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Let the underlying process Y be a semimartingale taking values in an interval I. Let ϕ : I → R
be a difference of convex functions, and let X := ϕ(Y ). A typical application takes Y to be a
positive price process and ϕ(y) = log y for y ∈ I = (0,∞).

Then [the floating leg of] a forward-starting weighted variance swap or generalized variance
swap on ϕ(Y ) (shortened to “on Y ” if the ϕ is understood), with weight process wt, forward-start
time θ, and expiry T , is defined to pay, at a fixed time Tpay ≥ T > θ ≥ 0,∫ T

θ
wtd[X]t, (1)

where [·] denotes quadratic variation. In the case that θ = 0, the trade date, we have a spot-starting
weighted variance swap. The basic cases of weights take the form wt = w(Yt), for a measurable
function w : I → [0,∞), such as:

• The weight w(y) = 1 defines a variance swap [EQF07-024].

• The weight w(y) = Iy∈C , the indicator function of some interval C, defines a corridor variance
swap [EQF07-027] with corridor C. For example, a corridor of the form C = (0, H) produces
a down variance swap.

• The weight w(y) = y/Y0 defines a gamma swap [EQF07-028].

Model-free replication and valuation

Assuming a deterministic interest rate rt, let Zt be the time-t price of a bond that pays 1 at
time Tpay. Assume that Y is the continuous price process of a share that pays continuously a
deterministic proportional dividend qt. Let

Zt = exp
(
−
∫ Tpay

t
rudu

)
and Qt := exp

(∫ t

0
qudu

)
, (2)

so the share price with reinvested dividends is YtQt. Then the payoff∫ T

θ
w(Yt)d[X]t (3)
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admits a model-independent replication strategy, which holds European options statically, and
trades the underlying shares dynamically. Indeed, let λ : I → R be a difference of convex functions,
let λy denote its left-hand derivative, and assume that its second derivative in the distributional
sense has a signed density, denoted λyy, which satisfies for all y ∈ I

λyy(y) = 2ϕ2
y(y)w(y), (4)

where ϕy denotes the left-hand derivative of ϕ. Then∫ T

θ
w(Yt)d[X]t = λ(YT )− λ(Yθ)−

∫ T

θ
λy(Yt)dYt (5)

= λ(YT )− λ(Yθ) +
∫ T

θ
(qt − rt)λy(Yt)Ytdt

−
∫ T

θ
λy(Yt)

Zt
Qt

d(YtQt/Zt), (6)

where (5) is by a proposition in [1] that slightly extends [2], and (6) is by Ito’s rule. So the following
self-financing strategy replicates (and hence prices) the payoff (3). Hold statically a claim that pays
at time Tpay

λ(YT )− λ(Yθ) +
∫ T

θ
(qτ − rτ )λy(Yτ )Yτdτ, (7a)

and trade shares dynamically, holding at each time t ∈ (θ, T )

−λy(Yt)Zt shares, (7b)

and a bond position that finances the shares and accumulates the trading gains or losses. Hence
the payoff (3) has time-0 value equal to that of the replicating claim (7a), which is synthesizable
from Europeans with expiries in [θ, T ]. Indeed, for a put/call separator κ (such as κ = Y0), if
λ(κ) = λy(κ) = 0, then each λ claim decomposes into puts/calls at all strikes K, with quantities
2ϕ2

y(K)w(K)dK:

λ(y) =
∫
I

2ϕ2
y(K)w(K)Van(y,K)dK, (8)

where Van(y,K) := (K − y)+IK<κ + (y − K)+IK>κ denotes the vanilla put or call payoff. For
put/call decompositions of general European payoffs, see [2].

Futures-dependent weights

In (3), the weight is a function of spot Yt. The alternative payoff specification∫ T

θ
w(YtQt/Zt)d[X]t (9)

makes wt a function of the futures price (a constant times YtQt/Zt).
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In the case ϕ = log, we have [X] = [log Y ] = [log(Y Q/Z)], hence∫ T

θ
w
(
YtQt/Zt

)
d[X]t = λ(YTQT /ZT )− λ(YθQθ/Zθ)−

∫ T

θ
λy(YtQt/Zt)d(YtQt/Zt)

for λ satisfying (4). So the alternative payoff (9) admits replication as follows. Hold statically a
claim that pays at time Tpay

λ(YTQT /ZT )− λ(YθQθ/Zθ), (10a)

and trade shares dynamically, holding at each time t ∈ (θ, T )

−λy(YtQt/Zt)Qt shares, (10b)

and a bond position that finances the shares and accumulates the trading gains or losses. Thus the
payoff (9) has time-0 value equal to a claim on (10a).

In special cases (such as w = 1 or r = q = 0), the spot-dependent (3) and futures-dependent (9)
weight specifications are equivalent. In general, the spot-dependent weighting is harder to replicate,
as it requires a continuum of expiries in (7a), unlike (10a). The spot-dependent weighting is however
the more common specification, and is assumed in remainder of this article.

Examples

Returning to the previously specified examples of weights w(Yt), we express the replication payoff
λ in a compact formula, and also expanded in terms of vanilla payoffs according to (8). We take
ϕ(y) = log y unless otherwise stated.

• Variance swap: Equation (4) has solution

λ(y) = −2 log(y/κ) + 2y/κ− 2 =
∫ ∞

0

2
K2

Van(y,K)dK.

• Arithmetic variance swap: For ϕ(y) = y, equation (4) has solution

λ(y) = (y − κ)2 =
∫ ∞

0
2Van(y,K)dK.

• Corridor variance swap: Equation (4) has solution

λ(y) =
∫
K∈C

2
K2

Van(y,K)dK.

• Gamma swap: Equation (4) has solution

λ(y) =
2
Y0

[
y log(y/κ)− y + κ

]
=
∫ ∞

0

2
Y0K

Van(y,K)dK.

In all cases, the strategy (7) replicates the desired contract. In the case of a variance swap, the
strategy (10) also replicates it, because w(Y ) = 1 = w(Y Q/Z).
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Discrete dividends

Assume that at the fixed times tm where θ = t0 < t1 < · · · < tM = T , the share price jumps to
Ytm = Ytm− − δm(Ytm−), where each discrete dividend is given by a function δm of pre-jump price.
In this case the dividend-adjusted weighted variance swap can be defined to pay at time Tpay

M∑
m=1

∫ tm−

tm−1+
w(Yt)d[X]t. (11)

If the function y 7→ y− δm(y) has an inverse fm : I → I, and if Y is continuous on each [tm−1, tm),
then each term in (11) can be constructed via (7), together with the relation λ(Ytm−) = λ(fm(Ytm)).
Specifically, the mth term admits replication by holding statically a claim that pays at time Tpay

λ(fm(Ytm))− λ(Ytm−1) +
∫ tm

tm−1

(qτ − rτ )λy(Yτ )Yτdτ, (12)

and holding dynamically −λy(Yt)Zt shares at each time t ∈ (tm−1, tm).

Contract specifications in practice

In practice, weighted variance swap transactions are forward-settled; no payment occurs at time 0,
and at time Tpay the party long the swap receives the total payment

Notional×
(

Floating − Fixed
)
, (13)

where “Fixed” (also known as the “strike”), expressed in units of annualized variance, is the price
contracted at time 0 for time-Tpay delivery of “Floating,” an annualized discretization of (11) which
monitors Y , typically daily, for N periods. In the usual case of ϕ = log, this results in a specification

Floating := Annualization×
N∑
n=1

w(Yn)
(

log
Yn +Dn

Yn−1

)2
, (14)

where Dn denotes the discrete dividend payment, if any, of the nth period. Both here and in
the theoretical form (11), no adjustment is made for any dividends deemed to be continuous (for
example, index variance contracts typically do not adjust for index dividends; see [3]).

In some contracts – for example, single-stock (down-)variance – the risk to the variance seller
that Y crashes is limited by imposing a cap on the payoff. So

Notional×
(

min(Floating,Cap× Fixed)− Fixed
)
, (15)

replaces (13), where “Cap” is an agreed constant, such as the square of 2.5.
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