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Abstract In a unified model-free framework that includes long-expiry, short-
expiry, extreme-strike, and jointly-varying strike-expiry regimes, we generate implied
volatility and implied variance approximations, with rigorous error estimates asymp-
totically smaller than any given power of L, where L denotes the exogenously given
absolute log of an option price that approaches zero. Our results, therefore, sharpen to
arbitrarily high order of accuracy (and, moreover, extend to general extreme regimes)
the model-free asymptotics of implied volatility. We then apply these general formu-
las to particular examples: Heston (using a previously known L expansion) and Lévy
(using saddlepoint methods to derive L expansions).
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1 Introduction

Asymptotic approximations of implied volatility serve several purposes. First, they
reveal information contained in implied volatility observations, in the following
sense: explicit formulas for a given model can connect, on the one hand, in-
formation about the model’s parameters, and, on the other hand, key features
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(such as level/slope/convexity with respect to strike/expiry) of the implied volatil-
ity skew/smile. This leads to an understanding of which specific parameters influence
which specific smile features, and it facilitates numerical calibration of those param-
eters to implied volatility data. Second, asymptotic formulas provide guidance for ex-
trapolating or interpolating implied volatility to unobserved strikes and expiries, by
suggesting the proper functional forms to use in parameterizing the volatility skew.
Third, asymptotic formulas can serve as checks on, or as substitutes for, numerical
integration or discrete Fourier schemes in regimes, such as deep-out-of-the-money,
where naively implemented discretizations are prone to numerical error.

Pursuant to these background motivations (and complementary to previous works
on asymptotic regimes of SDE parameters, such as [7] or [11]), a growing body of
research explores asymptotic regimes of strikes and expiries: a typical result focuses
on either long expiries, or short expiries, or extreme strikes. Taking a broader view
in this paper, we exploit the similarities of extreme-strike and extreme-expiry asymp-
totics, to introduce a general framework that unifies all three extreme strike/expiry
regimes, together with variants in which strike and expiry vary jointly.

Our approach encompasses not only general asymptotic regimes, but also general
models. Our primary results express the implied volatility V in a model-free way,
not in terms of the parameters of a particular process, but rather in terms of L, the
absolute log of the option price, and k, the log strike. This type of model-independent
formula has precedents in the literature; the leading examples in each regime are as
follows. Deferring precise definitions until the body of this paper, let us write L− and
L+ for the absolute logs of the prices of, respectively, an out-of-the-money call and a
covered-call position (long one share, short one call). Then the following asymptotics
are known: For short expiries with constant strike, Roper and Rutkowski [18] show
that

V 2 ∼ k2

2L−
. (1.1)

For long expiries, Tehranchi [20] shows that

V 2 = 8L+ − 4 logL+ + 4k − 4 logπ + o(1). (1.2)

For large strikes with constant expiry, Gulisashvili [9] shows that

V = G−
(
k,L−

1

2
logL−

)
+ O

(
L

−1/2
−

)
, (1.3)

where

G−(κ,u) := √
2
(√

u + κ − √
u

)
,

and that (1.3) implies other model-free results, including the moment formula (Lee
[13]) and tail-wing formula (Benaim and Friz [2]).

We sharpen all of the above formulas to arbitrarily high order of accuracy, in
the following sense: We generate, for any given J > 0, implied volatility and implied
variance formulas with rigorous error estimates of the type O(1/LJ ), where L → ∞.
Low-order special cases of our main theorem suffice to refine the previously known
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results. In particular, Corollary 6.1 sharpens (1.3), Corollary 7.2 sharpens (1.1), and
Corollary 7.11 sharpens (1.2). Moreover, in each case, our extension relaxes previ-
ously imposed regime assumptions, such as bounded strikes or constant expiry.

In applications, our error estimates have the form O(f (θ)) as θ → ∞, where f is
some specified function, and θ parameterizes the strikes and/or expiries of the option
contracts. We do not estimate the best constant α such that αf (θ) bounds the error for
sufficiently large θ , nor do we estimate how large a θ is sufficiently large. For those
reasons, computing the numerical value of f (θ) for a particular contract would not
approximate the numerical size of the error in our implied volatility formula; rather,
the f (θ) indicates the rate (modulo a multiplicative constant) at which a bound on
that error eventually approaches zero as strikes/expiries approach an extreme.

In Sect. 8 we apply our general results to specific models. For such applications,
it is necessary to either generate an approximation of L, or else use a known approx-
imation. We do generate L approximations in Sect. 8.3, but that is not this paper’s
primary purpose. Rather, we focus mainly on converting exogenously given L ap-
proximations into approximations of implied volatility V ; or in other words, inverting
the Black–Scholes formula asymptotically in general extreme regimes, with careful
error estimates, given (approximate or exact) option prices in general models.

Consider for example the Heston model at large strikes, Lévy models at short ex-
piries, and Lévy models at long expiries. In all three cases, there exist asymptotic ex-
pansions (according to, respectively, Friz et al. [8], Figueroa-Lopez and Forde [5], and
our Lemma 8.5), which approximate L in terms of the model’s parameters. Inserting
these L approximations into our main theorem’s corollaries, we obtain explicit para-
metric implied volatility formulas, again with careful error estimates showing that we
sharpen the sharpest previously known implied volatility formulas for those models.
In particular, Corollary 8.1 sharpens Friz et al. [8] in the Heston case, Corollary 8.3
sharpens Figueroa-Lopez and Forde [5] (hence Tankov [19] and Roper [17]) in the
short-dated Lévy case, and Corollary 8.6 sharpens Tehranchi [20] in the long-dated
Lévy case.

In a fourth application, distinct from the above fixed-strike or fixed-expiry regimes,
we let strike and expiry grow jointly. We derive saddlepoint approximations for Lévy-
driven option prices (and hence for L), which our implied volatility asymptotics then
map into the smile formulas of Corollary 8.7. Numerical experiments show the result-
ing approximations’ remarkable accuracy across a wide range of strikes and expiries.

2 Preliminaries

This section collects some definitions and notation.
For any differentiable function f , let Df denote the partial derivative of f with

respect to its last argument; in particular, if f is a function of a single variable, then
Df denotes its derivative. Likewise, for an n times differentiable f , let Dnf denote
the nth partial derivative of f with respect to its last argument.

Degenerate sums
∑0

1 are understood to mean 0.
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2.1 Asymptotics

For a function a and a nonvanishing function b on an interval (θ0,∞), write a = o(b)

if a(θ)/b(θ) → 0 as θ → ∞, and a = O(b) if lim supθ→∞ |a(θ)/b(θ)| < ∞. We
write a � b if a = O(b) and b = O(a). We write a ∼ b if a(θ)/b(θ) → 1 as θ → ∞.

2.2 Auxiliary functions

For x ∈ [0,∞), define

R±
n (x) := 1 ± 1

(1 + x)n−1/2
, n ≥ 1,

R±
0 (x) := 1,

A±
n (x) := (−1)n

(2n − 1)!!
2n

R±
n+1(x)

R±
1 (x)

, n ≥ 0,

where (−1)!! := 1 and

(2n − 1)!! := (2n − 1)(2n − 3) · · ·3 × 1, n ≥ 1.

For each n ≥ 1, define the function fn : Rn →R to satisfy, for all N > 1, and all real
sequences a1, a2, . . . ,

log

(
1 +

N−1∑
n=1

anε
n + O(εN)

)
=

N−1∑
n=1

fn(a1, . . . , an)ε
n + O(εN) (2.1)

as ε → 0. The first three fn are f1(a1) := a1 and f2(a1, a2) := a2 − a2
1/2 and

f3(a1, a2, a3) := a3
1/3 − a1a2 + a3. Let

B±
n (x) := fn

(
A±

1 (x), . . . ,A±
n (x)

)
.

Each fn is a polynomial (expressible in terms of Bell polynomials, which we omit
for brevity).

3 Option pricing formulas

All prices are understood to be denominated relative to a (possibly nonzero interest
rate bearing) bank account, whose initial balance equals the initial underlying stock
price. In effect, this normalizes the underlying to 1 initially, and interest rates to 0.

The relation between call price (in any arbitrage-free setting, not necessarily the
Black–Scholes model) and implied volatility is by definition given by the Black–
Scholes [3] formula. Specifically, let

F(κ, v) := κ2

2v2
− κ

2
+ v2

8
,
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and define C− : [0,∞) × (0,∞) → (0,∞) by

C−(κ, v) := N (−κ/v + v/2) − eκN (−κ/v − v/2) = 1√
2π

∫ v

0
e−F(κ,w) dw, (3.1)

where the right-hand formula expresses C− as the integral of its v-derivative, and N
denotes the standard normal CDF. Thus C− expresses the call price as a function of
the log strike price (or “moneyness”) κ ≥ 0 and the dimensionless (“unannualized”)
implied volatility v > 0. Dividing v by the square root of time to expiry would pro-
duce the usual annualized implied volatility. Define C+ : [0,∞) × (0,∞) → (0,∞)

by

C+(κ, v) := 1 − C−(κ, v) = 1√
2π

∫ ∞

v

e−F(κ,w) dw, (3.2)

which expresses a covered-call (long underlying, short call) combination’s price as a
function of log strike κ ≥ 0 and dimensionless implied volatility v > 0. Differentiat-
ing (3.1) and (3.2) in v, we have

DC±(κ, v) = ∓e−F(κ,v)

√
2π

. (3.3)

Define G± : [0,∞) × [0,∞) → R by

G±(κ,u) := √
2
(√

u + κ ± √
u

)
.

One can verify that G± are inverses of F in the sense that

v = G−
(
κ,F (κ, v)

)
if 2κ > v2 > 0,

v = G+
(
κ,F (κ, v)

)
if 0 < 2κ < v2,

(3.4)

and

u = F
(
κ,G±(κ,u)

)
if κ,u > 0. (3.5)

Recalling that DnG± denotes the nth partial derivative of G± in its second argument,
we have for n ≥ 1 that

DnG±(κ,u) = ±(−1)n−1 (2n − 3)!!
(2u)n−1/2

R±
n (κ/u) = DG±(κ,u)

A±
n−1(κ/u)

un−1
, (3.6)

which is useful in the following N -term approximate formula for C±, with error
bound.

Lemma 3.1 (Option price expansion) If κ > 0 and v > 0 satisfy

±(v2/2 − κ) > 0, (3.7)
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then, for any N ≥ 1, we have (with each ± in accordance with (3.7)) that

C±(κ, v) = ±
(

e−F(κ,v)

√
2π

N∑
n=1

DnG±
(
κ,F (κ, v)

)

+ 1√
2π

∫ ∞

F(κ,v)

e−uDN+1G±(κ,u)du

)
, (3.8)

where the remainder term satisfies

∣∣∣∣
1√
2π

∫ ∞

F(κ,v)

e−uDN+1G±(κ,u)du

∣∣∣∣ ≤ (2N − 1)!!√
2π

e−F(κ,v)R±
N+1(κ/F (κ, v))

(2F(κ, v))N+1/2
.

(3.9)

4 Asymptotic regimes

Henceforth let the log strike and implied volatility (κ, v) vary in [0,∞) × (0,∞),
along a path (k(θ),V (θ)) parameterized by θ ≥ 0.

Unless otherwise stated, all lim, lim sup, lim inf, and asymptotic relations are as
θ → ∞. The word eventually preceding a statement means that there exists θ0 such
that the statement holds for all θ > θ0.

Again, k and V always denote functions of θ . In order to avoid introducing new
notation for C±, F , DnG± regarded as functions of θ , let us agree that expressions
in the context of a θ -quantifier (such as “for all θ” or “as θ → ∞” or “eventually”)
should be read as functions of θ . For example, in such contexts, F or F(k,V ) will be
understood to mean F(k(θ),V (θ)). Likewise, C± or C±(k,V ) will be understood to
mean C±(k(θ),V (θ)).

4.1 The + and − asymptotic regimes

Unless otherwise specified, assume that eventually (k,V ) ∈ (0,∞)×(0,∞). Assume
that either

Case (+) : C+ −→ 0, or equivalently L+ := log(1/C+) −→ ∞ (4.1)

or

Case (−) : C− −→ 0, or equivalently L− := log(1/C−) −→ ∞
as θ → ∞. In Case (−), moreover, assume that

0 ∨ log(1/k) = o(L−). (4.2)

An equivalent formulation of condition (4.2) is that for some (equivalently: for every)
constant ε > 0, we have

log(k ∧ ε) = o(L−). (4.3)

A sufficient condition for (4.2) or equivalently (4.3) is that lim infk > 0.
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Although we have assumed k eventually positive, the case of k eventually negative
follows from standard reflection arguments of the type in [13] or [9]. Remark 8.9
gives an application of this principle.

Unless otherwise stated, in Sect. 5 through Sect. 7, we assume the conditions of
this Sect. 4.1; and all expressions involving ± are to be read as a pair of equations,
one for Case (+) and the other for Case (−). In Sects. 4.2 and 8 (the “application”
sections), however, this section’s conditions are not a priori assumptions, but rather
consequences of the setups in those particular sections.

The (±) cases bifurcate the positive quadrant of the (κ, v)-plane, in the following
sense.

Lemma 4.1 (Path classification) If we have Case (+), then eventually

0 < 2k < V 2.

If we have Case (−), then eventually

0 < V 2 < 2k.

By (3.4), therefore, F has inverse G± in the sense that

V = G±
(
k,F (k,V )

)
(4.4)

eventually, in Cases (±), respectively.

4.2 Examples of asymptotic regimes

The hypotheses of Sect. 4.1 can be verified in typical applications.

Example 4.2 (Large strikes) Let T > 0 be constant and k(θ) := θ . If there exist a
probability measure and a nonnegative random variable ST such that EST = 1 and
C−(k,V ) = E(ST − ek)+ > 0 for all θ , then by dominated convergence C− → 0, so
we have Case (−).

Example 4.3 (Short expiries) Let k > 0 be constant and T (θ) some function such that
T ↓ 0 as θ → ∞. If there exist a probability measure and a random variable ST ≥ 0
such that C−(k,V ) = E(ST − ek)+ > 0 for all θ and EST = 1, and the paths of S are
right-continuous a.s., then by dominated convergence C− → 0, so we have Case (−).

Example 4.4 (Long expiries) Let k > 0 be constant and T (θ) some function such that
T ↑ ∞ as θ → ∞. If there exist a probability measure and a supermartingale S ≥ 0
(which therefore has an a.s. limit S∞) such that C+(k,V ) = E(ST ∧ ek) > 0 for all θ ,
and such that limθ→∞ E(ST ∧ ek) → 0 (or equivalently, by dominated convergence,
S∞ = 0), then by the definition (4.1) we have Case (+). This is essentially the setup
of ([20], Sect. 2).

Jointly varying strike-expiry regimes could fall into either Case (+) or (−); see
Sect. 7.2.
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5 Asymptotic solution

5.1 Overview

Fixing an arbitrary path (k,V ) satisfying the Sect. 4.1 assumptions, we intend to
extract V explicitly from C or from L = log(1/C). In the extreme regimes we have
V → 0 or V → ∞, but C(k, ·) is singular at ∞ and 0 (unless k = 0), so one cannot
expect to have a solution purely in powers of C. Instead, our plan is to proceed from
(3.8) and solve iteratively for F , thence V .

Section 5.1 gives the intuition of the approach and motivates the notation. The pre-
cise versions of this section’s statements are in Sects. 5.2–5.5, which link to complete
rigorous proofs. The outline is as follows.

Step 1: Approximate F(k,V ) using φ(k,L), where the function φ is constructed by
applying (3.8) iteratively.

Step 2: Insert the F approximation φ into the (4.4) relation V = G(k,F ), producing

V ≈ G
(
k,φ(k,L)

)
. (5.1)

Proposition 5.6 (FAT) analyzes the error in this approximation.
Step 3: Estimate the error in replacing the “input” L by an approximation L̂, in or-

der to apply (5.1) in cases when the exact L is unavailable. Accordingly, we write
φ as a function of (κ,λ), placeholders for (log strike,− log option price), where
eventually L or L̂ is plugged into the λ slot.

Step 4: Estimate the error in replacing the G “output” by a series expansion of G, in
order to simplify the formulas.

Here we give further details on the more difficult Steps 1 and 2.
The Step 1 expansion of F is by taking logs in (3.8), expanding out to N terms,

and rearranging to get

F = L + h∗
N(k,F ) + O(1/FN), (5.2)

for an explicit function h∗
N involving an N -term sum, specified in (5.13), and derived

from the explicit form of DnG± for n = 1, . . . ,N − 1.
In order to solve approximately for F in (5.2), first truncate the O(1/FN) remain-

der, and then iteratively apply (5.2) to approximate F successively by ϕN,0, ϕN,1,
ϕN,2, . . . , where ϕN,0 := L and

ϕN,p+1 := L + h∗
N(k,ϕN,p), p = 0,1,2, . . . (5.3)

The idea is that each successive iterate improves, by a factor of O(1/L), the iterative
error (as distinct from the truncation error in (5.2), which is not improved by itera-
tion). To see this intuitively, combine (5.2) and (5.3), to relate the error in iteration
p + 1 to the error in iteration p via

|ϕN,p+1 − F | = |h∗
N(k,ϕN,p) − h∗

N(k,F )| + O(1/FN)

= O(1/L)|ϕN,p − F | + O(1/LN), (5.4)
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where the last expression comes from showing that

ϕN,p ∼ L ∼ F (5.5)

for all p, and that the derivative of h∗
N in its second argument satisfies, for all Λ ∼ L,

Dh∗
N(k,Λ) = O(1/L). (5.6)

By applying induction (or related arguments) to (5.4), doing P iterations approxi-
mates F with error

|F − ϕN,P | = O(1/LN) + O(1/LP−1),

and converting this in Step 2 from an F -estimation error into a V -estimation error
gives the conclusion

|V − G(k,ϕN,P )| = 1

L1/2
O

( 1

LN
+ 1

LP−1

)
, (5.7)

where the factor of L−1/2 (which can be improved in the (−) case) comes from
estimating the derivative of G± in its second argument.

This basic version of our result has the drawback that (5.3), and hence G(k,ϕN,P ),
inherit the messiness of h∗

N . Revisiting Step 1, we should like to be able to replace h∗
N

with a simpler function h (which will still depend on N ). Moreover, we should like
the freedom to modify each individual iterate p = 1,2, . . . by adding some ηp that
does not depend on the previous iterate, but rather is chosen, in typical applications,
to cancel out any messy minor terms that arise in the pth iterate. So let us generalize
the iteration (5.3) to

φH,p+1(κ,λ) := λ + h
(
κ,φH,p(κ,λ)

) + ηp+1(κ,λ),

ϕH,p := φH,p

(
k,L(k,V )

)
,

(5.8)

which is no longer indexed just by N but, more generally, by the iteration scheme
H := (h;η1, . . . , ηP ).

In order to retain the error improvement of a factor of O(1/L) with each itera-
tion, we require the functions h and each η to satisfy (in place of h∗

N ) the property
(5.6), which we describe as a sublog condition because it stipulates that the function’s
derivative be asymptotically no larger than the log function’s derivative.

Because the ηp are allowed to differ from each other, and h is allowed to differ
from h∗

N , the ϕH has additional error unaccounted in the (5.4) analysis of ϕN ; so let
us define a residual ψ that depends on

|h − h∗
N | and on |ηp+1 − ηp| for p = 1, . . . ,P − 1. (5.9)

For a regular iteration scheme H , this residual ψ is small in the sense of Defini-
tion 5.4; for such H our Proposition 5.6 (FAT) proves that ϕH,P can replace ϕN,P in
the conclusion (5.7), provided that the error estimate in (5.7) is modified by replacing
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the O(1/LP−1) term by O(ψ/LP ), which captures the error due to halting the iter-
ation after the P th iterate, together with the error due to extending from (5.3) which
uses h∗

N , to (5.8) which uses a more general (but in practice simpler) function h+ηp .
This closes the expository overview. The following sections give the precise state-

ments and proofs.

5.2 Step 1: Approximate F(k,V ) using φ(k,L)

We fix an arbitrary path (k,V ) satisfying the Sect. 4.1 assumptions.
Motivated by (5.6), we build the iteration scheme using functions, which grow like

log or slower, in the following sense.

Definition 5.1 (Sublog function) We say that η : (0,∞) × (0,∞) → R is a sublog
function (in Case (±)) if Dη : (0,∞) × (0,∞) → R exists, and if for all functions
Λ(θ) such that Λ ∼ L± as θ → ∞, we have

η(k,Λ) = o(L±), (5.10)

Dη(k,Λ) = O(1/L±), (5.11)

as θ → ∞. Recall that Dη denotes the partial derivative of η in its second argument.

Our main example of a sublog function is the following, motivated by (5.2).

Lemma 5.2 Define the function h∗
N,±, or more briefly h∗

N , by

h∗
0(κ,λ) := −1

2
logλ, (5.12)

h∗
N(κ,λ) := −1

2
logλ + log

1

2
√

π
+ logR±

1 (κ/λ) +
N−1∑
n=1

B±
n (κ/λ)

λn
, (5.13)

for N ≥ 1. Then h∗
N is a sublog function for each N ≥ 0.

Motivated by (5.3) and (5.8), our iteration scheme can use h∗
N , or, more generally,

the sum of a sublog function h (applied recursively) and a sublog perturbation ηp in
the pth iterate (applied non-recursively):

Definition 5.3 Let P ≥ 1 and H := (h;η1, . . . , ηP ), where h and each η are sublog
functions. Define

φH,0(κ,λ) := λ.

For p = 0, . . . ,P − 1, define the function φH,p+1 recursively by

φH,p+1(κ,λ) := λ + h
(
κ,φH,p(κ,λ)

) + ηp+1(κ,λ)

at all (κ,λ) such that φH,p(κ,λ) > 0. For p = 0, . . . ,P , let

ϕ±
H,p(θ) := φH,p

(
k(θ),L±

(
k(θ),V (θ)

))
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for all θ large enough. An omitted second subscript is understood to be P . Thus
ϕ±

H := ϕ±
H,P and φH := φH,P .

Motivated by the discussion of (5.9), we define a regular iteration scheme to be
one whose residual ψ is not too large.

Definition 5.4 (Regular iteration scheme) Let N ≥ 0 and P ≥ 1, and define
H := (h;η1, . . . , ηP ), where h and each η are sublog functions. Let

η0 := −h, η∗ := h∗
N − h. (5.14)

If there exists a function ψ(θ) such that ψ/LP = O(1) and

P−1∑
p=0

|ηp+1(k,L) − ηp(k,L)|
LP−p

+ |η∗(k,ϕH,P−1) − ηP (k,L)| = O
( ψ

LP

)
, (5.15)

as θ → ∞, then we say that H is a regular iteration scheme (RISC), or, more specif-
ically, a P -ply RISC with N -residual ψ .

Residuals ψ are not unique; for example, multiplying ψ by a constant pre-
serves (5.15).

Example 5.5 For any N ≥ 0 and P ≥ 1, letting

h := h∗
N and η1 := η2 := · · · := ηP := 0

produces a P -ply RISC, with N -residual ψ = L, because

η1(k,L) − η0(k,L) = O(L)

by (5.10).

5.3 Step 2: Approximate V by inserting the F approximation φ into G

To arbitrarily high order of accuracy, our main theorem approximates V by a function
of k and L, obtained by consummating Steps 1 and 2 of the approach outlined in the
Sect. 5.1 overview.

Proposition 5.6 (Full asymptotic theorem, FAT) Let P ≥ 1 and N ≥ 0. Suppose that
H := (h;η1, . . . , ηP ) is a P -ply RISC with N -residual ψ . Define VH,±(θ) by

VH,± := G±
(
k,φH (k,L±)

)
. (5.16)

Then as θ → ∞,

|VH,− − V | = O

(
1 ∧ (k/L−)N∧1

L
1/2
−

( ψ

LP−
+ 1

LN−

))
(5.17)
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and

|VH,+ − V | = O

(
1

L
1/2
+

( ψ

LP+
+ 1

LN+

))
. (5.18)

In particular, accuracy to order arbitrarily high in powers of 1/L can be obtained by
choosing N and P sufficiently large and h := h∗

N and η1 := · · · := ηP := 0.

Converting from implied volatility V into implied variance V 2, we have the fol-
lowing.

Corollary 5.7 (FAT for implied variance) Let P ≥ 1 and N ≥ 0. Let H be a P -ply
RISC with N -residual ψ . Then as θ → ∞,

|V 2
H,− − V 2| = O

(( k

L−
∧ k2

L2−

)( ψ

LP−
+ 1

LN−

))
, N > 0,

|V 2
H,− − V 2| = O

(1 + k

L−

)
, N = 0,

|V 2
H,+ − V 2| = O

((
1 + k1/2

L
1/2
+

)( ψ

LP+
+ 1

LN+

))
, N ≥ 0.

5.4 Step 3: Replace the input of G or G2

In (5.16), the function G is evaluated at (k,φH (k,L)), but we may replace L with
some L̂ ∼ L.

This completes Step 3 of the argument outlined in the Sect. 5.1 overview.

Lemma 5.8 Let H be a RISC and let L̂ ∼ L±. Define

V̂H,± = G±
(
k,φH (k, L̂±)

)
.

Then, as θ → ∞, we have φH (k, L̂±) ∼ L±; and in Case (−),

|V̂H,− − VH | = O

(
1 ∧ (k/L−)

L
1/2
−

|L̂ − L−|
)

,

|V̂ 2
H,− − V 2

H | = O

(( k

L−
∧ k2

L2−

)
|L̂ − L−|

)
,

and in Case (+),

|V̂H,+ − VH | = O

(
1

L
1/2
+

|L̂ − L+|
)

,

|V̂ 2
H,+ − V 2

H | = O

((
1 + k1/2

L
1/2
+

)
|L̂ − L+|

)
.
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Example 5.9 In particular, if we have some Ĉ± � C± and L̂± := log(1/Ĉ±), then
L± − L̂± = O(1) and L̂± ∼ L±, and the additional errors from Lemma 5.8 become
O((k ∧ L−)/L

3/2
− ) and O(1/L

1/2
+ ). In the case N = 0, these additional errors are

absorbed into the error estimates in (5.17), (5.18). This special case of Lemma 5.8
therefore extends, to general extreme regimes, an extreme-strike result of [9].

Remark 5.10 Although our applications (Sect. 8) will work directly with option price
asymptotics, our results above are also applicable given transition density asymp-
totics, because density asymptotics imply option price asymptotics, by results of the
type in Gulisashvili (under regular variation conditions; see [9], Theorem 7.1), and
therefore they yield asymptotic approximations L̂ to L.

5.5 Step 4: Replace the output of G or G2

Replacing the output of G2 by a truncated series simplifies the expression but pro-
duces an additional error term.

Lemma 5.11 Define a±
m := 0 for even m ≥ 0, and a±

−1 := 4 ± 4, and

a±
m := ±2π

Γ (1 − m/2)Γ (−m/2)Γ (2 + m)
, for odd m > 0.

If k = O(L), then, for any odd M ≥ −1 and any Λ ∼ L, as θ → ∞,

∣∣∣∣
M∑

m=−1

a±
mkm+1

(Λ + k/2)m
− G2±(k,Λ)

∣∣∣∣ = O
( kM+3

LM+2

)
.

A similar expansion exists for G, with an error estimate by a similar proof, which
we omit for brevity.

Alternatively, we may simply take the square root of a V 2 approximation, or
square a V approximation, to obtain an approximation of V or V 2, respectively. The
next lemma controls the resulting error.

Lemma 5.12 If some functions â(θ) and a(θ) satisfy â ∼ a as θ → ∞, then

|â2 − a2| = O
(|â − a|â)

and |â − a| = O
(|â2 − a2|/â)

.

Example 5.13 If k = O(L), then by Lemmas 5.11 and 5.12,

G2−(k,Λ) = k2

2Λ + k
+ O

( k4

L3

)
, (5.19)

G−(k,Λ) = k√
2Λ + k

+ O
( k3

L5/2

)
, (5.20)

G2+(k,Λ) = 8Λ + 4k − k2

2Λ + k
+ O

( k4

L3

)
= 8Λ + 4k + O

(k2

L

)
, (5.21)
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G+(k,Λ) =
(

8Λ + 4k − k2

2Λ + k

)1/2 + O
( k4

L7/2

)

= (8Λ + 4k)1/2 + O
( k2

L3/2

)

for any Λ ∼ L.

6 Corollaries for general (k,L)

In Sects. 6 and 7, we generate corollaries specializing Proposition 5.6 in various direc-
tions. The statement of each corollary will be nonetheless self-contained, in the sense
that the reader does not need to refer to Proposition 5.6. Each corollary’s statement
requires only the standing assumptions of Sects. 3 and 4. (The corollaries’ proofs
may refer to Proposition 5.6, but the additional hypotheses of Proposition 5.6 will be
proved, not assumed.)

With no further assumptions on (k,L), the FAT in Proposition 5.6 generates im-
plied volatility formulas such as Corollaries 6.1 and 6.3. For simplifications in the
case that k/L converges, see Sect. 7.

6.1 Case (−)

This corollary is applicable in the fixed-expiry large-strike regime, the fixed-strike
short-expiry regime, and some cases of jointly varying strike-expiry regimes. In
particular, (6.1) applied at a fixed expiry recovers (1.3), an important theorem of
Gulisashvili. We can extend to arbitrarily high order of accuracy in L by keeping
each η = 0 (or sufficiently small), but taking N and P sufficiently large. For exam-
ple, the refinement (6.2) comes from incrementing N to 1.

Corollary 6.1 (Implied volatility formulas in Case (−)) Write L := L−. If Case (−)

holds, then, as θ → ∞, the dimensionless implied volatility V has expansions
∣∣∣∣G−

(
k,L − logL

2

)
− V

∣∣∣∣ = O
( 1

L1/2

)
, (6.1)

∣∣∣∣G−
(
k,L − log

√
4πL

1 − (1 + k/L)−1/2

)
− V

∣∣∣∣ = O
( logL

L3/2

)
. (6.2)

Remark 6.2 If T → 0, then convergence |V̂ − V | → 0 of the error in dimensionless
implied volatility does not necessarily imply convergence of the error |V̂ − V |/√T

in annualized implied volatility.
For example, if V̂ := G−(k,L − logL

2 ) as in (6.1), then the dimensionless error
O(L−1/2) implies an annualized error O((T L)−1/2). If L = O(1/T ), which is typ-
ical of diffusions as T → 0, then the annualized error is O(1), so convergence does
not follow. A benefit of our approach is that it also generates refined approximations;

for instance if V̂ := G−(k,L − log
√

4πL

1−(1+k/L)−1/2 ) as in (6.2), then indeed we have

the annualized convergence |V̂ − V |/√T → 0.
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6.2 Case (+)

This corollary is applicable in the fixed-strike long-expiry regime, and some
cases of jointly varying strike-expiry regimes. For illustrative purposes, it takes
(N,P ) = (1,2) and η nonzero in the FAT in Proposition 5.6, but extensions to ar-
bitrarily high order come from taking N and P larger, and η smaller or zero.

Corollary 6.3 (Implied volatility formulas in Case (+)) Write L := L+. If Case (+)

holds, then, as θ → ∞, the dimensionless implied variance V 2 has expansions

∣∣∣∣G2+
(
k,L − logL

2
− logπ

2

)
− V 2

∣∣∣∣ = O

((
1 + k1/2

L1/2

)( logL

L
+ k ∧ L

L

))
, (6.3)

∣∣∣∣G2+
(
k,L − logL

2
− logπ

2
+ logL

4L

)
− V 2

∣∣∣∣ = O

((
1 + k1/2

L1/2

)( 1

L
+ k ∧ L

L

))
,

(6.4)

and the dimensionless implied volatility V has expansions
∣∣∣∣G+

(
k,L − logL

2
− logπ

2

)
− V

∣∣∣∣ = O
( logL

L3/2
+ k ∧ L

L3/2

)
, (6.5)

∣∣∣∣G+
(
k,L − logL

2
− logπ

2
+ logL

4L

)
− V

∣∣∣∣ = O
( 1

L3/2
+ k ∧ L

L3/2

)
. (6.6)

7 Corollaries for convergent k/L

In practice, k/L will typically converge to some limit in [0,∞) as θ → ∞. Two
common examples are as follows. First, if k is constant or bounded, then k/L → 0.
Second, if

L = α1θ + o(θ) (7.1)

for some constant α1 > 0, along some path where k(θ) = bθ for some b > 0, then
k/L → b/α1.

In such cases where k/L converges, our implied volatility asymptotics admit sim-
plifications; for example, the results of Corollaries 7.2 and 7.8 are simplifications, in
the sense that they facilitate truncation—including, if desired, the truncation of the V

expansion (while making clear what impact such a truncation has on the error esti-
mate), and also including the truncation of L expansions (such as (7.4) or (7.16)) that
plug into the V expansion. Regarding the latter point, truncation of the L expansion
(which is usually required, given the unavailability of exact L) becomes simplified
because the V approximations in this section’s corollaries make clear how the error
in approximating L translates into an error in approximating V , and thereby indicate
how many terms of an L expansion need to be retained.

In some cases, the simplifications (assuming convergent k/L) of this section are,
moreover, sharper than the corresponding results of the previous section. For exam-
ple, (7.13) both simplifies and sharpens (6.4) in the case lim supk < ∞.
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7.1 Short-expiry and related regimes

Section 7.1 assumes, unless otherwise stated, that the path belongs to Case (−) and
k/L → 0. This includes the short-expiry bounded-strike regime, meaning the paths
such that k(θ) � 1 (equivalently, 0 < lim infk ≤ lim supk < ∞) and V (θ) → 0. It
also includes the fixed-expiry extreme-strike regime under “thin-tailed” distributions,
because at a fixed expiry, k/L → 0 is equivalent to the underlying share price hav-
ing finite moments of all positive orders. (The case of extreme strikes under general
distributions, regardless of tail behavior, belongs to Sect. 6.1.)

Corollary 7.1 (Case (−) with k/L → 0) Write L := L−. If k/L → 0 as θ → ∞,
then for the dimensionless implied variance,

∣∣∣∣G2−
(
k,L − 3

2
logL + log

k

4
√

π

)
− V 2

∣∣∣∣ = O
( k2

L2

logL + | logk| + k

L

)

= o
( k2

L2

)
, (7.2)

∣∣∣∣G2−
(
k,L − 3

2
logL + log

k

4
√

π
+ 9 logL

4L

)
− V 2

∣∣∣∣ = O
( k2

L2

| logk| + k

L

)

= o
( k2

L2

)
, (7.3)

and for the dimensionless implied volatility,
∣∣∣∣G−

(
k,L − 3

2
logL + log

k

4
√

π

)
− V

∣∣∣∣ = O
( k

L3/2

logL + | logk| + k

L

)

= o
( k

L3/2

)
, (7.4)

∣∣∣∣G−
(
k,L − 3

2
logL + log

k

4
√

π
+ 9 logL

4L

)
− V

∣∣∣∣ = O
( k

L3/2

| logk| + k

L

)

= o
( k

L3/2

)
. (7.5)

Substitutions of the type in Sect. 5.5 reduce the Corollary 7.1 formulas to the
following form.

Corollary 7.2 (Case (−) expanded, with k/L → 0 and proxies for G and L) Write
L = L−. Let

W(κ,λ) := κ2

2λ

(
1 + 3 logλ

2λ
− κ + log(κ2/(16π))

2λ
+ 9(logλ)2

4λ2

−
(

9 + 6κ + 6 log
(
κ2/(16π)

)) logλ

4λ2

)
. (7.6)
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Then the dimensionless implied variance and volatility have expansions

∣∣W(k, L̂) − V 2
∣∣ = O

(
k2

L

(k2 + (log k)2

L2
+ |L − L̂|

L

))
, (7.7)

∣∣(W(k, L̂)
)1/2 − V

∣∣ = O

(
k

L1/2

(k2 + (log k)2

L2
+ |L − L̂|

L

))
(7.8)

for any function L̂ ∼ L.

Remark 7.3 Ignoring any terms of the Corollary 7.2 expansion adds their absolute
value to the error estimate. For example, dropping all sub-leading terms of W yields

∣∣∣∣
k2

2L̂
− V 2

∣∣∣∣ = O
(k2

L

k + | logk| + |L − L̂| + logL

L

)
= o

(k2

L

)
.

Therefore k2/(2L) ∼ V 2, which implies the constant-k result of Roper and Rutkowski
[18], and a constant-expiry result of Gulisashvili [10]. Corollary 7.2 sharpens both
previous results.

We formulate the next corollary with a view towards diffusion examples.

Corollary 7.4 Write L := L−. Assume that k � 1 and T (θ) → 0, and that for all
θ > 0,

L = α−1

T
− 3

2
logT + α0 + ε(θ),

where the coefficients α−1, α0 may depend on θ , provided that 0 < lim infα−1 and
lim sup(|α−1| + |α0|) < ∞, and where ε(θ) = o(T −1) as θ → ∞. Then the implied
variance has the expansion

V 2

T
= k2

2α−1
− k2

4α2−1

(
k + log

k2

16π
+ 2α0 − 3 logα−1

)
T + O(T 2 + εT ).

In particular, if ε = O(T ) then the remainder is O(T 2).

Finally, let us include the k = 0 regime—a much simpler case, because C−(0, ·) is
analytic.

Proposition 7.5 (Short-expiry at-the-money implied volatility) Instead of the condi-
tion in Sect. 4.1, assume that k = 0 and C− → 0. Then for all sufficiently large θ , we
have the convergent power series

V = √
8

∞∑
j=1

Dj inverf(0)

j ! C
j
−

= √
2π

(
C− + π

12
C3− + 7π2

480
C5− + 127π3

40320
C7− + · · ·

)
. (7.9)
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Expansions of C− in T can be substituted into (7.9). For concreteness, let us take
an expansion with remainder O(T 5/2); but the same principle applies to expansions
of any order.

Corollary 7.6 (Short-expiry T -expansion for at-the-money implied volatility) In-
stead of the Sect. 4.1 conditions, assume that k = 0 and T (θ) → 0 and

C− = α1/2T
1/2 + α3/2T

3/2 + O(T 5/2),

where the coefficients α1/2, α3/2 may depend on θ , provided that they satisfy
lim sup(|α1/2| + |α3/2|) < ∞ as θ → ∞. Then

V√
T

= √
2π

(
α1/2 +

( π

12
α3

1/2 + α3/2

)
T

)
+ O(T 2),

V 2

T
= 2πα2

1/2 +
(π2

3
α4

1/2 + 4πα1/2α3/2

)
T + O(T 2).

7.2 Large-strike and/or long-expiry regimes

This section assumes we have either Case (+) with lim(k/L) ∈ [0,∞), or Case (−)

with lim(k/L) ∈ (0,∞). (Paths in Case (−) with lim(k/L) = 0 belong to Sect. 7.1.)
This section therefore includes the bounded-strike long-expiry regime, because
k/L → 0. It also includes the fixed-expiry large-strike regime and hybrid large-strike
long-expiry regimes in cases where k/L has a limit, which will be verifiable in our
applications, via expansions of the type in (7.1). (Even in cases lacking such an ex-
pansion, the convergence of k/L in the fixed-expiry large-strike regime, which is
equivalent to the moment formula’s limsup being a limit, can still be verified, by suf-
ficient conditions in Benaim and Friz [1], or necessary and sufficient conditions in
Gulisashvili [10].)

Corollary 7.7 (Case (±) for convergent k/L) In Case (+), assume k/L has a limit
in [0,∞) and write L := L+. In Case (−), assume k/L has a limit in (0,∞) and
write L := L−. Let

δ := |k/L − lim(k/L)|, �±
1 := limR±

1 (k/L), �±
2 := limR±

2 (k/L).

Then the dimensionless implied variance V 2 has expansions
∣∣∣∣G2±

(
k,L + log

�±
1√

4πL

)
− V 2

∣∣∣∣ = O
(
δ + logL

L

)
(7.10)

and
∣∣∣∣G2±

(
k,L + log

R±
1 (k/ϕ±

1 )√
4πL

− 1

2L
log

�±
1√

4πL
− �±

2

2�±
1 L

)
− V 2

∣∣∣∣

= O
( δ

L
+ (logL)2

L2

)
(7.11)

as θ → ∞, where ϕ±
1 := L + log(�±

1 /
√

4πL).
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Similarly, the dimensionless implied volatility V has the following expansions: In
(7.10) and (7.11), replacing each G2 by G and each V 2 by V causes each right-
hand-side error estimate to be multiplied by O(1/L1/2).

In the (+) case with k/L → 0, the Corollary 7.7 formulas reduce to the following
forms.

Corollary 7.8 (Case (+) with k/L → 0) Write L := L+. If k/L → 0 as θ → ∞,
then the dimensionless implied variance has expansions

∣∣8L − 4 logL + 4k − 4 logπ − V 2
∣∣ = O

(
ε1 + logL

L

)
(7.12)

and

∣∣∣∣8L − 4 logL + 4k − 4 logπ + 2 logL

L
− k2 + 4k + 8 − 4 logπ

2L
− V 2

∣∣∣∣

= O
(
ε2 + (logL)2

L2

)
, (7.13)

where ε1(θ) := (k2 + k)/L and ε2(θ) := k4/L3 + (k3 + k2 logL)/L2. In particular,
if lim supk < ∞, then ε1 and ε2 drop out of (7.12) and (7.13).

Similarly, the dimensionless implied volatility V has the following expan-
sions: In (7.12) and (7.13), replacing each expansion by its square root and
each V 2 by V causes each right-hand-side error estimate to be multiplied by
O(1/L1/2).

Remark 7.9 The 8L − 4 logL + 4k − 4 logπ in (7.12) recovers an important asymp-
totic approximation by Tehranchi for long-expiry dimensionless implied variance.
More generally, Corollaries 6.3 and 7.7 allow k to vary without bound; and more pre-
cisely, our extended asymptotics generate the higher-order approximation (7.13), and
further approximations accurate to arbitrarily high powers of 1/L (by increasing N

and P in the FAT in Proposition 5.6).

Expansions of L induce expansions of V . For example:

Corollary 7.10 Suppose that k(θ) = θ , and as θ → ∞, we have

L− = α1k + α1/2k
1/2 + α� logk + α0 + O(k−r ) (7.14)

for some r ∈ (0,1/2), some constant α1 > 0, and some α1/2, α�,α0 which may de-
pend on θ , provided that lim sup(|α1/2| + |α�| + |α0|) < ∞. Then the dimensionless
implied volatility has the expansion

V = β1/2k
1/2 + β0 + β�−1/2

logk

k1/2
+ β−1/2

k1/2
+ O

( 1

kr+1/2

)
,
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where

β1/2 := √
2α1 + 2 − √

2α1,

β0 :=
( 1√

2α1 + 2
− 1√

2α1

)
α1/2,

β�−1/2 :=
( 1√

2α1 + 2
− 1√

2α1

)(
α� − 1

2

)
, (7.15)

β−1/2 :=
( 1√

2α1 + 2
− 1√

2α1

)(
α0 + log

R−
1 (1/α1)√

4πα1

)

+
( 1

2(2α1)3/2
− 1

2(2α1 + 2)3/2

)
α2

1/2.

Corollary 7.10 targets large-strike Heston asymptotics, while Corollary 7.11 tar-
gets large-strike and/or long-expiry Lévy asymptotics. The two could be unified, but
the formulas are separately less cumbersome.

Corollary 7.11 Suppose that for either L+ or L−, we have, as θ → ∞,

L± = α1θ + 1

2
log θ + α0 + α−1

θ
+ O

( 1

θ2

)
, (7.16)

for some constant α1 > 0, and some α0, α−1 which may depend on θ , provided that
lim sup(|α0| + |α−1|) < ∞. If we have (7.16) for L+ and lim supk(θ) < ∞, then

V 2 = 8α1θ + (4k + 8α0 − 4 logα1 − 4 logπ)

+
(

8α−1 − k2 + 4k + 8 − 4 logα1π + 8α0

2α1

)1

θ
+ O

( (log θ)2

θ2

)
.

If we have (7.16) for either L+ or L−, and k = bθ for some constant b > 0, then

V = β1/2θ
1/2 + β−1/2

θ1/2
+ β−3/2

θ3/2
+ O

( (log θ)2

θ5/2

)
, (7.17)

where

β1/2 := √
2α1 + 2b ± √

2α1,

β−1/2 :=
( 1√

2α1 + 2b
± 1√

2α1

)
γ, (7.18)

β−3/2 := α∗

(2α1 + 2b)1/2
− γ 2

2(2α1 + 2b)3/2
±

( α∗

(2α1)1/2
− γ 2

2(2α1)3/2

)
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and

γ := α0 + log
R±

1 (b/α1)√
4πα1

,

α∗ := α−1 − R±
2 (b/α1)

2α1R
±
1 (b/α1)

− γ
(α1 + b)3/2 ± α

3/2
1

2α1(α1 + b)(
√

α1 + b ± √
α1)

,

(7.19)

where each ± in (7.18) and (7.19) is determined by the ± in (7.16).

8 Applications

In the large-strike Heston and short-expiry Lévy cases, we recall the call-price asymp-
totics due to, respectively, Friz et al. ([8]; FGGS henceforth) and Figueroa-Lopez and
Forde [5]. In the long-expiry Lévy case, we carry out a saddlepoint expansion beyond
leading order, and without bounding the strikes, thereby refining and extending the
option-price asymptotics of Tehranchi [20].

In all of the above cases, we then input the option-price asymptotics into our gen-
eral implied volatility formulas, which then sharpen the sharpest previously known
approximations of V or V 2. In all cases, the Sect. 8 formulas (specializing our model-
free results of previous sections, which were expressed in terms of (k,L)) are ex-
pressed here in terms of strike (but not L), expiry, and the parameters (or cumulant
functions) of the particular models.

8.1 Large-strike Heston

As an application of Corollary 7.10, consider the case of Heston [12] dynamics.

Corollary 8.1 (Heston model large-strike asymptotics) Let T > 0 be any constant.
Let k(θ) := θ and assume that there exists a probability measure such that for all
θ > 0,

C−(k,V ) = E(ST − ek)+,

where

dSt = St
√

vt dWt, S0 = 1,

dvt = (a + bvt )dt + c
√

vt dZt , v0 > 0,

where a ≥ 0, b ≤ 0, c > 0 and the correlated Brownian motions W and Z satisfy
d〈W,Z〉t = ρ dt with ρ ∈ (−1,0]. Let

s+ := sup{p ≥ 1 : ES
p
T < ∞},

α1 := s+ − 1,

α1/2 := −2

c

( 2v0

σ(s+)

)1/2
,
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α� := 3

4
− a

c2
,

α0 := log
s+(s+ − 1)

A
,

where χ(s) := sρc + b and Δ(s) := χ(s)2 − c2(s2 − s) and

σ(s) := T ∗(s)2ρcχ(s) − c2(2s − 1)

2Δ(s)
+ (c2(2s − 1) − 2ρcχ(s))χ(s) + 2ρcΔ(s)

Δ(s)(χ(s)2 − Δ(s))
,

T ∗(s) := 2√−Δ(s)

(
arctan

√−Δ(s)

χ(s)
+ π

)
,

A := 1

2
√

π

( 2v0

σ(s+)c2

)1/4(σ(s+)v0s+(s+ − 1)

2

)−a/c2

× exp

(
− v0

(χ(s+)

c2
− σ ′(s+)

c2σ(s+)2

)
− aT

c2
χ(s+)

)
.

Then

V = β1/2k
1/2 + β0 + β�−1/2

log k

k1/2
+ β−1/2

k1/2
+ O

(
k−3/4), (8.1)

where each β is defined in (7.15).

The leading term of (8.1) is given by the moment formula (without error esti-
mates). FGGS find the next two terms explicitly in the Heston model, with error esti-
mate O(k−1/2). Here we have found the fourth term β−1/2/k1/2 explicitly, reducing
the error to O(k−3/4).

Example 8.2 (Heston) In Fig. 1, we plot the refined approximation (8.1) against the
true implied volatility generated by the Heston model, with the same parameters as
in FGGS, namely

(a, b, c, ρ, v0) = (0.0429,−0.6067,0.2928,−0.7571,0.0654).

We also plot the FGGS approximation, which does not include the O(k−1/2) term.

8.2 Short-expiry Lévy

As an application of Corollary 7.2, consider the case of Lévy dynamics.

Corollary 8.3 (Small-time asymptotics for implied variance of exponential Lévy pro-
cesses) Let k > 0 be any constant. Let T (θ) → 0 and assume that there exists a
probability measure such that for all θ > 0,

C−(k,V ) = E(eXT − ek)+,
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Fig. 1 Implied volatility in the Heston model at large strikes: T = 1 year.
In Fig. 1, the FGGS [8] Heston smile approximation consists of the first three terms of (8.1), and our
refined approximation includes all four terms of (8.1)

where X is a Lévy process with generating triplet (σ 2, b, ν) such that eX is a mar-
tingale and ν has a positive C1 density pν such that sup|x|>ε(e

x ∨ 1)pν(x) < ∞ for
every ε > 0. Let

a :=
∫ ∞

−∞
(ex − ek)+pν(x)dx.

Then, with W defined in (7.6),

V 2 = W
(
k, log

1

aT

)
+ O

(| logT |−3). (8.2)

The approximation (8.2) sharpens the o(| logT |−2) approximation of Figueroa-
Lopez and Forde [5].

Remark 8.4 The error of O(1/| logT |2) in the dimensionless implied variance im-
plies that the annualized implied variance has error O(1/(| logT |2T )).

The blow-up 1/(| logT |2T ) → ∞ of the error bound as T → 0 should be re-
garded in the context that the true annualized implied variance V 2/T also blows up
as T → 0. If instead of the absolute annualized error W/T − V 2/T , we consider the
relative error W/V 2 − 1 (which is the same regardless of the annualized vs. dimen-
sionless convention), then we have convergence to 0; in particular, by (7.6) and (8.2),
the relative error is O(1/| logT |2) as T → 0.
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This rate of convergence, however, is slow; for example, in order to reduce the
estimate of the relative error by a factor of 4, it is necessary to square the T . We
therefore do not recommend this approximation.

8.3 Long-expiry and/or large-strike Lévy

As an application of Corollary 7.11, consider the case of Lévy dynamics.
First we carry out, beyond leading order, a saddlepoint expansion for option prices,

valid for log strikes that are constant or linear or affine in expiry. Figueroa-Lopez et
al. [6], in a preprint on large-time Lévy asymptotics, obtain (contemporaneously) a
result similar to Lemma 8.5.

Lemma 8.5 (Refined saddlepoint expansion of Lévy-driven option prices) Let
T (θ) := θ and

k(θ) := κ0 + bθ

for some constants κ0 ≥ 0 and b ≥ 0. Assume that there exists a probability measure
P such that

C+(k,V ) = E(eXT ∧ ek),

C−(k,V ) = E(eXT − ek)+

for all θ > 0, where X is a nonconstant Lévy process such that eX is a martingale.
Let X1 have cumulant generating function

L(u) := logEeuX1

and let

Lb(u) := L(u) + b(1 − u).

Assume that L′
b has a real root u∗ ∈ (0,1) or u∗ ∈ (1, sup{u ≥ 1 : EeuX1 < ∞}) such

that

L′′
b(u∗) > 0, (8.3)

ReLb(u∗ + iy) < Lb(u∗) for all real y �= 0, (8.4)

lim sup
y→±∞

ReLb(u∗ + iy) < Lb(u∗). (8.5)

A sufficient condition for (8.3)–(8.5) is that X1 admits a density.
Let L := L+ if u∗ < 1, or L := L− if u∗ > 1. Let

Q(z) := eκ0(1−z)

2πz(1 − z)
.

Then as θ → ∞, we have

L = α1θ + 1

2
log θ + α0 + α−1

θ
+ O

( 1

θ2

)
, (8.6)
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where

α1 := −Lb(u∗),

α0 := − log |γ0|,
α−1 := −γ−1/γ0,

γ0 :=
√

2πQ

(L′′
b)

1/2
,

γ−1 := −
(

2Q′′ − 2L′′′
b Q′

L′′
b

+
(5L′′′2

b

6L′′2
b

− L′′′′
b

2L′′
b

)
Q

) √
π/8

(L′′
b)

3/2
,

where Q and Lb and their derivatives are evaluated at u∗, and the powers 1/2 and
3/2 refer to the principal branch.

Implied volatility formulas follow in the next two corollaries. In the bounded-k
case, the leading-order (affine) terms shown in (8.7) agree with the affine approxima-
tion due to [20].

Corollary 8.6 (Large-T asymptotics for Lévy processes) Under the assumptions of
Lemma 8.5, let κ0 > 0 and b := 0; hence k is constant and T = θ . Then as θ → ∞,
the dimensionless implied variance has expansion

V 2 = 8α1T + (4k + 8α0 − 4 logα1 − 4 logπ) (8.7)

+
(

8α−1 − k2 + 4k + 8 − 4 logα1π + 8α0

2α1

) 1

T
+ O

( (logT )2

T 2

)

= (affine in k and T ) + quadratic in k

T
+ O

( (logT )2

T 2

)
. (8.8)

Corollary 8.7 (Joint-KT asymptotics for Lévy processes) Under the assumptions
of Lemma 8.5, let κ0 := 0 and b > 0; hence k = bT = bθ . Then as θ → ∞, the
dimensionless implied volatility has the third-order expansion

V = β±
1/2θ

1/2 + β±
−1/2

θ1/2
+ β±

−3/2

θ3/2
+ O

( (log θ)2

θ5/2

)
, (8.9)

using the β− coefficients in the case u∗ > 1, and the β+ coefficients in the case
u∗ < 1, where all coefficients are defined in (7.18). In particular, restating just the
first two terms of (8.9) explicitly,

V = (√
2α1T + 2k ± √

2α1T
)

+
( 1√

2α1T + 2k
± 1√

2α1T

)
log

u∗|1 − u∗|√L′′(u∗)R±
1 (k/(α1T ))√

2α1

+ O
( 1

θ3/2

)
, (8.10)

where α1 := −L(u∗) + (u∗ − 1)(k/T ) and u∗ solves L′(·) = k/T .
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Example 8.8 (Variance gamma) Let X be a variance gamma (VG) process defined
by the cumulant function

L(u) = u log(1 − (m + σ 2/2)ν) − log(1 − (um + u2σ 2/2)ν)

ν
,

with parameters ν > 0, σ > 0 and m < 0. Let � := log(1 − ν(m + σ 2/2)). Then

u∗ = νσ 2 − (� − νk/T )mν − √
ν2σ 4 + (� − νk/T )2(m2ν2 + 2νσ 2)

ν(� − νk/T )σ 2
,

and X can be shown to satisfy the hypotheses of Corollary 8.6 and also (unless
u∗ = 1) Corollary 8.7. Moreover, those corollaries’ conclusions become fully explicit
formulas.

Figures 2, 3 and 4 display the true implied variance generated by the variance
gamma model, with parameters from Madan et al. [15] given by

(m,σ, ν) = (−0.1436,0.1213,0.1686),

at expiries T ∈ {5,1,0.25}. At the longer expiries {5,1}, the figures include also
Tehranchi’s [20] large-T affine approximation, which is the first line of (8.7). In the
same figures, we plot also our approximations.

At expiry 5, the refined large-T formula from (8.7) and (8.8) adds to the
affine formula a (quadratic in k)/T term, introducing the curvature shown in
Fig. 2.

At all expiries {5,1,0.25}, our jointly varying strike-expiry regime’s formula
(8.10), or equivalently just the first two terms of (8.9), has remarkable accu-
racy; in Figs. 2–4, the joint-KT approximation is, to the naked eye, indistin-
guishable from the exact volatility smile across all displayed strikes and ex-
piries.

In Fig. 3, truncating the joint-KT formula (8.9) to just a single term introduces
a visible (but well-behaved) error, while the error in our two-term formula remains
invisible on this scale.

Remark 8.9 (Extension to negative log strikes) Our k > 0 results apply to negative
log strikes, by first changing to share measure, then computing implied volatility
asymptotics using our k > 0 formulas, and then reflecting each strike to obtain the
asymptotics for negative log strikes, as justified in [13], Theorem 4.1. In the Lévy
case, the effect of the measure change is simply to replace L with the share-measure
cumulant generating function L̃, where L̃(u) = L(1 − u). We use this device to plot
the left-hand half of each figure.

Remark 8.10 (Intuition of high accuracy) Figure 4 plots also the four-term approx-
imation to the (log) call price L from (8.6), but expressed as a volatility, by exact
inversion of the Black–Scholes formula. It shows that this L approximation loses
accuracy as k → 0, which is not surprising, given that (8.6) is asymptotic for large
strikes.
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Fig. 2 Implied variance in the VG model: T = 5 years.
In Figs. 2 and 3, the “large-T affine” approximation due to [20] consists of the first line of (8.7). In Fig. 2,
our “large-T refined” approximation is the full formula (8.7), including up to the 1/T term. In Figs. 2–4,
our “joint-KT (2 terms)” approximation is (8.10), or equivalently the first 2 terms of (8.9). The joint-KT

approximation is visually indistinguishable from the true implied variance in all three figures

Fig. 3 Implied variance in the VG model: T = 1 year
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Fig. 4 Implied variance in the VG model: T = 0.25 year.
In Fig. 4, the “joint-KT (1 term)” approximation is the first line of (8.10) (or equivalently, the first term of
(8.9)). The “joint-KT (2 terms)” approximation remains visually indistinguishable from the true V 2

The more unexpected phenomenon is not the inaccuracy of (the at-the-money part
of) that L proxy (expressed exactly as a volatility), but rather the accuracy of the V

approximations that are plotted in the same figure. In particular, the 1-term joint-KT

approximation of V in the plot is the leading term of (8.10)—a compound approxi-
mation, which comes from the leading-term L approximation in (8.6), converted into
an implied volatility, by a second approximation, namely the leading term of (7.17).
The high accuracy of this compound approximation indicates that the errors in the
two constituent approximations exhibit some cancellation, which can be understood
as follows.

The intuition is that the error in applying (8.6) to approximate L in the Lévy
model can be largely canceled by applying the same approximation also in the
Black–Scholes model, to solve the inverse problem of finding implied volatil-
ity. This error-canceling re-application of (8.6) produces a formula which agrees
with (and thus gives insight into the accuracy of) the leading term of our Corol-
lary 8.7.

Specifically, consider a general Lévy model of the type in Lemma 8.5 and fix a
contract (k, T ), with particular attention to small k where the error cancellation man-
ifests most significantly. Let σimp be that contract’s exact implied volatility under the
Lévy dynamics. Then apply the saddlepoint approximation (8.6) with b = k/T = k/θ

to the Lévy log call price and to the Black–Scholes log call price with constant
volatility σimp. We have, respectively,
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LLévy = α
Lévy
1 θ + ELévy,

LBS = αBS
1 θ + EBS,

(8.11)

where E denotes the error of the leading-order saddlepoint approximation (indeed
(8.11) defines E), and the superscripts “Lévy” and “BS” denote the general Lévy and
Black–Scholes cases, respectively. The left-hand sides of (8.11) are equal at (k, T ),
by choice of σimp.

Moreover, it makes sense intuitively that ELévy and EBS would roughly cancel
each other, as both errors are the residuals of saddlepoint expansions, and both the
general and the BS models are Lévy models, and the two models’ distributions have
comparable variances, because the BS variance was chosen as the near-the-money
(small k) implied variance of the general Lévy model.

Under the assumption (not generally true, but defensible as discussed above) that
ELévy = EBS, we have

α1T = αBS
1 T = −LBS

b (uBS∗ )T = σ 2
imp

2

(k/T

σ 2
imp

− 1

2

)2
T , (8.12)

where the first equality is by (8.11), and the second is by the explicit form of the
Gaussian cumulant generating function, and we abbreviate α

Lévy
1 as α1. Solving for

σimp, we have

σimp = √
2α1T + 2k ± √

2α1T , (8.13)

which agrees with—and thus heuristically explains the accuracy of—the leading term
of our joint-KT approximation (8.10) plotted in Figs. 2–4.

Likewise, the ATM accuracy of the large-T approximations (8.7) plotted in
Fig. 2 can be understood by taking k = 0 in (8.13), to obtain σ 2

imp = 8α1T ,
which agrees with—and heuristically explains the ATM accuracy of—the lead-
ing term of (8.7). (The plotted large-T approximations include more terms of
(8.7) beyond the 8α1T , but their ATM effect is small; the “affine” proxy adds
only −0.0006 to the ATM implied variance, and the “refined” proxy adds only
0.000003 more. The ATM accuracy of the plotted large-T approximations is
largely attributable to the accuracy of the leading term, for reasons discussed
above.)

9 Concluding remarks

Our methods generate nearly universal asymptotic approximations for implied
volatility—universal in two senses: across all models, and also across general extreme
regimes in strike and/or expiry, provided that L (the exogenously given absolute log
price of the call or covered-call combination) approaches zero.

Our approximation formulas include rigorous error estimates. By recursive refine-
ment, they attain arbitrary order of accuracy, in the sense of having asymptotic errors
smaller than any given power of L.



378 K. Gao, R. Lee

Moreover, in some applications such as in Figs. 2–4, these approximations, in con-
cert with saddlepoint methods, have remarkable accuracy not just in extreme regimes,
but also across a full range of strikes (from a fraction of the spot to a multiple of the
spot) and a full range of expiries (from months to years).

Acknowledgements The second author thanks Nizar Touzi, Mathieu Rosenbaum, and the participants at
the Third SMAI European Summer School in Financial Mathematics. Both authors thank two anonymous
referees for helpful comments.

Appendix: Proofs

The following properties are easy to verify. Here we use ← to mean limit as x → 0+
and → to mean limit as x → ∞. We have then

1 ± 1 ← R±
n (x) → 1,

2n + 1 ← R−
n+1(x)/R−

1 (x) → 1,

1 ← R+
n+1(x)/R+

1 (x) → 1,

(1 ∓ 1)/2 ← xDR±
1 (x)/R±

1 (x) → 0,

0 ← xDA±
n (x) → 0.

(A.1)

So R±
n (x), 1/R+

1 (x), xDR±
1 (x)/R±

1 (x), A±
n (x), xDA±

n (x), B±
n (x) and xDB±

n (x)

are all bounded on [0,∞). Moreover,

1

4
∧ x

4
≤ R−

1 (x) ≤ 1 ∧ x

2
,

1 ≤ R+
1 (x) ≤ 2.

(A.2)

The functions y �→ logR±
1 (ey) are Lipschitz, so for all positive functions a(θ) ∼ b(θ)

as θ → ∞, we have

R±
1 (a) ∼ R±

1 (b), θ → ∞. (A.3)

Proof of Lemma 3.1 By changing variables in (3.1) and (3.2),

C±(κ, v) = ± 1√
2π

∫ ∞

F(κ,v)

e−uDG±(κ,u)du.

Integrating by parts N times produces (3.8). Moreover, (3.9) follows from

∣∣∣∣
∫ ∞

F(κ,v)

e−uDN+1G±(κ,u)du

∣∣∣∣ ≤ ∣∣DN+1G±
(
κ,F (κ, v)

)∣∣
∫ ∞

F(κ,v)

e−u du,

which holds because (DN+1G±)(DN+2G±) < 0, hence |DN+1G±(κ, ·)| is decreas-
ing. �
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Proof of Lemma 4.1 Note that C±(κ,
√

2κ) → 1/2 as κ → ∞ and C+(κ,
√

2κ) → 1
as κ → 0. Therefore

0 < inf
{
C+(κ,

√
2κ) : κ > 0

} = inf
{
C+(κ, v) : κ > 0, v ≤ √

2κ
}
.

So if C+(k,V ) → 0, then eventually V >
√

2k as claimed. In the (−) case, note that
for κ > 0,

C−
(
κ,

√
2κ

) = 1

2
− eκN

( − √
2κ

) = √
κ/π

(
1 + o(1)

)
as κ → 0.

Therefore | logC−(κ,
√

2κ)| ∼ | logκ|/2 as κ → 0. Then for some κ0 > 0 and all
κ ∈ (0, κ0), we have | logκ| > | logC−(κ,

√
2κ)|.

Moreover, eventually | log(k ∧ κ0)| < | logC−(k,V )| by (4.3), so for some θ0 > 0
and all θ > θ0, we have V <

√
2k or k > κ0. On the other hand,

0 < inf
{
C−(κ,

√
2κ) : κ ≥ κ0

} = inf
{
C−(κ, v) : κ ≥ κ0, v ≥ √

2κ
}
.

So for some θ1 > 0 and all θ > θ1, we have V <
√

2k or k < κ0.
It follows that for all θ > θ0 ∨ θ1, we have V <

√
2k. �

Proof of Lemma 5.2 The N = 0 case is clear, so let N > 0. Consider any Λ ∼ L± as
θ → ∞. To verify (5.11), we have

Dh∗
N(k,Λ) = − 1

Λ

(
1

2
+ kDR1(k/Λ)

ΛR1(k/Λ)
+

N−1∑
n=1

(k/Λ)DBn(k/Λ) + nBn(k/Λ)

Λn

)

= O(1/L),

using via (A.1) the boundedness of xDBn(x) and Bn(x) and xDR1(x)/R1(x).
To verify (5.10), consider the right-hand side of (5.13) evaluated along λ = Λ(θ).

The first two terms are then O(logL). So is the last, because each Bj is bounded. So
is the third term in the (+) case, because R+

1 ∈ [1,2]. Finally, for the third term in
the (−) case, (A.2) implies that as θ → ∞,

| logR−
1 (k/Λ)| ≤ log 4 +

(
0 ∨ log

Λ

k

)
= O

(
logΛ +

(
0 ∨ log

1

k

))
. (A.4)

So h∗
N+(k,Λ) = O(logL+), and h∗

N−(k,Λ) = O(logL− + (0 ∨ log(1/k))) = o(L−)

by (4.2). �

We need the next four lemmas to prove the FAT in Proposition 5.6. The first one,
Lemma A.1, establishes (5.5).

Lemma A.1 Let H := (h;η1, . . . , ηP ) as in Definition 5.3. For any function Λ ∼ L±
and any p = 0, . . . ,P , we have

φH,p(k,Λ) ∼ L±. (A.5)
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In particular, ϕ±
H,p ∼ L±. Moreover,

DφH,p(k,Λ) → 1 (A.6)

as θ → ∞. Recall that DφH,p denotes the partial derivative of φH,p(κ,λ) in its
second argument.

Proof Induct on p. The case p = 0 is clear. If (A.5) holds for some p ≥ 0, then by
(5.10),

φH,p+1(k,Λ) = Λ + h
(
k,φH,p(k,Λ)

) + ηp+1(k,Λ) = Λ + o(L) + o(L) ∼ L.

If (A.6) holds for some p ≥ 0, then

DφH,p+1(k,Λ) = 1 + Dh
(
k,φH,p(k,Λ)

)
DφH,p(k,Λ) + Dηp+1(k,Λ)

−→ 1 + 0 × 1 + 0

by (5.11). �

Lemma A.2 estimates the difference between the (p − 1)th and pth iterative ap-
proximations to F . We use it in the proof of Lemma A.3.

Lemma A.2 Let H := (h;η1, . . . , ηP ) be a P -ply RISC with N -residual ψ . Then for
all p = 1, . . . ,P , we have

ϕ±
H,p − ϕ±

H,p−1 = O
( ψ

L
p−1
±

)
(A.7)

as θ → ∞.

Proof Without ambiguity, we suppress the H subscript of ϕ. By (5.15), we have

ηp(k,L±) − ηp−1(k,L±) = O
( ψ

L
p−1
±

)
. (A.8)

For p = 1, by definition of ϕ and (A.8),

ϕ1 − ϕ0 = h(k,L) + η1(k,L) = η1(k,L) − η0(k,L) = O(ψ),

so (A.7) holds for p = 1. If P = 1 we are done. Otherwise, fixing P and inducting
on p, assume that (A.7) holds for some p ∈ {1, . . . ,P − 1}. By Definition 5.3 and
(A.8) and the mean value theorem,

ϕp+1 − ϕp = h(k,ϕp) − h(k,ϕp−1) + ηp+1(k,L) − ηp(k,L)

= O
( ψ

Lp

)
+ Dh(k,Λ)(ϕp − ϕp−1),
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where Λ(θ) is some point between ϕp(θ) and ϕp−1(θ). So Λ ∼ ϕp ∼ ϕp−1 ∼ L by
(A.5), and

Dh(k,Λ)(ϕp − ϕp−1) = O
(ϕp − ϕp−1

L

)
= O

( ψ

Lp

)
, θ → ∞

by (5.11) and the inductive hypothesis. Hence (A.7) holds with p+1 in place of p. �

In Lemma A.3, the first conclusion (A.9) estimates |η∗(k,ϕH,P−1)−ηP |, or equiv-
alently (by (5.14)) the error |h∗

N(k,ϕH,P−1) − (h + ηP )| introduced by using h + ηP

in place of h∗
N(k,ϕH,P−1) in the P th iterate. The second conclusion (A.10) helps to

account for the combined error introduced in all iterates, by facilitating an argument
given in the proof of the FAT in Proposition 5.6, which augments the scheme with an
extra iteration—the (P + 1)th—applied to the P th iterate ϕH,P . This argument’s ap-
proach is analogous to the standard elementary technique whereby the sum of the first
P terms of a geometric series is analyzed by relating it to a summation augmented to
include the (P + 1)th term.

Lemma A.3 Let H := (h;η1, . . . , ηP ) be a P -ply RISC. Then

η∗(k,ϕH,P−1) − ηP (k,L) = O
( ψ

LP

)
, (A.9)

η∗(k,ϕH,P ) − ηP (k,L) = O
( ψ

LP

)
. (A.10)

Proof Equation (A.9) is by (5.15). Then (A.9) implies (A.10) because by the mean
value theorem, there exists Λ ∼ ϕH,P−1 ∼ ϕH,P such that

|η∗(k,ϕH,P−1) − η∗(k,ϕH,P )| = |Dη∗(Λ)| |ϕH,P − ϕH,P−1|
= O(1/L)O(ψ/LP−1)

by (5.11) and (A.7). �

The proof of the FAT in Proposition 5.6 will estimate |C(k,VH ) − C(k,V )| as
an intermediate step towards ultimately estimating the error |VH − V | of our implied
volatility formula. In order to pass from the former to the latter, a part of the argument
will estimate |DC(k,VH )|−1 in comparison to eϕH , which behaves as follows.

Lemma A.4 Let H = (h;η1, . . . , ηP ) be a P -ply RISC. Then

eϕH = O
(R±

1∧N(k/L)

CL1/2

)
. (A.11)

Proof We have

CeϕH = eh(k,ϕH,P−1)+ηP (k,L)

= eh∗
N (k,ϕH,P−1)eh(k,ϕH,P−1)+ηP (k,L)−h∗

N (k,ϕH,P−1). (A.12)
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The first factor in (A.12) is

eh∗
N(k,ϕH,P−1) = O(R±

1∧N(k/ϕH,P−1))

2
√

πϕ
1/2
H,P−1

exp

(N−1∑
n=1

Bn(k/ϕH,P−1)

ϕn
H,P−1

)

= O
(R±

1∧N(k/L)

L1/2

)
,

by (A.3) and boundedness of the Bn. The second factor is O(1) by (A.9). �

Using the previous four lemmas, the proof of the FAT in Proposition 5.6 carries
out Steps 1 and 2 of the argument outlined in the Sect. 5.1 overview.

Proof of the FAT in Proposition 5.6 Suppressing the ± notation on {VH ,ϕH ,L}, we
have by (3.5) and (A.5),

F(k,VH ) = ϕH ∼ L. (A.13)

Let N ′ := N ∨ 1. By (3.9)—which applies because (5.16) implies that (k,VH ) satis-
fies (3.7)—we have

C(k,VH ) = ±e−ϕH

√
2π

N ′∑
n=1

DnG(k,ϕH ) + O
(
e−ϕH

RN ′+1(k/ϕH )

ϕ
N ′+1/2
H

)

= e−ϕH
R1(k/ϕH )

2
√

πϕ
1/2
H

(
1 +

N ′−1∑
n=1

An(k/ϕH )

ϕn
H

+ O
( 1

ϕN ′
H

))
(A.14)

by (3.6) and boundedness of RN ′+1/R1. Let ηP+1(κ,λ) := η∗(κ,φH (k,λ)), which is
a sublog function with

ηP+1(k,L) = η∗(k,ϕH ). (A.15)

Let H̄ := (h;η1, η2, . . . , ηP , ηP+1), which is a (P + 1)-ply RISC with the same N -
residual ψ because

P∑
p=0

|ηp+1(k,L) − ηp(k,L)|
LP+1−p

+ |η∗(k,ϕH̄ ,P ) − ηP+1(k,L)|

= 1

L
O

( ψ

LP

)
+ |η∗(k,ϕH,P ) − ηP (k,L)|

L
− |η∗(k,ϕH,P−1) − ηP (k,L)|

L
+ 0

= O
( ψ

LP+1

)
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by (A.9) and (A.10). Recalling the notation ϕH̄ := ϕH̄,P+1 and ϕH := ϕH,P = ϕH̄,P ,
we have by Definitions 5.3 and 5.4 and by (A.15), (5.13) and (5.12) that

eϕH̄ C(k,V ) = eh(k,ϕH )+ηP+1(k,L) = eh∗
N (k,ϕH )

=
⎧⎨
⎩

R1(k/ϕH )

2
√

πϕ
1/2
H

exp (
∑N−1

n=1
Bn(k/ϕH )

ϕn
H

) if N > 0,

1
ϕ

1/2
H

if N = 0.

(A.16)

Combining (A.14) and (A.16), if N > 0, then

C(k,VH ) = C(k,V ) exp

(
ϕH̄ − ϕH

+ log

(
1 +

N−1∑
n=1

An(k/ϕH )

ϕn
H

+ O
( 1

ϕN
H

))
−

N−1∑
n=1

Bn(k/ϕH )

ϕn
H

)
,

and if N = 0, then

C(k,VH ) = C(k,V )R1(k/ϕH ) exp
(
ϕH̄ − ϕH + O(1)

)
.

Combining (2.1), and ϕH̄ − ϕH = ϕH̄,P+1 − ϕH̄,P = O(ψ/LP ) by (A.7), and
ψ/LP = O(1) by (5.15), we get

C(k,VH ) − C(k,V ) = C(k,V )O
( ψ

LP
+ 1

LN

)
(A.17)

for N ≥ 0, where the N = 0 case uses boundedness of R1.
By the mean value theorem,

|VH (θ) − V (θ)| ≤ |C(k(θ),VH (θ)) − C(k(θ),V (θ))|
minv∈I |DC(k(θ), v)| (A.18)

where I denotes the interval [VH ∧ V,VH ∨ V ]. Indeed, the min may be taken
over the set {VH ,V } because minimizing |DC(k(θ), ·)| is equivalent to maximiz-
ing F(k(θ), ·), which by convexity attains its maximum at an endpoint. Abbreviating
F(k,V ) as F and taking N = 1 in (3.8), which applies to (k,V ) by Lemma 4.1, we
have

Q±(k,V ) := C±(k,V )
/( e−F

√
2π

1

(2F)1/2

)

= R±
1 (k/F ) ± (2F)1/2eF

∫ ∞

F

e−uD2G±(k,u)du

≤ R±
1 (k/F ), (A.19)
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because ±D2G± < 0 by (3.6). So for all θ such that F(k,VH ) ≤ F(k,V ), we have
by (3.3) and (A.19) that

|DC(k,V )|−1 = √
2πeF(k,V ) = Q±(k,V )

C(k,V )(2F(k,V ))1/2

≤ R±
1 (k/F (k,V ))

C(k,V )(F (k,VH ))1/2
= O

( R±
1 (k/L)

C(k,V )L1/2

)
, (A.20)

where the last expression’s denominator is by (A.13), and the numerator in the (+)

case is because R+
1 ∈ [1,2], and in the (−) case is because R−

1 is increasing, hence

R−
1

(
k/F (k,V )

) ≤ R−
1

(
k/F (k,VH )

) ∼ R−
1 (k/L)

by (A.3) and (A.13). On the other hand, for all θ such that F(k,VH ) ≥ F(k,V ),

|DC(k,VH )|−1 = √
2πeF(k,VH ) = √

2πeϕH,P = O
( R±

1∧N(k/L)

C(k,V )L1/2

)
(A.21)

by (A.11). Both (A.20), (A.21) are O((1 ∧ (k/L−)N∧1)C−1− L
−1/2
− ) in Case (−), and

both are O(C−1+ L
−1/2
+ ) in Case (+). Combining this with (A.17) and (A.18) produces

the conclusions (5.17) and (5.18).
The final statement is by Example 5.5. �

Lemma A.5 and Corollary 5.7 convert errors of V approximations into errors of
V 2 approximations.

Lemma A.5 For any Λ ∼ L±,

G−(k,Λ) = O
( k

L
1/2
−

)
, G+(k,Λ) = O

(
L

1/2
+ + k1/2), (A.22)

DG−(k,Λ) = O
(1 ∧ (k/L−)

L
1/2
−

)
, DG+(k,Λ) = O

( 1

L
1/2
+

)
, (A.23)

DG2−(k,Λ) = O
( k

L−
∧ k2

L2−

)
, DG2+(k,Λ) = O

(
1 + k1/2

L
1/2
+

)
. (A.24)

Proof Obtain (A.22) from

G−(k,Λ) =
√

2k√
Λ + k + √

Λ
, G+(k,Λ) = O

(√
Λ + k

)
,

and (A.23) from (A.2), (A.3) and

|DG±(k,Λ)| = R±
1 (k/Λ)

(2Λ)1/2
∼ R±

1 (k/L)

(2L)1/2
.

Multiply (A.22) and (A.23) to produce (A.24). �
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Proof Proof of Corollary 5.7 We have

|V 2
H,± − V 2| = |VH,± + V | |VH,± − V |

≤ (2|VH,±| + |VH,± − V |) |VH,± − V |. (A.25)

The last factor in (A.25) is already estimated by the FAT in Proposition 5.6. The other
factor is, using (A.22) in Case (−),

2|VH,−| + |VH,− − V | = O(kL
−1/2
− ) + O

(1 ∧ (k/L−)N∧1

L
1/2
−

)
O

( 1

LN−
+ ψ

LP−

)

=
{

O(kL
−1/2
− ) if N > 0,

O(kL
−1/2
− + L

−1/2
− ) if N = 0

as θ → ∞, where the last equality is by definition of ψ . In Case (+),

2|VH,+| + |VH,+ − V | = O
(
L

1/2
+ + k1/2) + O

( 1

L
1/2
+

)
O

( 1

LN+
+ ψ

LP+

)

= O
(
L

1/2
+ + k1/2)

as θ → ∞, again using (A.22). �

Lemmas A.6 and 5.8 use the mean value theorem to estimate the impact of replac-
ing L by a proxy L̂. This completes Step 3 of the argument outlined in the Sect. 5.1
overview.

Lemma A.6 For any functions Λ0(θ) and Λ1(θ) such that Λ0 ∼ Λ1 ∼ L±, let
ε := |Λ0 − Λ1|. Then in Case (−),

|G−(k,Λ0) − G−(k,Λ1)| = O
(1 ∧ (k/L−)

L
1/2
−

ε
)
,

|G2−(k,Λ0) − G2−(k,Λ1)| = O

(( k

L−
∧ k2

L2−

)
ε

)
,

and in Case (+),

|G+(k,Λ0) − G+(k,Λ1)| = O
( 1

L
1/2
+

ε
)
,

|G2+(k,Λ0) − G2+(k,Λ1)| = O

((
1 + k1/2

L
1/2
+

)
ε

)
.

Proof of Lemma A.6 For each θ , the mean value theorem gives some Λ(θ) between
Λ0 and Λ1, hence Λ ∼ Λ0 ∼ Λ1, with |Gn±(k,Λ0) − Gn±(k,Λ1)| = ε|DGn±(k,Λ)|,
where n ∈ {1,2}. Now apply Lemma A.5. �
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Proof of Lemma 5.8 For each θ , by the mean value theorem, there exists Λ(θ) be-
tween L and L̂, hence Λ ∼ L ∼ L̂, such that

|φH (k,L) − φH (k, L̂)| = |DφH (k,Λ)| |L − L̂| ∼ |L − L̂|

by (A.6). By (A.5), φH (k,L) ∼ φH (k, L̂) ∼ L, so Lemma A.6 implies the conclu-
sion. �

Lemma 5.11 completes Step 4 of the argument outlined in the Sect. 5.1 overview.

Proof of Lemma 5.11 Let g(z) := (
√

2 + z ± √
2 − z)2. By applying Taylor’s theo-

rem to g at z = 0, we have for all |z| < 2 that

g(z) =
M∑

m=−1

a±
mzm+1 + DM+3g(z0(z))

(M + 3)! zM+3

for some z0(z) ∈ [0, z]. Let z̄ ∈ (ζ(lim sup(k/L)),2), where ζ(x) := 2x/(2 + x). Let
ḡ := sup{|DM+3g(z)|/(M + 3)! : |z| ≤ z̄} < ∞. Then for all κ and all u > 0 with
|κ/u| < z̄, we have

∣∣∣∣G2±(κ,u − κ/2) −
M∑

m=−1

a±
mκm+1

um

∣∣∣∣ =
∣∣∣∣ug(κ/u) −

M∑
m=−1

a±
mκm+1

um

∣∣∣∣

= u
|DM+3g(z0(κ/u))|

(M + 3)!
(κ

u

)M+3

≤ ḡ
κM+3

uM+2
.

Therefore

G2±(k,Λ) −
M∑

m=−1

a±
mkm+1

(Λ + k/2)m
= O

( kM+3

(Λ + k/2)M+2

)
= O

( kM+3

LM+2

)
,

because k/(Λ + k/2) = ζ(k/Λ) < z̄ eventually. �

Proof of Lemma 5.12 This is clear from (â − a)(â + a) = â2 − a2. �

Proof of Corollary 6.1 Define the 1-ply RISC (h∗
N=0;η1) by η1 := 0. Then η∗ = 0

and

|η1(k,L) − η0(k,L)| = |h∗
N=0(k,L)| = O(logL),

so the RISC has 0-residual ψ = logL. With N = 0 and P = 1, the FAT in Proposi-
tion 5.6 implies (6.1).
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For (6.2), let H := (h∗
N=1;η1) where η1 := 0. Then η∗ = 0, so H has 1-residual

ψ = |η1(k,L) − η0(k,L)| = |h∗
N=1(k,L)| =

∣∣∣ log
1√

4πL
+ logR−

1

( k

L

)∣∣∣

= O
(

logL + max
(
0, log(L/k)

))

by (A.4). By Proposition 5.6 and the boundedness of max(0, logx)/x, we have

|VH − V | = O

(
1 ∧ (k/L)

L1/2

( logL + max(0, log(L/k))

L
+ 1

L

))
= O

( logL

L3/2

)

as claimed. �

Proof of Corollary 6.3 For any Λ ∼ L, we have

h∗
N=1(k,Λ) = −1

2
logΛ + log

1√
π

+ log
R+

1 (k/Λ)

2
= h(k,Λ) + O

(
1 ∧ k

L

)
,

where

h(κ,λ) := −1

2
logλ + log

1√
π

.

Define the 2-ply RISC H := (h;η1, η2), where

η1(κ,λ) := log
√

π ⇒ ϕH,1 = L − logL

2
,

η2(κ,λ) := 1

2
log

(
1 − logλ

2λ

)
+ logλ

4λ
⇒ ϕH,2 = L − logL

2
+ logL

4L
− logπ

2
.

Then

|η∗(k,Λ) − η2(k,L)| = |h∗
N=1(k,Λ) − h(k,Λ) − η2(k,L)|

= O
(
(k ∧ L)/L + (logL)2/L2),

|η2(k,L) − η1(k,L)| = O(1),

|η1(k,L) − η0(k,L)| = |η1(k,L) + h(k,L)| = O(logL),

so H has 1-residual ψ such that

ψ

L2
= O

( logL

L2
+ 1

L
+ (k ∧ L)/L + (logL)2/L2

)
.

By the FAT in Proposition 5.6, we have (6.4) and (6.6). Then (6.3) and (6.5) follow
from Lemma A.6. �

Proof of Corollary 7.1 For any Λ ∼ L, we have k/Λ → 0, hence

logR−
1 (k/Λ) = log

(
k/(2Λ)

) + O(k/L)

as θ → ∞. So
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h∗
N=1(k,Λ) = −1

2
logΛ + log

1

2
√

π
+ logR−

1 (k/Λ) = h(k,Λ) + O(k/L),

where

h(κ,λ) := −3

2
logλ + log

κ

4
√

π
.

To show that h is a sublog function, note that Dh(κ,λ) = −3/(2λ) verifies (5.11),
and that log(1 ∧ k) = o(L) by (4.3), and log(1 ∨ k) = O(k) = O(L × k/L) = o(L);
therefore | log k| = o(L), and for all Λ ∼ L,

h(k,Λ) = O(logL + | logk|) = o(L), (A.26)

which verifies (5.10). Define the 2-ply RISC H := (h;η1, η2), where

η1(κ,λ) := − log
κ

4
√

π
⇒ ϕH,1 = L − 3

2
logL,

η2(κ,λ) := 3

2
log

(
1 − 3 logλ

2λ

)
+ 9 logλ

4λ

⇒ ϕH,2 = L − 3

2
logL + log

k

4
√

π
+ 9 logL

4L
.

Then

|η∗(k,Λ) − η2(k,L)| = |h∗
N=1(k,Λ) − h(k,Λ) − η2(k,L)|

= O
(
k/L + (logL)2/L2),

|η2(k,L) − η1(k,L)| = O
(
(logL)2/L2 + | logk|),

|η1(k,L) − η0(k,L)| = |η1(k,L) + h(k,L)| = O(logL),

so H has 1-residual ψ such that

ψ

L2
= O

( logL

L2
+ (logL)2/L2 + | logk|

L
+ k/L + (logL)2/L2

)
.

By the FAT in Proposition 5.6, with N = 1, we have (7.3) and (7.5). Then (7.4) and
(7.3) follow from Lemma A.6. �

Proof of Corollary 7.2 By (7.3) and Lemma 5.8 and (5.19) with Λ := φH (k, L̂),
∣∣∣∣

k2

2L̂ + k − 3 log L̂ + log(k2/(16π)) + (9 log L̂)/(2L̂)
− V 2

∣∣∣∣

= O

(
k2

L2

(
|L − L̂| + | logk| + k2

L

))
.

Then factor k2/(2L̂) out of the fraction, apply Taylor’s theorem to x �→ 1/(1 + x),
and recalling (4.3), drop terms of order O((k2 + (log k)2)/L2) to obtain (7.7).

Similar reasoning produces (7.8) from (7.5) and Lemma 5.8 and (5.20). �
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Proof of Corollary 7.4 Insert L̂ := α−1/T − (3 logT )/2 + α0 into Corollary 7.2,
divide by T , apply Taylor’s theorem, drop terms of order O(T 2 + εT ), and note that
the coefficients of T logT , T 2 logT and T 2(logT )2 all vanish. �

Proof of Proposition 7.5 The function

v �→ C−(0, v) = 2N (v/2) − 1 = erf
(
v/

√
8
)

extends to an entire function on C, with nonzero derivative at 0. By the inverse func-
tion theorem, it has an analytic inverse

√
8 inverf(·) on some open neighborhood of

C−(0,0) = 0. So for all θ sufficiently large, we have V = √
8 inverf(C−), which has

the convergent power series representation (7.9). �

Proposition of Corollary 7.6 By Proposition 7.5 and Taylor’s theorem,

V = √
2π

(
C− + π

12
C3−

)
+ O

(
T 5/2)

= √
2π

(
α1/2T

1/2 +
( π

12
α3

1/2 + α3/2

)
T 3/2

)
+ O

(
T 5/2).

Squaring this produces the result for V 2. �

Proof of Corollary 7.7 To simplify notation, we suppress the ± on each �,ϕ,R,L.
By definition,

h∗
N=2(κ,λ) = −1

2
logλ + log

1√
π

+ log
R1(κ/λ)

2
− 1

2

R2(κ/λ)

λR1(κ/λ)
,

and let

h(κ,λ) := −1

2
logλ + log

1√
4π

+ logR1(κ/λ).

Define the 2-ply RISC H := (h;η1, η2), where

η1(κ,λ) := log
�1

R1(κ/λ)
,

η2(κ,λ) := 1

2
log

(
1 + h(κ,λ) + η1(κ,λ)

λ

)
− h(κ,λ) + η1(κ,λ)

2λ
− 1

2

�2

�1λ
.

Then

ϕH,1 = L − logL

2
+ log

�1√
4π

,

ϕH,2 = L − logL

2
+ logL

4L
− log(�1/

√
4π)

2L
+ log

R1(k/ϕH,1)√
4π

− 1

2

�2

�1L
.

Note that
∣∣∣∣

k

ϕH,1
− lim

k

L

∣∣∣∣ ≤ δ + k

L

∣∣∣∣
1

ϕH,1/L
− 1

∣∣∣∣ = δ + O
( logL

L

)
,
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so

|η∗(k,ϕH,1) − η2(k,L)| = |h∗
N=2(k,ϕH,1) − h(k,ϕH,1) − η2(k,L)|

= O(δ/L) + O
(
(logL)2/L2),

|η2(k,L) − η1(k,L)| = O
(
(logL)2/L2 + 1/L

) + O(δ),

|η1(k,L) − η0(k,L)| = |η1(k,L) + h(k,L)| = O(logL).

Therefore H has 2-residual ψ such that

ψ

L2
= O

( logL

L2
+ δ

L
+ (logL)2/L2

1

)
= O

( δ

L
+ (logL)2

L2

)
.

The FAT in Proposition 5.6 then implies (7.11) and the corresponding result for V ;
and Lemma A.6 implies (7.10) and the corresponding result for V . �

Proof of Corollary 7.8 Under the k/L → 0 assumption, we have (7.10) and (7.11)
with �1 = �2 = 2 and δ = k/L. Then (7.12) follows from (7.10) plus the O(k2/L)

error from (5.21). Next, (7.13) follows by combining (7.11) with the O(k4/L3) ex-
pansion in (5.21), and then applying Taylor’s theorem, with an additional error of
O((k3 + k2 logL)/L2). Taking the square root of the V 2 expansion then approxi-
mates V according to Lemma 5.12. �

Proof of Corollary 7.10 Corollary 7.7 applies with δ = O(k−1/2), resulting in the
error O(k−1) for the implied volatility using exact L. Retaining the terms up to
β−1/2k

−1/2 results in an additional error O(k−r−1/2) by Taylor’s theorem. �

Proof of Corollary 7.11 Substitute (7.16) into Corollaries 7.7 and 7.8, apply Tay-
lor’s theorem, and drop terms of order O((log θ)2/θ2) and O((log θ)2/θ5/2), respec-
tively. �

Proof of Corollary 8.1 By Example 4.2, the Sect. 4.1 conditions are satisfied. By
Friz at al. ([8], Eq. (4.2)), equation (7.14) here holds with r = 1/4. The conclusion of
Corollary 7.10 therefore holds with error O(k−3/4).

The expression for A comes from Friz at al. ([8], Eqs. (3.3) and (3.11)); indeed,

A = 1

2
√

π

( 2v0

c2σ(s+)

)1/4−a/c2

exp

(
− v0

(χ(s+)

c2
− σ ′(s+)

c2σ 2(s+)

)
+ 2a

c2
log

T

σ(s+)

+ a

∫ T

0

(
Ψ (s+, t) − 2

c2(T − t)

)
dt

)
,

together with

Ψ (s, t) = (s2 − s) sin(
√−Δ(s)t/2)√−Δ(s) cos(

√−Δ(s)t/2) − χ(s) sin(
√−Δ(s)t/2)

from del Baño Rollin et al. ([4], Eq. (11)). �
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Proof of Corollary 8.1 First, by Figueroa-Lopez and Forde ([5], Proposition 2.2), we
have C− = aT + O(T 2) so that L = log 1

aT
+ O(T ). By Example 4.3, the Sect. 4.1

conditions are satisfied. Let L̂ := log 1
aT

. By Corollary 7.2,

∣∣W(k, L̂) − V 2
∣∣ = O

( 1

L3
+ T

L2

)
= O

( 1

L3

)

because T = O(L−m) for all m > 0. �

Proof of Lemma 8.5 To prove that existence of a density suffices for (8.3)–(8.5), we
can assume b = 0 because the case of general b follows immediately. Next observe
that y �→ exp(L0(u∗ + iy) − L0(u∗)) is the characteristic function of X1 under the
measure P

∗ defined by dP∗/dP = eu∗X1/Eeu∗X1 . Because X1 still admits a density
under P∗, the Riemann–Lebesgue theorem implies (8.5). In particular, X1 does not
have a lattice distribution, so (8.4) follows. Finally, X1 is not a point mass and L0 is
a cumulant generating function, which implies (8.3).

Proceeding with the proof of (8.6), let each ± be read as (+) in the case u∗ < 1,
or (−) in the case u∗ > 1. By standard option pricing results of Fourier type (in, for
instance, [14] or [20]),

C± = ±
∫ u∗+i∞

u∗−i∞
−iQ(z)eTLb(z) dz. (A.27)

Then by the saddlepoint result in, for instance, Olver ([16], Chap. 4, Theorem 7.1),
which is valid under the hypotheses (8.3)–(8.5),

C± = ± T −1/2eTLb(u∗)(γ0 + γ−1T
−1 + O(T −2)

)
. (A.28)

(We use only the first few terms of the expansion in [16], which suffice here. Including
all terms in Olver would give a full expansion for option prices.) The result follows
by taking logs and noting that ±γ0 = |γ0|. �

Proof of Corollaries 8.6 and 8.7 Combine Lemma 8.5 with Corollary 7.11 to obtain
(8.7) and (8.9). In (8.7), logγ0 and Q′/Q are affine in k, and Q′′/Q is quadratic in k;
so α1 and α� in (8.7) do not depend on k, while α0 and α−1 in (8.7) are, respec-
tively, affine and quadratic in k, which implies (8.8). Finally, (8.10) follows by direct
substitution. �
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