) = ay log y +A1y +A0

for arbitrary constants A0 and A1. The replicating portfolio has time-0 value V0λ(YT )−V0λ(Yτ∧T ).

The final example we designate as a Corollary, due to its relevance to one of our main goals –

subreplicating a forward-starting variance call.

Corollary 2.21 (Subreplication of forward-starting variance of log Y ). Let λ : R+ → R be a

difference of convex functions, let λy denote its left-hand derivative, and assume that its second

derivative in the distributional sense has a density, denoted λyy, which satisfies for all y ∈ R+

λyy(y) ≤ 2/y2. (2.28)

Let τ be a stopping time. If claims on λ(Yτ∧T ) and λ(YT ) are tradeable, then

λ(YT )− λ(Yτ∧T )−
∫ T

τ∧T
λy(Ys)dYs ≤ 〈X〉τ,T = 〈X〉T − 〈X〉τ∧T (2.29)

and the strategy (2.22) subreplicates 〈X〉T − 〈X〉τ∧T , where X = log Y .

Proof. Take w = 1 and ϕ(y) = log y in Proposition 2.16.

3 Variance call: Lower bound

In this section let Xt := log(Yt/Y0). Let Q ≥ 0 and T > 0.

3.1 Spot-starting variance call: Dupire’s subreplication

Consider a variance call with strike Q and expiry T .

Dupire’s [17] subreplication strategy has the following intuition. Let λ be convex and satisfy

the hypotheses of Corollary 2.21.

If and when 〈X〉 hits Q prior to time T , we need to subreplicate a variance swap, so we want

to have a claim on λ(YT ) plus a claim on −λ(YτQ). The former is a European claim, and the latter

is synthesized by a bond-and-shares strategy, according to Proposition 2.4.

If 〈X〉 does not hit Q prior to time T , then our time-T portfolio is λ(YT ) minus a claim on

λ(YτQ). By convexity of λ, the latter has greater value than the former. So the portfolio value is

negative, as desired.
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Proposition 3.1 (Dupire [17]). Consider a variance call which pays

(〈X〉T −Q)+.

Assume λ is convex and satisfies the hypotheses of Corollary 2.21. Define

Nt :=

−BSy(Yt, Q− 〈X〉t;λ) if t ≤ τQ

−λy(Yt) if t > τQ.

Then for any T the following strategy subreplicates the variance call: at each time t < T hold

1 claim on λ(YT )

Nt shares

−BS(Y0, Q;λ) +
∫ t

0
NsdYs −NtYt bonds.

(3.1)

The subreplicating portfolio has time-0 value −BS(Y0, Q;λ) + V0λ(YT ).

Proof. The strategy clearly self-finances and has the claimed time-0 value.

If τQ ≤ T , then the time-T portfolio value is

−BS(Y0, Q;λ) +
∫ τQ

0
NsdYs +

∫ T

τQ

NsdYs + λ(YT ) = −λ(YτQ) +
∫ T

τQ

NsdYs + λ(YT )

≤ 〈X〉T − 〈X〉τQ = (〈X〉T −Q)+

by Proposition 2.4 and Corollary 2.21. If τQ > T , then the time-T portfolio value is

−BS(Y0, Q;λ) +
∫ T

0
NsdYs + λ(YT ) = −BS(YT , Q− 〈X〉T ;λ) +BS(YT , 0;λ) (3.2)

≤ 0 = (〈X〉T −Q)+. (3.3)

Equality (3.2) holds by Proposition 2.4. Inequality (3.3) holds because the convexity of λ implies

that BS is increasing in its second argument.

Remark 3.2. Dupire chooses λ to maximize the lower bound, as follows. Let

vanK(y) :=

(y −K)+ if K ≥ Y0

(K − y)+ if K < Y0

(3.4)

denote the payoff function of the OTM vanilla option at strike K, and assume tradeability of

vanK(YT ) for all K.

Define the time-0 dimensionless Black-Scholes implied volatility for an underlying Y , strike K,

and expiry T , to be the unique I0(K,T ) such that

BS(Y0, I0(K,T ); vanK) = V0vanK(YT ). (3.5)

13



Then we may rewrite the lower bound as

V0λ(YT )−BS(Y0, Q;λ) =
∫ ∞

0
λyy(K)[V0vanK −BS(Y0, Q; vanK)]dK

=
∫ ∞

0
λyy(K)[BS(Y0, I0(K,T ); vanK)−BS(Y0, Q; vanK)]dK.

(3.6)

Under the constraint 0 ≤ y2λyy(y) ≤ 2, the optimal λ consists of 2/K2dK OTM vanilla payoffs at

all K where the dimensionless BS implied volatility I0(K,T ) exceeds Q:

λ(y) =
∫
{K:I0(K,T )>Q}

2
K2

vanK(y) dK.

If a variance call is offered below its lower bound, then short the λ(YT ) claim and borrowBS(Y0, Q;λ),

the λ claim’s Black-Scholes valuation using dimensionless volatility Q. Use the proceeds to buy the

variance call, for a net credit. Then dynamically trade shares to lock in this credit.

3.2 Forward-starting variance call: Subreplication

Let the forward-start date be a constant θ ∈ [0, T ).

Proposition 3.3. Consider a forward-starting variance call which pays

(〈X〉T − 〈X〉θ −Q)+.

Assume that λ is convex and satisfies the hypotheses of Corollary 2.21.

Let τQ := inf{t : 〈X〉t − 〈X〉θ ≥ Q} and

Nt :=

−BSy(Yt, Q− (〈X〉t − 〈X〉θ);λ) if θ ≤ t ≤ τQ

−λy(Yt) if t > τQ.

If claims on BS(Yθ, Q;λ) and λ(YT ) are tradeable, then the following strategy subreplicates the

forward-starting variance call. At each time t ∈ [0, θ] hold

1 claim on λ(YT )

1 claim on −BS(Yθ, Q;λ).
(3.7a)

At each time t ∈ (θ, T ) hold

1 claim on λ(YT )

Nt shares

−BS(Yθ, Q;λ) +
∫ t

θ
NsdYs −NtYt bonds.

(3.7b)

The subreplicating portfolio has time-0 value V0λ(YT )− V0BS(Yθ, Q;λ).
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Proof. The strategy clearly self-finances and has the claimed time-0 value.

If τQ ≤ T , then the time-T portfolio value is

−BS(Yθ, Q;λ) +
∫ τQ

θ
NsdYs +

∫ T

τQ

NsdYs + λ(YT ) = −λ(YτQ) +
∫ T

τQ

NsdYs + λ(YT )

≤ 〈X〉T − 〈X〉τQ = (〈X〉T −Q)+

by Proposition 2.4 and Corollary 2.21. If τQ > T , then the time-T portfolio value is

−BS(Yθ, Q;λ) +
∫ T

θ
NsdYs + λ(YT ) = −BS(YT , Q− (〈X〉T − 〈X〉θ);λ) +BS(YT , 0;λ) (3.8)

≤ 0 = (〈X〉T −Q)+. (3.9)

Equality (3.8) holds by Proposition 2.4. Inequality (3.9) holds because the convexity of λ implies

that BS is increasing in its second argument.

3.3 Subreplication under a margin constraint

The value V sub of the subreplicating portfolio is a lower bound on the price of the variance call,

in the sense that if the variance call is offered at a price below V sub, then buying the variance call

and shorting the portfolio produces an arbitrage that is well-behaved in the following way.

We prove that the subreplication strategy (3.7) satisfies a natural margin constraint on [0, T ].

Specifically, we show that V sub
t is at all times t ≤ T dominated by the market’s time-t “expectation

of” 〈X〉T − 〈X〉(t∨θ)∧τQ , by which we mean the RHS of (3.10).

This constraint prevents the magnitude of our short position in the subreplicating portfolio

from becoming too large, relative to the collateral that we own, having gone long the variance call.

Definition 3.4 (Call buyer’s margin constraint). Assume that claims on log(YT ) and log(Yθ) are

tradeable. We say that a self-financing trading strategy with time-t value Vt satisfies the call buyer’s

margin constraint if for all t ∈ [0, T ],

Vt ≤ 〈X〉t − 〈X〉t∧τQ − 2Vt log(YT /Yt∨θ). (3.10)

Proposition 3.5 (Subreplicating strategy satisfies the margin constraint). Assume that claims on

log(YT ) and log(Yθ) are tradeable. Then, under the hypotheses of Proposition 3.3, the subreplicating

strategy (3.7) satisfies the call buyer’s margin constraint.

Therefore the (3.7) strategy’s value V sub
t is a lower bound on the buyer’s price of the variance

call, where buyer’s price is defined as the supremum of the prices of all subreplicating strategies

satisfying the call buyer’s margin constraint.

Proof. For all t ≥ τQ, Corollary 2.21 implies

V sub
t = −λ(YτQ) +

∫ t

τQ

NsdYs + Vtλ(YT ) = −λ(YτQ) +
∫ t

τQ

NsdYs + λ(Yt)− λ(Yt) + Vtλ(YT )

≤ 〈X〉t − 〈X〉τQ + 2 log(Yt)− 2Vt log(YT ).
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For all t ∈ (θ, τQ), Proposition 2.4 and the convexity of λ imply

V sub
t = −BS(Yt, Q− (〈X〉t − 〈X〉θ);λ) + Vtλ(YT ) ≤ −BS(Yt, 0;λ) + Vtλ(YT )

= −λ(Yt) + Vtλ(YT ) ≤ 2 log(Yt)− 2Vt log(YT ).

For all t ≤ θ, the convexity of λ implies

V sub
t = −VtBS(Yθ, Q;λ) + Vtλ(YT ) ≤ −Vtλ(Yθ) + Vtλ(YT ) ≤ Vt(2 log(Yθ)− 2 log(YT )),

as claimed.

3.4 Forward-starting variance call: Lower bounds

For any λ satisfying the hypotheses of Corollary 2.21, we have established the lower bound

V0λ(YT )− V0BS(Yθ, Q;λ)

on the time-0 value of the variance call.

Extending Dupire to the forward-starting case, we choose λ to maximize the lower bound, as

follows. Define vanK by (3.4), and assume tradeability of vanK(Yθ) and vanK(YT ) for all K.

Define the time-0 dimensionless Black-Scholes forward implied volatility for an underlying Y , a

strike K, and a time interval [θ, T ] to be the unique I0(K, [θ, T ]) such that

V0BS(Yθ, I0(K, [θ, T ]); vanK) = V0vanK(YT ). (3.11)

Then we may rewrite the lower bound as

V0λ(YT )− V0BS(Yθ, Q;λ) =
∫ ∞

0
λyy(K)[V0vanK(YT )− V0BS(Yθ, Q; vanK)]dK

=
∫ ∞

0
λyy(K)[V0BS(Yθ, I0(K, [θ, T ]); vanK)− V0BS(Yθ, Q; vanK)]dK.

Under the constraint 0 ≤ y2λyy(y) ≤ 2, the optimal λ is λ∗ consisting of 2/K2dK OTM vanilla

payoffs at all K for which the dimensionless BS forward implied volatility exceeds Q:

λ∗(y) =
∫
{K:I0(K,[θ,T ])>Q}

2
K2

vanK(y) dK

where forward implied volatility on [θ, T ] is defined by (3.11). Note that we have shown that in

this context the appropriate notion of forward implied volatility I0(K, [θ, T ]) involves the entire

market-implied distribution of Yθ; starting from this distribution (not necessarily lognormal) at

time θ, run a geometric Brownian motion with dimensionless volatility Q on [θ, T ]; the unique Q

which recovers the time-0 price of the K-strike T -expiry option is what we mean by forward implied

volatility.

The optimized lower bound is

V SUB := V0λ
∗(YT )− V0BS(Yθ, Q;λ∗). (3.12)
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If variance call is offered below this lower bound, then short the λ∗(YT ) claim and go long a claim on

BS(Yθ, Q;λ∗), which is the λ∗ claim’s Black-Scholes time-θ valuation using dimensionless volatility

Q; this future value is completely determined by Yθ, so it can be synthesized at time 0 using θ-

expiry Europeans. Use the proceeds to buy the variance call, for a net credit. Starting at time θ,

dynamically trade shares to lock in this credit.

Remark 3.6. Intuitively, this lower bound says that a variance call dominates a τQ-starting corridor

variance swap, where the corridor can be arbitrarily chosen (and need not be contiguous).

In turn, the τQ-starting corridor variance swap value at time 0 dominates the sum, over all

K in the corridor, of (2/K2)dK OTM T -expiry vanillas less those vanillas’ time-0 Black-Scholes

valuation using dimensionless volatility Q on [θ, T ]. This holds for an arbitrary corridor, so the

optimal corridor includes exactly those K which make a positive contribution to the sum.

4 Variance call: Upper bound

In this section let Xt := log(Yt/Y0). Consider a variance call with strike Q ≥ 0 and expiry T > 0.

Our strategy to superreplicate (〈X〉T −Q)+ comes from the following intuition. Let τb be the

exit time of Y from some fixed interval (bd, bu). Although we cannot perfectly replicate (〈X〉T−Q)+,

we can perfectly replicate (〈X〉τb −Q)+ by trading a portfolio having initial value BP (Y0, 0;Q), as

shown in Proposition 2.13.

If τb ≤ T then the shortfall is covered by creating the remaining variance 〈X〉T − 〈X〉τb . To

do so, we follow Example 2.18 and include in our holdings a claim on L(YT ) − L(Yτb), where

L(y) := −2 log(y) + A1y + A0. By choosing (A0, A1) such that L(bd) = L(bu) = 0, we make the

−L(Yτb) term vanish, so the claim’s payoff simplifies to L(YT ).

If τb > T then at time T we are long a claim on (〈X〉τb − Q)+ but we also hold L(YT ) < 0,

a liability which we cannot always afford. We can always afford to accept the smaller liability

−BP (YT , 0;Q) ≥ L(YT ) and still superreplicate, because (〈X〉τb −Q)+ − (〈X〉τb − 〈X〉T −Q)+ ≥
(〈X〉T −Q)+. So in the interval bd < YT < bu, let us replace the L(YT ) payoff by a −BP (YT , 0;Q)

payoff. This increase in the payoff preserves superreplication in the case τb ≤ T .

The following proof makes this argument precise, and extends it to forward-starting variance.

4.1 Forward-starting variance call: Superreplication

Let the forward-start date be a constant θ ∈ [0, T ).

Proposition 4.1 (Forward-starting variance call superreplication). Consider a forward-starting

variance call which pays

(〈X〉T − 〈X〉θ −Q)+.

Choose any bd ∈ (0, Y0] and any bu ∈ [Y0,∞). Let

BP (y, q;Q) := BP (y, q; bd, bu, Q),
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which has the Fourier representation given in Proposition 2.13. Define

L(y) := L(y; bd, bu) :=

−2 log(y/bu) + 2 log(bu/bd)
bu−bd (y − bu) if bd 6= bu

−2 log(y/Y0) + 2y/Y0 − 2 if bd = bu = Y0

and

L∗(y) := L∗(y; bd, bu, Q) :=

L(y) if y /∈ (bd, bu)

−BP (y, 0;Q) if y ∈ (bd, bu).
(4.1)

Let τb := inf{t ≥ θ : Yt /∈ (bd, bu)}. Let

Nt :=

BPy(Yt, 〈X〉t − 〈X〉θ;Q) if θ ≤ t ≤ τb
−Ly(Yt) if t > τb.

(4.2)

Assume that claims on −L∗(Yθ) and L∗(YT ) are tradeable. Then the following strategy superrepli-

cates the forward-starting variance call: at each time t ∈ [0, θ] hold

1 claim on L∗(YT )

1 claim on −L∗(Yθ)
(4.3a)

and at each time t ∈ (θ, T ) hold

1 claim on L∗(YT )

Nt shares

−L∗(Yθ) +
∫ t

θ
NsdYs −NtYt bonds.

(4.3b)

The superreplicating portfolio has time-0 value V0[L∗(YT )− L∗(Yθ)].

Proof. The strategy clearly self-finances and has the claimed time-0 value.

If τb ≥ T , then the portfolio has time-T value

L∗(YT ) +BP (YT , 〈X〉T − 〈X〉θ;Q) = −BP (YT , 0;Q) +BP (YT , 〈X〉T − 〈X〉θ;Q) (4.4)

≥ (〈X〉T − 〈X〉θ −Q)+. (4.5)

by (2.19). If τb < T then the portfolio has time-T value∫ τb

θ
BPy(Ys, 〈X〉s − 〈X〉θ;Q)dYs − L∗(Yθ)−

∫ T

τb

Ly(Ys)dYs + L∗(YT ) (4.6)

= (〈X〉τb − 〈X〉θ −Q)+ − L∗(Yθ)+ −
∫ T

τb

Ly(Ys)dYs + L∗(YT ) (4.7)

≥ (〈X〉τb − 〈X〉θ −Q)+ − L(Yτb)−
∫ T

τb

Ly(Ys)dYs + L(YT ) (4.8)

= (〈X〉τb − 〈X〉θ −Q)+ + 〈X〉T − 〈X〉τb ≥ (〈X〉T − 〈X〉θ −Q)+ (4.9)
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as desired. In case τb = θ, lines (4.7) and (4.8) use L∗(Yθ) = L(Yτb) ≥ 0. In case τb > θ, line (4.7)

uses L∗(Yθ) = −BP (Yθ, 0, Q) and Proposition 2.10 (applied to the semimartingale Yt+θ relative to

filtration {Ft+θ}); and line (4.8) uses L∗(Yθ)+ = L(Yτb) = 0. In both cases, line (4.8) also uses

L∗(YT ) = −BP (YT , 0, Q) ≥ −BP (YT , 0, 0) = L(YT ) (4.10)

by (2.20). The equality in line (4.9) holds by Example 2.18.

4.2 Superreplication under a margin constraint

The value V super of the superreplicating portfolio is an upper bound on the price of the variance

call, in the sense that if the variance call is bid at a price above V super, then shorting the variance

call and going long the portfolio produces an arbitrage that is well-behaved in the following way.

We prove that the superreplication strategy (4.3) satisfies a natural margin constraint on [0, T ].

Specifically, we show that V super
t at all times t ≤ T exceeds the “intrinsic” value of the variance

call, as defined by the RHS of (4.11).

There are at least two plausible ways to define intrinsic value, so let us clarify: we prove that

at all times t our portfolio value exceeds (q − Q)+ evaluated not merely at q = 〈X〉t − 〈X〉t∧θ,
but indeed that it exceeds (q − Q)+ evaluated at the sum of 〈X〉t − 〈X〉t∧θ and the market’s

“expectation” of the remaining variance 〈X〉T − 〈X〉t∨θ.
This constraint prevents the intrinsic value of the call (which we are short) from becoming too

large, relative to the collateral that we own, having gone long the superreplicating portfolio.

Definition 4.2 (Call seller’s margin constraint). Assume that claims on log(YT ) and log(Yθ) are

tradeable. We say that a self-financing trading strategy with time-t value Vt satisfies the call

seller’s margin constraint if for all t ∈ [0, T ],

Vt ≥ (〈X〉t − 〈X〉t∧θ − 2Vt log(YT /Yt∨θ)−Q)+. (4.11)

Remark 4.3. Our seller’s margin/collateral constraint (4.11) is the natural analogue (for realized

variance contracts) of a tameness notion (for European contracts on price) set forth in Cox-Hobson

[11]. Their Definition 5.1 defined the fair seller’s price of an option with payoff H(ST ) and with col-

lateral requirement function G to be the smallest initial fortune needed to construct a self-financing

wealth process Wt satisfying the superreplication condition WT ≥ H(ST ) and the collateral condi-

tion Wt ≥ G(St) for all t < T .

In particular, for the case of a European call payoff H(s) = (s −K)+, it is natural to impose

a collateral constraint of the call payoff function itself, thus G(s) = H(s). In other words, the

requirement is simply that seller of the option must, at each time t, have wealth sufficient to cover

the intrinsic value of the option, (St −K)+. Cox-Hobson cited practical precedent to justify this

criterion, stating that (modulo notational differences):
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European call options on stocks cannot be exercised before maturity, but the terms

and conditions of options on Internet stocks often included the proviso that if the firm

was subject to a takeover at time t < T , then the option paid (St −K)+. In order to

super-replicate the call option it is necessary to have a wealth process which satisfies

both a condition at maturity and this condition at intermediate times.

In our setting, with a call on variance instead of price, it is appropriate to replace the European

call’s intrinsic value (St −K)+ with instead the intrinsic value of the variance call (for notational

convenience in this remark, let us say a spot-starting variance call with θ = 0). The variance

call’s intrinsic value could be defined as (〈X〉t − Q)+, but we will show that indeed our strategy

satisfies the stronger constraint (4.11), which defines the margin/collateral requirement to be the

“forward-looking” intrinsic value which replaces 〈X〉t by 〈X〉t − 2Vt log(YT /Yt).

Similar reasoning explains our definition of buyer’s margin/collateral constraint (3.10).

Proposition 4.4 (Superreplicating strategy satisfies the margin constraint). Assume that claims

on log(YT ) and log(Yθ) are tradeable. Then, under the hypotheses of Proposition 4.1, the super-

replicating strategy (4.3) satisfies the call seller’s margin constraint.

Therefore, the (4.3) strategy’s value V super
t is an upper bound on the seller’s price of the variance

call, where seller’s price is defined as the infimum of the prices of all superreplicating strategies

satisfying the call seller’s margin constraint.

Proof. If t ≤ θ then V super
t = Vt[L∗(YT )− L∗(Yθ)] ≥ 0 because L∗ is convex; moreover,

V super
t = Vt[L∗(YT )− L∗(Yθ)] (4.12)

≥ Vt[L(YT )− L(Yθ) + L(Yθ)− L∗(Yθ)] (4.13)

= Vt[L(YT )− L(Yθ) + I(bd,bu)(Yθ)(−BP (Yθ, 0; 0) +BP (Yθ, 0;Q))] (4.14)

≥ Vt[L(YT )− L(Yθ)−Q]. (4.15)

The remaining calculations use the results referenced in the proof of Proposition 4.1.

If θ < t ≤ τb, then

V super
t = VtL

∗(YT )− L∗(Yθ) +
∫ t

θ
BPy(Ys, 〈X〉s − 〈X〉θ;Q)dYs (4.16)

= VtL
∗(YT ) +BP (Yt, 〈X〉t − 〈X〉θ;Q) (4.17)

≥ VtL(YT )− L(Yt) + L(Yt) +BP (Yt, 〈X〉t − 〈X〉θ;Q) (4.18)

= VtL(YT )− L(Yt)−BP (Yt, 0; 0) +BP (Yt, 0;Q− (〈X〉t − 〈X〉θ)) (4.19)

≥ VtL(YT )− L(Yt) + 〈X〉t − 〈X〉θ −Q. (4.20)
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If t > τb then V super
t is∫ τb

θ
BPy(Yt, 〈X〉t − 〈X〉θ;Q)dYt −

∫ t

τb

Ly(Ys)dYs + VtL
∗(YT )− L∗(Yθ) (4.21)

= (〈X〉τb − 〈X〉θ −Q)+ −
∫ t

τb

Ly(Ys)dYs + VtL
∗(YT )− L(Yθ)+ (4.22)

≥ (〈X〉τb − 〈X〉θ −Q)+ −
∫ t

τb

Ly(Ys)dYs + VtL(YT )− L(Yτb) + L(Yt)− L(Yt) (4.23)

≥ (〈X〉τb − 〈X〉θ −Q)+ + 〈X〉t − 〈X〉τb + VtL(YT )− L(Yt) (4.24)

≥ (〈X〉t − 〈X〉θ −Q+ VtL(YT )− L(Yt))+ (4.25)

as claimed.

4.3 Forward-starting variance call: Upper bounds

Each choice of (bd, bu) gives an upper bound V0[L∗(YT ; bd, bu, Q)− L∗(Yθ; bd, bu, Q)] on the time-0

price of the variance call. Hence

V SUPER := inf
(bd,bu)

V0[L∗(YT ; bd, bu, Q)− L∗(Yθ; bd, bu, Q)] (4.26)

gives an optimized upper bound.

Remark 4.5. Because (〈X〉T−Q)+ ≤ 〈X〉T , the spot-starting variance call has a naive upper bound,

namely the value of the 〈X〉T -replicating portfolio: V0[−2 log(YT /Y0)].

Taking bd = bu = Y0 in our upper bound recovers the naive upper bound, because

V0L
∗(YT ;Y0, Y0, Q) = V0[−2 log(YT /Y0)].

Since our bound optimizes over all pairs (bd, bu), it never does worse than the naive upper bound.

Likewise, for forward-starting variance calls, our upper bound never does worse than the naive

upper bound V0[−2 log(YT /Yθ)].

Remark 4.6. Figure 1 shows four examples of model-independent superreplicating portfolios for a

variance call.

Remark 4.7. If barrier options are available, then we can improve the upper bound. In (4.3),

replace the claim on L∗(YT ; bd, bu, Q) by a double knock-in claim on L(YT ; bd, bu) plus a double

knock-out claim on −BP (YT , 0, Q), where each claim has barriers at bd and bu, monitored on the

time interval [θ, T ].

Remark 4.8. The difference between a variance put with payoff (Q− 〈X〉T )+ and the variance call

with payoff (〈X〉T − Q)+ is a claim on 〈X〉T − Q, which is perfectly replicable by Example 2.18.

Hence subreplication and superreplication strategies for the variance put follow directly from the

corresponding strategies for the variance call.
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Figure 1: Superreplicating portfolios for a variance call
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Let Y0 = 100. A claim on any one of these time-T payoffs, together with dynamic trading of shares,

model-independently superreplicates a spot-starting T -expiry variance call with strike Q = 0.04.

Referring to (4.1), the plots show L∗(YT )− L∗(Y0) for three particular choices of (bd, bu).

Each superreplicating payoff is universally valid for all continuous semimartingales with Y0 = 100.

The market prices of Europeans expiring at T determine which of the infinite family of superrepli-

cating portfolios is cheapest; of course the cheapest need not be among these three examples.
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Remark 4.9. We have used only the European options information available at inception (time 0),

but an analysis from the standpoint of the European options information available at time t > 0

follows immediately. In particular, suppose that we have a call on [θ, T ] variance, struck at Q ≥ 0.

If, at time t ≤ T , the “running variance” 〈X〉t − 〈X〉θ∧t exceeds Q, then we are guaranteed to

finish in-the-money, so the call reduces to a variance swap paying 〈X〉T − 〈X〉θ −Q, which can be

priced and replicated exactly, by Example 2.18. If, on the other hand, 〈X〉t − 〈X〉θ∧t ≤ Q, then

the seasoned Q-strike call given running variance 〈X〉t−〈X〉θ∧t is equivalent to a newly-issued call

(given zero running variance) with an “effective strike” Q− (〈X〉t− 〈X〉θ∧t), to which our analysis

applies directly.

Remark 4.10. As quadratic variation accumulates during the life of a variance call, the call’s effective

strike decreases. Either the call finishes out-of-the-money and pays nothing, or it finishes in-the

money and the effective strike approaches zero at some time. In the latter case, our upper and

lower bounds converge (to the price of a variance swap) as the effective strike approaches zero

(equivalently, as running variance approaches strike). Thus, even if the observed Europeans data

may generate – at inception – a significant gap between our upper and lower bounds for a particular

variance contract, our results can nonetheless offer further insight for hedging and risk management

at later times, because the gap approaches zero as running variance approaches the strike.

Moreover, even if a wide interval exists at inception (or any other time), our bounds additionally

offer immediately usable information: the size of the interval gives an upper bound on the model

risk present if one attempts to price the variance call by specifying a model and calibrating to

Europeans.

5 Numerical examples

In order to specify and to compute some examples of variance call values and bounds, this section

assumes the existence of a martingale measure that prices all European contracts and variance

contracts. We take the European prices as given, but this will not uniquely determine the martingale

measure. Each “model” – meaning each choice of martingale measure consistent with the Europeans

– generates an arbitrage-free variance call valuation. We compare the valuations generated by

various models against the bounds arising from our sub/superreplication strategies.

Suppose that the time-0 prices of T -expiry European contracts paying (YT −K)+ are given by

EPHeston(YT −K)+ for all K, where T = 1 and the expectation is with respect to a measure PHeston,

under which the paths of Y have distribution given by the Heston dynamics

dYt =
√
VtYtdW1t,

dVt = 1.15(0.04− Vt)dt+ 0.39
√
VtdW2t, V0 = 0.04.

(5.1)

where W1 and W2 are independent Brownian motions. The prices of variance contracts may or

may not be given by PHeston-expected payoffs. Some martingale measure P does price, via expected
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payoffs, the Europeans and the variance contracts, but P need not be PHeston; it may agree with

PHeston on expectations of European payoffs but not variance payoffs.

In other words, the Heston dynamics (5.1) are one way to generate those particular observed

prices of Europeans, but not the only way – for example, there exist local volatility models which

imply, for all T -expiry Europeans, the same prices as (5.1). Therefore, path-dependent contracts,

such as variance calls, admit a range of values consistent with the given European prices.

Regard the process Y as a random variable taking values in the space consisting of all positive

continuous price paths on [0, T ], and define on this space the family P of probability measures P
such that the Y is a P-martingale satisfying the consistency condition for all K

EPHeston(YT −K)+ = EP(YT −K)+. (5.2)

Each of the measures P can be described as a “model,” in the sense of Cont [10].

By (5.2) the models agree on the value of the observable Europeans, but they produce a range of

different values for EP(〈X〉T −Q)+. One value in that range is the Heston-model (5.1) expectation

EPHeston(〈X〉T −Q)+. The middle curve in Figure 2 plots this Heston variance call price for strikes

0.0 ≤ Q ≤ 0.1.

Aside from the Heston model, we shall exhibit two other models – a “Root” model and a “Rost”

model – consistent with the European values EPHeston(YT −K)+. Equivalently, letting ν denote the

PHeston-distribution of YT , we shall exhibit two other models under which YT has distribution ν.

Both constructions are ideas of Dupire [17], adapted by us to the case of logarithmic quadratic

variation. In both cases, suppose G is a driftless unit-volatility geometric Brownian motion with

respect to some measure PG, and let G0 = Y0.

First consider the Root construction. Rost [25] Theorem 1 and Corollary 3 imply that there

exists a space-time “barrier” BRoot ⊂ (0,∞)× [0,∞) such that

(i) τroot := inf{u ≥ 0 : (u,Gu) ∈ BRoot} is a finite stopping time that satisfies Gτroot ∼ ν.

(ii) For each y > 0, there exists uroot(y) ∈ [0,∞] such that (u,Gu) ∈ BRoot for all u > uroot(y)

and (u,Gu) /∈ BRoot for all u < uroot(y).

Choosing any such barrier, define the Root model PRoot by specifying that the paths of Y have

PRoot-distribution identical to the PG-distribution of the paths of the process t 7→ Gτroot∧(t/(T−t))

for t ≤ T , with the convention t/(T − t) :=∞ for t = T .

For numerical computation purposes, we obtain BRoot and the transition density proot(u, y) of

the process u 7→ Gu∧τroot (a transition density in the sense that proot(u, y) = PG(Gu∧τroot ∈ dy)) by

setting up the forward Kolmogorov equation, and solving numerically the following free boundary
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problem to find the “business time” uroot(y) at which the barrier begins for each y:

proot(0, y) = δ(y − Y0)

∂proot

∂u
=

1
2y

2 ∂2proot

∂y2
u < uroot(y)

0 u > uroot(y)

proot(uroot(y), y) = pν(y)

(5.3)

where pν denotes the density function of ν. Then

EPRoot(〈X〉T −Q)+ = EPG(〈logG〉τroot−Q)+ = EPG(τroot−Q)+ =
∫

(uroot(y)−Q)+pν(y)dy. (5.4)

The lower dashed curve in Figure 2 plots the Root-model variance call price as a function of Q.

Similarly, we compute a “reversed” barrier BRost ⊂ (0,∞)× [0,∞) such that

(iii) τrost := inf{t ≥ 0 : (t, Gt) ∈ BRost} is a finite stopping time that satisfies Gτrost ∼ ν.

(iv) For each y > 0, there exists urost(y) ∈ [0,∞] such that (u,Gu) ∈ BRost for all u < urost(y)

and (u,Gu) /∈ BRoot for all u > urost(y).

by solving numerically the free boundary problem

prost(0, y) = δ(y − Y0)

∂prost

∂u
=

0 u < urost(y)
1
2y

2 ∂2prost
∂y2

u > urost(y)

prost(urost(y), y) = pν(y)

(5.5)

to find the business time urost(y) at which the barrier ends for each y. Define the Rost model PRost

by specifying that the paths of Y have PRost-distribution identical to the PG-distribution of the

paths of the process t 7→ Gτrost∧(t/(T−t)) for t ≤ T , and compute

EPRost(〈X〉T −Q)+ =
∫

(urost(y)−Q)+pν(y)dy. (5.6)

The upper dashed-dotted curve in Figure 2 plots the Rost-model variance call price as a function of

Q. Intuitively, the Rost model embeds the given distribution ν in the geometric Brownian motion

G by stopping some G paths very “early” and stopping other G paths very “late,” leading to high

variance of business time (equivalently, high variance of realized variance), hence high prices for

calls on realized variance. In contrast, the Root model does the embedding by stopping the G

paths neither early nor late, leading to low variance of business time, hence low prices for calls on

realized variance. See Dupire [16] which established the link between volatility derivative pricing

and Skorokhod embedding, and Obloj [24] which surveyed the Skorokhod embedding problem.

Finally, the top and bottom solid curves in Figure 2 show, respectively, the model-free upper

bound V SUPER and lower bound V SUB, given in (4.26) and (3.12), and enforceable by static positions
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in Europeans and dynamic trading of the underlying shares. The Root model’s prices are almost

indistinguishable from the lower bound, and the Rost model’s prices are close to the upper bound.

We make the following observations regarding the quality of the bounds V SUB and V SUPER

derived from our sub/superreplicating hedges.

Remark 5.1. Given this set of European option prices, our upper and lower price bounds are nearly

“sharp” from a pricing standpoint. For example, consider the at-the-money (strike 0.04) variance

call. As shown in Figure 2, there exists at least one model (Rost) for which the variance call price is

within 2.6% of our upper bound, and there exists at least one model (Root) for which the variance

call price is within 0.3% of our lower bound.

From a replication standpoint, see Remark 5.3.

Remark 5.2. The Root-model variance call value (5.4) is a sharp lower bound on the variance call

value in the following sense: for any model P such that Y is a martingale and YT has distribution

ν, we have

EPRoot(〈X〉T −Q)+ ≤ EP(〈X〉T −Q)+. (5.7)

We prove this using G, the DDS geometric P-Brownian motion of Y , as defined in Remark 2.12.

Because Gτroot and G〈X〉T have P-distribution ν, Rost [25] Definition 1 and Theorem 2 imply that

EP(τroot −Q)+ ≤ EP(〈X〉T −Q)+; then (5.4) implies the conclusion (5.7). Sharpness holds in the

sense that P = PRoot attains equality.

Remark 5.3. This paper’s primary purpose was to hedge, by finding an explicit trading strategy

that guarantees sub/superreplication universally across all models. From that standpoint, it comes

as no surprise that our lower bound V SUB – the initial value of a universally valid trading strategy

– is slightly lower than the “sharp” lower bound (the Root valuation), which has not been shown

to be universally enforceable.

In other words, if the Root model prevails, then it can be shown that the variance call admits

a replicating strategy with initial value EPRoot(〈X〉T − Q)+. However, a Root-specific replicating

strategy may fail to subreplicate if some other model P ∈ P governs the distribution of Y paths.

(By itself, (5.7) does not guarantee that the same strategy that replicates under the Root model also

subreplicates under the P model.) The subreplicating strategy presented in this paper is universal

across all models, and still manages to produce an initial value V SUB which is only 0.3% lower than

the Root valuation in Figure 2’s ATM strike.

This point may be restated from an arbitrage perspective. A variance call price quote in

violation of the lower bound EPRoot(〈X〉T −Q)+ admits arbitrage, but so far the known strategies

are model-dependent, in the sense that they depend on which P ∈ P prevails. On the other hand, we

have shown that any variance call price quote in violation of our lower bound V SUB admits a model-

independent arbitrage, in the sense that going long the variance call and short our subreplication

strategy generates arbitrage – regardless of which model actually prevails among all the continuous

semimartingale models consistent with the observed European prices. Davis-Hobson [13] explore

the subtle distinction between model-dependent and model-independent arbitrage.
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The same point applies to the upper bound: under the assumption that the Y dynamics follow

the Rost model, there exists a strategy that exactly replicates (〈X〉T − Q)+ and has initial value

EPRost(〈X〉T−Q)+. However, a Rost-specific strategy may fail to superreplicate, if some other model

P ∈ P governs the Y path distribution. The superreplicating strategy presented in this paper is

universal, and still manages to produce, in Figure 2’s ATM strike, an initial value V SUPER = 0.0274,

which is only 2.6% higher than the Rost model valuation 0.0267.

6 Conclusion

For spot-starting and forward-starting variance calls, we have found robust subreplication and su-

perreplication strategies, hence upper and lower bounds, universally valid for all continuous semi-

martingales. This extends Dupire’s subreplication of spot-starting variance calls. The strategies

hold Europeans statically and trade the underlying asset dynamically.

From a practical standpoint, we have investigated the pricing and hedging of a contract that

appeals to portfolio managers seeking to trade variance. From a methodological standpoint, we

have explored the model-free replicability of general functions of price and variance, payable at

general boundaries in price-variance space; we have exploited properties of geometric Brownian

motion, which arises even in the general continuous semimartingale setting, due to the DDS time

change by which quadratic variation becomes the “business-time” clock; and we have applied these

business-time devices carefully to hedge contracts expiring at a fixed calendar time.

From a broader perspective, we have continued the ongoing investigation into extracting infor-

mation about fully path-dependent risks from one-dimensional information about YT alone, and

into hedging those path-dependent risks using Europeans.
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Figure 2: Example: upper and lower bounds on a variance call
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Let T = 1. Given T -expiry European option prices consistent with the Heston model (5.1), the

dynamics of Y are not uniquely determined. Three models of Y dynamics consistent with those

prices are the Heston model itself, the Rost model, and the Root model, each of which generates

a different profile of variance call values. We plot all three profiles, together with the lower bound

V SUB and upper bound V SUPER derived, in (3.12) and (4.26), from the subreplicating and super-

replicating hedges. The lower bound is, to the naked eye, indistinguishable from the Root model

valuation (which is in fact larger than the lower bound at strikes 0.04 and higher, specifically larger

by 0.3% at the ATM strike 0.04). The upper bound is nearly (within 2.6% at the ATM strike 0.04)

attained by the Rost model.
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