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Abstract

Given the price of a call or put option, the Black-Scholes implied
volatility is the unique volatility parameter for which the Bulack-Scholes
formula recovers the option price. This article surveys research activity
relating to three theoretical questions: First, does implied volatility ad-
mit a probabilistic interpretation? Second, how does implied volatility
behave as a function of strike and expiry? Here one seeks to characterize
the shapes of the implied volatility skew (or smile) and term structure,
which together constitute what can be termed the statics of the implied
volatility surface. Third, how does implied volatility evolve as time rolls
forward? Here one seeks to characterize the dynamics of implied volatility.

1 Introduction

1.1 Implied volatility

Assuming that an underlying asset in a frictionless market follows geometric
Brownian motion, which has constant volatility, the Black-Scholes formula gives
the no-arbitrage price of an option on that underlying. Inverting this formula,
take as given the price of a call or put option. The Black-Scholes implied volatil-
ity is the unique volatility parameter for which the Black-Scholes formula re-
covers the price of that option.

This article surveys research activity in the theory of implied volatility. In
light of the compelling empirical evidence that volatility is not constant, it is
natural to question why the inversion of option prices in an “incorrect” formula
should deserve such attention.
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To answer this, it is helpful to regard the Black-Scholes implied volatility
as a language in which to express an option price. Use of this language does
not entail any belief that volatility is actually constant. A relevant analogy is
the quotation of a discount bond price by giving its yield to maturity, which
is the interest rate such that the observed bond price is recovered by the usual
constant interest rate bond pricing formula. In no way does the use or study of
bond yields entail a belief that interest rates are actually constant. As YTM is
just an alternative way of expressing a bond price, so is implied volatility just
an alternative way of expressing an option price.

The language of implied volatility is, moreover, a useful alternative to raw
prices. It gives a metric by which option prices can be compared across different
strikes, maturities, underlyings, and observation times; and by which market
prices can be compared to assessments of fair value. It is a standard in industry,
to the extent that traders quote option prices in “vol” points, and exchanges
update implied volatility indices in real time.

Furthermore, to whatever extent implied volatility has a simple interpreta-
tion as an average future volatility, it becomes not only useful, but also natural.
Indeed, understanding implied volatility as an average will be one of the focal
points of this article.

1.2 Outline

Under one interpretation, implied volatility is the market’s expectation of future
volatility, time-averaged over the term of the option. In what sense does this
interpretation admit mathematical justification? In section 2 we review the
progress on this question, in two contexts: first, under the assumption that
instantaneous volatility is a deterministic function of the underlying and time;
and second, under the assumption that instantaneous volatility is stochastic in
the sense that it depends on a second random factor.

If instantaneous volatility is not constant, then implied volatilities will ex-
hibit variation with respect to strike (described graphically as a smile or skew)
and with respect to expiry (the term structure); the variation jointly in strike
and expiry can be described graphically as a surface. In section 3, we review the
work on characterizing or approximating the shape of this surface under various
sets of assumptions. Assuming only absence of arbitrage, one finds bounds on
the slope of the volatility surface, and characterizations of the tail growth of the
volatility skew. Assuming stochastic volatility dynamics for the underlying, one
finds perturbation approximations for the implied volatility surface, in any of a
number of different regimes, including long maturity, short maturity, fast mean
reversion, and slow mean reversion.

Whereas sections 2 and 3 examine how implied volatility behaves under
certain assumptions on the spot process, section 4 directly takes as primitive the
implied volatility, with a view toward modelling accurately its time-evolution.
We begin with the no-arbitrage approach to the direct modelling of stochastic
implied volatility. Then we review the statistical approach. Whereas the focus
of section 3 is cross-sectional (taking a “snapshot” of all strikes and expiries)
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hence the term statics, the focus of section 4 is instead time-series oriented,
hence the term dynamics.

1.3 Definitions

Our underlying asset will be a non-dividend paying stock or index with nonneg-
ative price process St. Generalization to non-zero dividends is straightforward.

A call option on S, with strike K and expiry T , pays (ST −K)+ at time T .
The price of this option is a function C of the contract variables (K,T ), today’s
date t, the underlying St, and any other state variables in the economy. We
will suppress some or all of these arguments. Moreover, sections 2 and 3 will
for notational convenience assume t = 0 unless otherwise stated; but section 4,
in which the time-evolution of option prices becomes more important, will not
assume t = 0.

Let the risk-free interest rate be a constant r. Write

x := log
(

K

Ster(T−t)

)
for log-moneyness of an option at time t. Note that both of the possible
choices of sign convention appear in the literature; we have chosen to define
log-moneyness to be such that x has a positive relationship with K.

Assuming frictionless markets, Black and Scholes [8] showed that if S follows
geometric Brownian motion

dSt = µStdt+ σStdW̃t

then the no-arbitrage call price satisfies

C = CBS(σ),

where the Black-Scholes formula is defined by

CBS(σ) := CBS(St, t,K, T, σ) := StN(d1)−Ke−r(T−t)N(d2).

Here

d1,2 :=
log(Ste

r(T−t)/K)
σ
√
T − t

± σ
√
T − t

2
,

and N is the cumulative normal distribution function.
On the other hand, given C(K,T ), the implied [Black-Scholes] volatility for

strike K and expiry T is defined as the I(K,T ) that solves

C(K,T ) = CBS(K,T, I(K,T )).

The solution is unique because CBS is strictly increasing in σ, and as σ → 0
(resp.∞), the Black-Scholes function CBS(σ) approaches the lower (resp. upper)
no-arbitrage bounds on a call.
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Implied volatility can also be written as a function Ĩ of log-moneyness and
time, so Ĩ(x, T ) := I(Ste

x+r(T−t), T ). Abusing notation, we will drop the tilde
on Ĩ, because the context will make clear whether I is to be viewed as a function
of K or x.

The derivation of the Black-Scholes formula can proceed by means of a hedg-
ing argument that yields a PDE to be solved for C(S, t):

∂C

∂t
+

1
2
σ2S2 ∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0, (1.1)

with terminal condition C(S, T ) = (S − K)+. Alternatively, one can appeal
to martingale pricing theory, which guarantees that in the absence of arbitrage
(appropriately defined – see for example [16]), there exists a “risk-neutral” prob-
ability measure under which the discounted prices of all tradeable assets are
martingales. We assume such conditions, and unless otherwise stated, our ref-
erences to probabilities, distributions, and expectations will be with respect to
such a pricing measure, not the statistical measure. In the constant-volatility
case, changing from the statistical to the pricing measure yields

dSt = rStdt+ σStdWt.

So logST is normal with mean (r − σ2/2)(T − t) and variance σ2(T − t), and
the Black-Scholes formula follows from C = e−r(T−t)E(ST −K)+.

2 Probabilistic Interpretation

In what sense is implied volatility an average expected volatility? Some econo-
metric studies [11, 13] test whether or not implied volatility is an “unbiased”
predictor of future volatility, but they have limited relevance to our question, be-
cause they address the empirics of a far narrower question in which “expected”
future volatility is with respect to the statistical probability measure. Our focus,
instead, is the theoretical question of whether there exist natural definitions of
“average” and “expected” such that implied volatility can indeed be understood
– provably – as an average expected volatility.

2.1 Time-dependent volatility

In the case of time-dependent but nonrandom volatility, a simple formula exists
for Black-Scholes implied volatility.

Suppose that
dSt = rStdt+ σ(t)StdWt

where σ is a deterministic function. Define

σ̄ :=
(

1
T

∫ T

0

σ2(u)du
)1/2

.
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Then one can show that logST is normal with mean (r − σ̄2/2)T and variance
σ̄2T , from which it follows that

C = CBS(σ̄).

and hence
I = σ̄.

Thus implied volatility is equal to the quadratic mean volatility from 0 to T .

2.2 Time-and-spot-dependent Volatility

Now assume that
dSt = rStdt+ σ(St, t)StdWt (2.1)

where σ is a deterministic function, usually called the local volatility. We will
also treat local volatility as a function σ̃ of time-0 moneyness x, via the definition
σ̃(x, T ) := σ(S0e

x+rT , T ); but abusing notation, we will suppress the tildes.

2.2.1 Local volatility and implied local volatility

Under local volatility dynamics, call prices satisfy (1.1), but with variable coef-
ficients:

∂C

∂t
+

1
2
σ2(S, t)S2 ∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0, (2.2)

and also with terminal condition C(S, T ) = (S −K)+.
Dupire [20] showed that instead of fixing (K,T ) and obtaining the backward

PDE for C(S, t), one can fix (S, t) and obtain a forward PDE for C(K,T ). A
derivation (also in [9]) proceeds as follows.

Differentiating (2.2) twice with respect to strike shows that G := ∂2C/∂K2

satisfies the same PDE, but with terminal data δ(S−K). Thus G is the Green’s
function of (2.2), and it is the transition density of S. By a standard result (in
[23], for example), it follows that G as a function of the variables (K,T ) satisfies
the adjoint equation, which is the Fokker-Planck PDE

∂G

∂T
− ∂2

∂K2

(
1
2
σ2(K,T )K2G

)
+ r

∂

∂K
(KG) + rG = 0.

Integrating twice with respect to K and applying the appropriate boundary
conditions, one obtains the Dupire equation:

∂C

∂T
− 1

2
K2σ2(K,T )

∂2C

∂K2
+ rK

∂C

∂K
= 0, (2.3)

with initial condition C(K, 0) = (S0 −K)+.
Given call prices at all strikes and maturities up to some horizon, define

implied local volatility as

L(K,T ) :=
( ∂C

∂T + rK ∂C
∂K

1
2K

2 ∂2C
∂K2

)1/2

. (2.4)
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According to (2.3), this is the local volatility function consistent with the given
prices of options. Define implied local variance as L2.

Following standard terminology, our use of the term implied volatility will,
in the absence of other modifiers, refer to implied Black-Scholes volatility, not
implied local volatility. The two concepts are related as follows: Substituting

C = CBS(I(S0e
x+rT , T )) (2.5)

into (2.4) yields

L2(x, T ) =
2TI ∂I

∂T + I2(
1− x ∂I

∂x

/
I)2 + TI ∂2I

∂x2 − 1
4T

2I2 ∂2I
∂x2

See, for example, Andersen and Brotherton-Ratcliffe [1]. Whereas the computa-
tion of I from market data poses no numerical difficulties, the recovery of L is an
ill-posed problem that requires careful treatment; see also [2, 9, 14, 26]. These
issues will not concern us here, because our use of implied local volatility L will
be strictly as a theoretical device to link local volatility results to stochastic
volatility results, in section 2.3.1.

2.2.2 Short-dated implied volatility as harmonic mean local volatil-
ity

In certain regimes, the representation of implied volatility as an average expected
volatility can be made precise. Specifically, Berestycki, Busca, and Florent ([7];
BBF henceforth) show that in the short-maturity limit, implied volatility is the
harmonic mean of local volatility.

The PDE that relates implied volatility I(x, T ) to local volatility σ(x, T ) is,
by substituting (2.5) into (2.3),

2TI
∂I

∂T
+ I2 − σ2(x, T )

(
1− x

∂I

∂x

/
I

)2

− σ2(x, T )TI
∂2I

∂x2
+

1
4
σ2(x, T )T 2I2 ∂

2I

∂x2
= 0

Let I0(x) be the solution to the ODE generated by taking T = 0 in the PDE.
Thus

I2
0 − σ2(x, 0)

(
1− x

∂I0
∂x

/
I0

)2

= 0.

Elementary calculations show that the ODE is solved by

I0(x) =
( ∫ 1

0

ds

σ(sx, 0)

)−1

,

A natural conjecture is that the convergence I0 = limT→0 I(x, T ) holds. Indeed
this is what Berestycki, Busca, and Florent [7] prove. Therefore, short-dated
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implied volatility is approximately the harmonic mean of local volatility, where
the mean is taken “spatially,” along the line segment on T = 0, from moneyness
0 to moneyness x.

The harmonic mean here stands in contrast to arithmetic or quadratic means
that have been proposed in the literature as rules of thumb. As BBF argue,
probabilistic considerations rule out the arithmetic and quadratic means; for
example, consider a local volatility diffusion in which there exists a price level
H ∈ (S0,K) above which the local volatility vanishes, but below which it is pos-
itive. Then the option must have zero premium, hence zero implied volatility.
This is inconsistent with taking a spatial mean of σ arithmetically or quadrati-
cally, but is consistent with taking a spatial mean of σ harmonically.

2.2.3 Deep in/out-of-the-money implied volatility as quadratic mean
local volatility

BBF also show that if local volatility is uniformly continuous and bounded by
constants so that

0 < σ 6 σ(x, T ) 6 σ,

and if local volatility has continuous limit(s)

σ±(t) = lim
x→±∞

σ(x, t)

locally uniformly in t, then deep in/out-of-the-money implied volatility approx-
imates the quadratic mean of local volatility, in the following sense:

lim
x→±∞

I(x, T ) =
(

1
T

∫ T

0

σ2
±(s)ds

)1/2

.

The idea of the proof is as follows. Considering by symmetry only the x → ∞
limit, let I∞(T ) := ( 1

T

∫ T

0
σ2

+(s)ds)1/2. Note that I∞ induces, via definition
(2.4), a local variance L2 that has the correct behavior at x = ∞, because the
denominator is 1 while the numerator is σ2

+(T ).
To turn this into a proof, BBF show that for any ε one can construct a

function ψ(x) such that 1 < ψ(∞) < 1 + ε and such that I∞(T )ψ(x) induces
via (2.4) a local volatility that dominates L. By a comparison result of BBF,

lim sup
x→∞

I(x, T ) < I∞(T )ψ(∞) < (1 + ε)I∞(T ).

On the other hand, one can construct ψ such that

lim inf
x→∞

I(x, T ) > I∞(T )ψ(∞) > (1− ε)I∞(T ).

Taking ε to 0 yields the result.
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2.3 Stochastic volatility

Now suppose that
dSt = rStdt+ σtStdWt,

where σt is stochastic. In contrast to local volatility models, σt is not determined
by St and t.

Intuition from the case of time-dependent volatility does not apply directly
to stochastic volatility. For example, one can define the random variable

σ̄ :=
(

1
T

∫ T

0

σ2
t dt

)1/2

,

but note that in general
I 6= Eσ̄.

For example, in the case where the σ process is independent of W , the mixing
argument of Hull and White [31] shows that

C0 = Ee−rT (ST −K)+

= E(E[e−rT (ST −K)+|{σt}06t6T ]) = ECBS(σ̄).
(2.6)

However, this is not equal to CBS(Eσ̄) because CBS is not a linear function of
its volatility argument. What we can say is that for the at-the-money-forward
strike, CBS is nearly linear in σ, because its second σ derivative is negative but
typically small; so by Jensen I < Eσ̄, but equality nearly holds.

Note that this I ≈ Eσ̄ heuristic is specific to one particular strike, that it
assumes independence of σt and Wt, and that the expectation is under a risk-
neutral pricing measure, not the statistical measure. We caution against the
improper application of this rule outside of its limited context.

So is there some time-averaged volatility interpretation of I, that does hold
in contexts where I ≈ Eσ̄ fails?

2.3.1 Relation to local-volatility results

Under stochastic volatility dynamics, implied local variance at (K,T ) is the
risk-neutral conditional expectation of σ2

t , given ST = K. The argument of
Derman and Kani [17] is as follows. Let f(S) = (S −K)+. Now take, formally,
an Ito differential with respect to T :

dTC = dT [e−rT E(ST −K)+] = EdT [e−rT (ST −K)+]

= e−rT E
[
f ′(ST )dST +

1
2
σ2

TS
2
T δ(ST −K)dT − (ST −K)+dT

]
= e−rT E

[
rSTH(ST −K) +

1
2
σ2

TS
2
T δ(ST −K)− (ST −K)+

]
dT

= e−rT E
[
− rKH(ST −K) +

1
2
σ2

TS
2
T δ(ST −K)

]
dT,
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where H denotes the Heaviside function. Assuming that (ST , σ
2
T ) has a joint

density pST ,VT
, let pST

denote the marginal density of ST . Continuing, we have

∂C

∂T
= −rK ∂C

∂K
+

1
2
e−rT

∫∫
vs2δ(s−K)pST ,VT

(s, v)dsdv

= −rK ∂C

∂K
+

1
2
e−rTK2

∫
vpST ,VT

(K, v)dv.

So, by definition of implied local variance,

L2(K,T ) =
∂C
∂T + rK ∂C

∂K
1
2K

2 ∂2C
∂K2

=
∫
vpST ,VT

(K, v)dv
pST

(K)
= E(σ2

t |ST = K).

Consequently, any characterization of I as an average expected local volatil-
ity becomes tantamount to a characterization of I as an average conditional
expectation of stochastic volatility.

Application 2.1. The BBF results in sections 2.2.2 and 2.2.3 can be interpreted,
under stochastic volatility, as expressions of implied volatility as [harmonic or
quadratic] average conditional expectations of future volatility.

2.3.2 The path-from-spot-to-strike approach

The following reasoning by Gatheral [25] provides an interpretation of implied
volatility as average expected stochastic volatility, without assuming short times
to maturity or strikes deep in/out of the money.

Fix K and T . Let

ΓBS :=
∂2CBS

∂S2

be the Black-Scholes gamma function.
Assume there exists a nonrandom nonnegative function v(t) such that for

all t in (0, T ),

v(t) =
E[σ2

tS
2
t ΓBS(St, t, σ̄(t))]

E[S2
t ΓBS(St, t, σ̄(t))]

(2.7)

where

σ̄(t) :=
(

1
T − t

∫ T

t

v(u)du
)1/2

.

Note that σt need not be a deterministic function of spot and time.
Define the function

c(S, t) := CBS(S, t, σ̄(t)),

which solves the following PDE for (S, t) ∈ (0,∞)× (0, T ):

∂c

∂t
= −1

2
v(t)S2 ∂

2c

∂S2
− rs

∂C

∂S
+ rC. (2.8)
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We have

C(K,T ) = E[e−rT (ST −K)+] = E[e−rT c(ST , T )]

= c(S0, 0) + E
∫ T

0

e−rt

[
∂c

∂t
(St, t)dt+

1
2
σ2

tS
2
t

∂2c

∂S2
(St, t)dt

+
∂c

∂S
(St, t)dSt − rc(St, t)

]
dt

= c(S0, 0) + E
∫ T

0

e−rt

2
(σ2

t − v(t))S2
t

∂2c

∂S2
(St, t)dt

= c(S0, 0) = CBS(S0, 0, σ̄(0)).

using Ito’s rule, then (2.8), then (2.7). Therefore

I2 = σ̄2(0) =
1
T

∫ T

0

v(t)dt =
1
T

∫ T

0

EGtσ2
t dt, (2.9)

where the final step re-interprets the definition (2.7) of v(t) as the expectation
of σ2

t with respect to the probability measure Gt defined, relative to the pricing
measure P, by the Radon-Nikodym derivative

dGt

dP
:=

S2
t ΓBS(St, t, σ̄(t))

E[S2
t ΓBS(St, t, σ̄(t))]

.

So (2.9) interprets implied volatility as an average expected variance. Moreover,
this expectation with respect to Gt can be visualized as follows. Write

EGtσ2
t =

∫ ∞

0

E(σ2
t |St = s)κt(s)ds, (2.10)

where the nonrandom function κt is defined by

κt(s) :=
s2ΓBS(s, t, σ̄(t))pSt

(s)∫∞
0
s2ΓBS(s, t, σ̄(t))pSt

(s)ds
,

and pSt denotes the density of St.
Thus E(σ2

t |St = s) is integrated against a kernel κ(s) which has the following
behavior. For t ↓ 0, the κ approaches the Dirac function δ(s− S0), because the
pSt

factor has that behavior, while the s2ΓBS factor approaches an ordinary
function. For t ↑ T , the κ approaches the Dirac function δ(s−K), because the
s2ΓBS factor has that behavior, while the pSt factor approaches an ordinary
function. At each time t intermediate between 0 and T , the kernel has a finite
peak, which moves from S0 to K, as t moves from 0 to T .

This leads to two observations. First, one has the conjectural approximation

EGtσ2
t ≈ E(σ2

t |St = s∗(t)),
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where the non-random point s∗(t) is the s that maximizes the kernel κt. By
(2.10), therefore,

I2 ≈ 1
T

∫ T

0

E(σ2
t |St = s∗(t))dt.

Second, the kernel’s concentration of “mass” initially (for t = 0) at S0, and
terminally (for t = T ) at K resembles the marginal densities of the S diffusion,
pinned by conditioning on ST = K. This leads to Gatheral’s observation that
implied variance is, to a first approximation, the time integral of the expected
instantaneous variance along the most likely path from S0 to K. We leave open
the questions of how to make these observations more precise, and how to justify
the original assumption.

Application 2.2. Given an approximation for local volatility, such as in [25], one
can usually compute explicitly an approximation for a spot-to-strike average,
thus yielding an approximation to implied volatility.

For example, given an approximation for local volatility linear in x, the spot-
to-strike averaging argument can be used to justify a rule of thumb (as in [18])
that approximates implied volatility also linearly in x, but with one-half the
slope of local volatility.

3 Statics

We examine here the implications of various assumptions on the shape of the
implied volatility surface, beginning in section 3.1 with only minimal assump-
tions of no-arbitrage, and then specializing in 3.2 and 3.3 to the cases of local
volatility and stochastic volatility diffusions. The term “statics” refers to the
analysis of I(x, T ) or I(K,T ) for t fixed.

As reference points, let us review some of the empirical facts about the shape
of the volatility surface; see, for example, [39] for further discussion. A plot of
I is not constant with respect to K (or x). It can take the shape of a smile,
in which I(K) is greater for K away-from-the-money than it is for K near-the-
money. The more typical pattern in post-1987 equity markets, however, is a skew
(or skewed smile) in which at-the-money I slopes downward, and the smile is far
more pronounced for small K than for large K. Empirically the smile or skew
flattens as T increases. In particular, a popular rule-of-thumb (which we will
revisit) states that skew slopes decay with maturity approximately as 1/

√
T ;

indeed, when comparing skew slopes across different maturities, practitioners
often define “moneyness” as x/

√
T instead of x.

The theory of how I behaves under various model specifications has at least
three applications. First, to the extent that a model generates a theoretical I
shape that differs qualitatively from empirical facts, we have evidence of model
misspecification. Second, given an observed volatility skew, analytical expres-
sions approximating I(x, T ) in terms of model parameters can be useful in cal-
ibrating those parameters. Third, necessary conditions on I for the absence of
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arbitrage provide consistency checks that can help to reject unsound proposals
for volatility skew parameterizations.

Part of the challenge for future research will be to extend this list of models
and regimes for which we understand the behavior of implied volatility.

3.1 Statics under absence of arbitrage

Assuming only the absence of arbitrage, one obtains bounds on the slope of the
implied volatility surface, as well as a characterization of how fast I grows at
extreme strikes.

3.1.1 Slope bounds

Hodges [30] gives bounds on implied volatility based on the nonnegativity of
call spreads and put spreads. Specifically, if K1 < K2 then

C(K1) > C(K2) P (K1) 6 P (K2) (3.1)

Gatheral [24] improves this observation to

C(K1) > C(K2)
P (K1)
K1

6
P (K2)
K2

, (3.2)

which is evident from a comparison of the respective payoff functions. Assuming
the differentiability of option prices in K,

∂C

∂K
6 0

∂

∂K

(
P

K

)
> 0.

Substituting C = CBS(I) and P = PBS(I) and simplifying, we have

− N(−d1)√
TN ′(d1)

6
∂I

∂x
6

N(d2)√
TN ′(d2)

,

where the upper and lower bounds come from the call and put constraints,
respectively.

Using (as in Carr-Wu [12]), the Mill’s Ratio R(d) := (1 − N(d))/N ′(d) to
simplify notation, we rewrite the inequality as

−R(d1)√
T

6
∂I

∂x
6
R(−d2)√

T

Note that proceeding from (3.1) without Gatheral’s refinement (3.2) yields the
significantly weaker lower bound −R(d2)/

√
T .

Of particular interest is the behavior at-the-money, where x = 0. In the
short-dated limit, as T → 0, assume that I(0, T ) is bounded above. Then

d1,2(x = 0) = ±I(0, T )
√
T/2 −→ 0.

12



Since R(0) is a positive constant, the at-the-money skew slope must have the
short-dated behavior ∣∣∣∣∂I∂x (0, T )

∣∣∣∣ = O

(
1√
T

)
, T → 0. (3.3)

In the long-dated limit, as T → ∞, assume that I(0, T ) is bounded away from
0. Then

d1,2(x = 0) = ±I(0, T )
√
T/2 −→ ±∞.

Since R(d) ∼ d−1 as d→∞, the at-the-money skew slope must have the long-
dated behavior ∣∣∣∣∂I∂x (0, T )

∣∣∣∣ = O

(
1
T

)
, T →∞. (3.4)

Remark 3.1. According to (3.4), the rule of thumb that approximates the skew
slope decay rate as T−1/2 cannot maintain validity into long-dated expiries.

3.1.2 The moment formula

Lee [37] proves the moment formula for implied volatility at extreme strikes.
Previous work, in Avellaneda and Zhu [3], had produced asymptotic calculations
for one specific stochastic volatility model, but the moment formula is entirely
general, and it uncovers the key role of finite moments.

At any given expiry T , the tails of the implied volatility skew can grow no
faster than x1/2. Specifically, in the right-hand tail, for |x| sufficiently large, the
Black-Scholes implied variance satisfies

I2(x, T ) 6 2|x|/T (3.5)

and a similar relationship holds in the left-hand tail.
For proof, write I∗ := (2|x|/T )1/2, and show that CBS(I) < CBS(I∗) for

large |x|. This holds because the left-hand side approaches 0 but the right-hand
side approaches a positive limit as x→∞.

Application 3.2. This bound has implications for choosing functional forms of
splines to extrapolate volatility skews. Specifically, it advises against fitting the
skew’s tails with any function that grows more quickly than x1/2.

Moreover, the tails cannot grow more slowly than x1/2, unless ST has finite
moments of all orders. This further restricts the advisable choices for param-
eterizing a volatility skew. To prove this fact, note that it is a consequence of
the moment formula, which we now describe.

The smallest (infimal) coefficient that can replace the 2 in (3.5) depends,
of course, on the distribution of ST , but the form of the dependence is notably
simple. This sharpest possible coefficient is entirely determined by p̃ in the
right-hand tail, and q̃ in the left-hand tail, where the real numbers

p̃ := sup{p : ES1+p
T <∞}

q̃ := sup{q : ES−q
T <∞},
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can be considered, by abuse of language, the “number” of finite moments in
underlying distribution. The moment formula makes explicit these relationships.

Specifically, let us write I2 as a variable coefficient times |x|/T , the ratio of
absolute-log-moneyness to maturity. Consider the limsups of this coefficient as
x→ ±∞:

βR(T ) := lim sup
x→∞

I2(x, T )
|x|/T

βL(T ) := lim sup
x→−∞

I2(x, T )
|x|/T

.

One can think of βR and βL as the right-hand and absolute left-hand slopes of
the linear “asymptotes” to implied variance.

The main theorem in [37] establishes that βR and βL both belong to the
interval [0, 2], and that their values depend only on the moment counts p̃ and
q̃, according to the moment formula:

p̃ =
1

2βR
+
βR

8
− 1

2

q̃ =
1

2βL
+
βL

8
− 1

2
.

One can invert the moment formula, by solving for βR and βL:

βR = 2− 4(
√
p̃2 + p̃− p̃),

βL = 2− 4(
√
q̃2 + q̃ − q̃).

The idea of the proof is as follows. By the Black-Scholes formula, the tail
behavior of the implied volatility skew carries the same information as the tail
behavior of option prices. In turn, the tail growth of option prices carries the
same information as the number of finite moments – intuitively, option prices are
bounded by moments, because a call or put payoff can be dominated by a power
payoff; on the other hand, moments are bounded by option prices, because a
power payoff can be dominated by a mixture, across a continuum of strikes, of
call or put payoffs.

In a wide class of specifications for the dynamics of S, the moment counts p̃
and q̃ are readily computable functions of the model’s parameters. This occurs
whenever logST has a distribution whose characteristic function f is explicitly
known. In such cases, one calculates ESp+1

T simply by extending f analytically
to a strip in C containing −i(p+1), and evaluating f there; if no such extension
exists, then ESp+1

T = ∞. In particular, among affine jump-diffusions and Levy
processes, one finds many instances of such models. See, for example, [19, 36].
Application 3.3. The moment formula may speed up the calibration of model
parameters to observed skews. By observing the tail slopes of the volatility skew,
and applying the moment formula, one obtains p̃ and q̃. Combined with anal-
ysis of the characteristic function, this produces two constraints on the model

14



parameters, and in models such as the examples below, actually determines two
of the model’s parameters. We do not claim that the moment formula alone
can replace a full optimization procedure, but it could facilitate the process by
providing a highly accurate initial guess of the optimal parameters.

Example 3.4. In the double-exponential jump-diffusion model of Kou [32, 33],
the asset price follows a geometric Brownian motion between jumps, which
occur at event times of a Poisson process. Up-jumps and down-jumps are ex-
ponentially distributed with the parameters η1 and η2 respectively, and hence
the means 1/η1 and 1/η2 respectively. Using the characteristic function, one
computes

q̃ = η2 p̃ = η1 − 1. (3.6)

Thus η1 and η2 can be inferred from p̃ and q̃, which in turn come from the slopes
of the volatility skew, via the moment formula.

The intuition of (3.6) is as follows: the larger the expected size of an up-
jump, the fatter the ST distribution’s right-hand tail, and the fewer the number
of positive moments. Similar intuition holds for down-jumps. Note that the
jump frequency has no effect on the asymptotic slopes.

Example 3.5. In the normal inverse Gaussian model of Barndorff-Nielsen [6],
returns have the NIG distribution defined as follows: Consider two-dimensional
Brownian motion starting at (a, 0), with constant drift (b, c), where c > 0. The
NIG(a, b, c, d) law is the distribution of the first coordinate of the Brownian
motion at the stopping time when the second coordinate hits a barrier d > 0.
Then one calculates

q̃ =
√
b2 + c2 + b p̃ =

√
b2 + c2 − b− 1, (3.7)

so b and c can be inferred from p̃ and q̃, which in turn come from the slopes of
the volatility skew, via the moment formula.

This also has intuitive content: larger c implies earlier stopping, hence thin-
ner tails and more moments (of both positive and negative order); larger b
fattens the right-hand tail and thins the left-hand tail, decreasing the number
of positive moments and increasing the number of negative moments. Note that
the parameters a and d have no effect on the asymptotic slopes.

3.2 Statics under local volatility

Assume that the underlying follows a local volatility diffusion of the form (2.1).
Writing F := Ser(T−t) for the forward price, suppose that local volatility can
be expressed as a function h of F alone:

σ(S, t) = h(Ser(T−t)).

Hagan and Woodward (in [28], and with Kumar and Lesniewski in [27]), develop
regular perturbation solutions to (2.2) in powers of ε := h(K), assumed to
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be small. The resulting call price formula then yields the implied volatility
approximation

I(K,T ) ≈ h(F̄ ) +
1
24
h′′(F̄ )(F0 −K)2, (3.8)

where F̄ := (F0 +K)/2 is the midpoint between forward and strike. The same
sources also discuss alternative assumptions and more refined approximations.
Remark 3.6. The reasoning of section 2.3.2 suggests an interpretation of the
leading term h(F̄ ) in (3.8) as a midpoint approximation to the average local
volatility along a path from (F0, 0) to (K,T ).

3.3 Statics under stochastic volatility

Now assume that the underlying follows a stochastic volatility diffusion of the
form

dSt = rStdt+
√
VtStdWt

dVt = a(Vt)dt+ b(Vt)dZt

where Brownian motions W and Z have correlation ρ. From here one obtains,
typically via perturbation methods, approximations to the implied volatility
skew I. Our coverage will emphasize those approximations which apply to entire
classes of stochastic volatility models, not specific to one particular choice of a
and b. We label each approximation according to the regime in which it prevails.

3.3.1 Zero correlation

Renault and Touzi [40] prove that in the case ρ = 0, implied volatility is a
symmetric smile – symmetric in the sense that

I(x, T ) = I(−x, T )

and a smile in the sense that I is increasing in x for x > 0.
Moreover, as shown in [4], the parabolic shape of I is apparent from Taylor

approximations. Expanding the function Cbs(v) := CBS(
√
v) about v = EV ,

we have

C = Cbs(I) ≈ Cbs(EV ) + (I2 − EV )
∂Cbs

∂V
.

Comparing this to a Taylor expansion of the mixing formula

C = ECbs(V ) ≈ Cbs(EV ) +
1
2
Var(V )

∂2Cbs

∂V 2

yields the approximation

I2 ≈ EV +
1
4

Var(V )
(EV )2

(
x2

T
− EV − 1

4
(EV )2T

)
,

which is quadratic in x, with minimum at x = 0.
Remark 3.7. To the extent that implied volatility skews are empirically not
symmetric in equity markets, stochastic volatility models with zero correlation
will not be consistent with market data.
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3.3.2 Small volatility of volatility, and the short-dated limit

Lewis [38] shows that the forward call price, viewed as a function of x, has a
complex Fourier transform given by Ĥ(k, V, T )/(k2 − ik), where k is the trans-
form variable and Ĥ solves the PDE

∂Ĥ

∂T
=

1
2
b2
∂2Ĥ

∂V 2
+ (a− ikρbV 1/2)

∂Ĥ

∂V
− k2 − ik

2
V Ĥ,

with initial condition Ĥ(k, V, 0) = 1. In our setting, Ĥ can be viewed as the
characteristic function of the negative of the log-return on the forward price of
S.

Assuming that b(V ) = ηB(V ) for some constant parameter η, one finds a
perturbation solution for Ĥ in powers of η. The transform can be inverted to
produce a call price, by a formula such as

C = S − Ke−rT

2π

∫ i/2+∞

i/2−∞
eikx Ĥ(k, V, T )

k2 − ik
dk, (3.9)

yielding a series for C in powers of η. From the C series and the Black-Scholes
formula, Lewis derives the implied variance expansion

I2 = EV + η
J (1)

T

(
x

TEV
+

1
2

)
+ η2

[
J (2)

T
+
J (3)

T

(
x2

2(EV )2T 2
− 1

2TEV
− 1

8

)
+
J (4)

T

(
x2

T 2(EV )2
+

x

TEV
− 4− TEV

4TEV

)
+

(J (1))2

2T

(
− 5x2

2T 3(EV )3
− x

TEV
+

12 + TEV
8T 2(EV )2

)]
+O(η3),

where J () are integrals of known functions.

Example 3.8. The short-time-to-expiry limit is

I2(x, 0) = V0 +
1
2
ρb√
V0

x+
[(

1
12

− 11
48
ρ2

)
b2

V 2
0

+
1
6
ρb

V0

∂(ρb)
∂V

]
x2 +O(η3). (3.10)

The leading terms agree to O(η) with the slow-mean-reversion result of section
3.3.5. We defer further commentary until there.

Example 3.9. In the case where

dVt = κ(θ − Vt)dt+ ηV ϕ
t dWt, (3.11)

we have

EV = θ +
1− e−κT

κT
(V0 − θ)
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and J (2) = 0, while

J (1) =
ρ

κ

∫ T

0

(1− e−κ(T−s))
[
θ + e−κs(V0 − θ)

]ϕ+1/2

ds

J (3) =
1

2κ2

∫ T

0

(
1− e−κ(T−s)

)2
[
θ + e−κs(V0 − θ)

]2ϕ

ds

J (4) =
(
ϕ+

1
2

)ρ2

κ

∫ T

0

[
θ + e−κ(T−s)(V0 − θ)

]ϕ+1/2

J (6)(T, s)ds

J (6) =
∫ s

0

(e−κ(s−u) − e−κs)
[
θ + e−κ(T−u)(V0 − θ)

]ϕ−1/2

du.

In particular, taking ϕ = 1/2 produces the Heston [29] square-root model. In
the special case where V0 = θ, the slope of the implied variance skew is, to
leading order in η,

∂I2

∂x
=
ρη

κT

(
1− 1− e−κT

κT

)
,

which agrees with a computation, by Gatheral [25], that uses the expectations
interpretation of local volatility.

3.3.3 The long-dated limit

Given a stochastic volatility model with a known transform Ĥ, Lewis solves
for λ(k) and u(k, T ) such that Ĥ separates multiplicatively, for large T , into
T -dependent and V -dependent factors:

Ĥ(k, V, T ) ≈ e−λ(k)Tu(k, V ), T →∞.

Suppose that λ(k) has a saddle point at k0 ∈ C where λ′(k0) = 0. Applying
classical saddle-point methods to (3.9) yields

C(S, V, T ) ≈ S −Ke−rT u(k0, V )
k2
0 − ik0

exp[−λ(k0)T + ik0x]√
2πλ′′(k0)T

.

By comparing this to the corresponding approximation of CBS(I), Lewis obtains
the implied variance approximation

I2(x) ≈ 8λ(k0) + (8Im(k0)− 4)
x

T
− x2

2λ(k0)T 2
+O(T−3), T →∞.

The fact that I(x, T ) is linear to first order in x/T agrees with the fast-mean-
reversion result of Fouque, Papanicolaou, and Sircar [21]. We defer further
commentary until section 3.3.4.
Example 3.10. In the case (3.11) with ϕ = 1/2 (the square-root model), Lewis
finds

k0 =
i

1− ρ2

[
1
2
− ρ

η

(
κ− 1

2

√
4κ2 + η2 − 4ρκη

)]
λ(k0) =

κθ

2(1− ρ2)η2

[√
(2κ− ρη)2 + (1− ρ2)η2 − (2κ− ρη)

]
.
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The sign of the leading-order at-the-money skew slope (8Im(k0) − 4)/T agrees
with the sign of the correlation ρ.

3.3.4 Fast mean reversion

Fouque-Papanicolaou-Sircar ([21]; FPS henceforth) model stochastic volatility
as a function f of a state variable Yt that follows a rapidly mean-reverting
diffusion process. In the case of Ornstein-Uhlenbeck Y , this means that for
some large α,

dSt = µtStdt+ f(Yt)StdW̃t

dYt = α(θ − Yt)dt+ βdZ̃t

under the statistical measure, where the Brownian motions W̃ and Z̃ have
correlation ρ.

Rewriting this under a pricing measure,

dSt = rStdt+ f(Yt)StdWt

dYt = [α(θ − Yt)− βΛ(Yt)]dt+ βdZt,

where the volatility risk premium Λ is assumed to depend only on Y . Let pY

denote the invariant density (under the statistical probability measure) of Y ,
which is normal with mean θ and variance β2/(2α). Let angle brackets denote
average with respect to that density. Write

σ̄2
∞ := 〈f2〉,

so that σ̄∞ is the quadratic average of volatility with respect to the invariant
distribution.

By a singular perturbation analysis of the PDE for call price, FPS show that
implied volatility has an expansion with leading terms

I(x, T ) = A
x

T
+B +O(1/α),

where

A := − V3

σ̄3
∞

B := σ̄∞ +
3V3/2− V2

σ̄∞
,

(3.12)

and

V2 :=
β

2α
〈(2ρf − Λ)φ〉

V3 :=
β

2α
〈ρfφ〉

φ(y) :=
2α

β2pY (y)

∫ y

−∞
(f2(z)− 〈f2〉)pY (z)dz.
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Remark 3.11. The fast-mean-reversion approximation is particularly suited for
pricing long-dated options; in that long time horizon, volatility has time to
undergo much activity, so relative to the time scale of the option’s lifetime,
volatility can indeed be considered to mean-revert rapidly.

Note that I(x, T ) is, to first order, linear in x/T . This functional form agrees
with Lewis’s long-dated skew approximation (3.3.3).

Remark 3.12. Today’s volatility plays no role in the leading-order coefficients A
and B. Instead, the dominant effects depend only on ergodic means. Intuitively,
the assumption of large mean-reversion rapidly erodes the influence of today’s
volatility, leaving the long-run averages to determine A and B.

Remark 3.13. The slope of the long-dated implied volatility skew satisfies∣∣∣∣∂I∂x (0, T )
∣∣∣∣ ∼ 1

T
T →∞.

As a consistency check, note that the long-dated asymptotics are consistent with
the no-arbitrage constraint (3.4). Specifically, the T → ∞ skew slope decay of
these stochastic volatility models achieves the O(T−1) bound.

Application 3.14. FPS give approximations to prices of certain path-dependent
derivatives under fast-mean-reverting stochastic volatility. Typically, such ap-
proximations involve the Black-Scholes price for that derivative, corrected by
some term that depends on V2 and V3.

To evaluate this correction term, note that the formulas (3.12) can be solved
for V2 and V3 in terms of A, B, and σ̄. FPS calibrate A and B to the implied
volatility skew, and estimate σ̄ from historical data, producing estimates of V2

and V3, which become the basis for an approximation of the derivative price.
For example, in the case of uncorrelated volatility where ρ = 0, FPS find that

the price of an American put is approximated by the Black Scholes American
put price, evaluated at the volatility parameter√

σ̄2 − 2V2,

which can be considered an “effective volatility.”

3.3.5 Slow mean reversion

Assuming that for a constant parameter ε,

dσt = εα(Vt)dt+
√
εβ(Vt)dWt,

Sircar and Papanicolaou [42] develop, and Lee [35] extends, a regular perturba-
tion analysis of the PDE

∂C

∂t
+

1
2
σ2S2 ∂

2C

∂S2
+
√
ερSσβ

∂2C

∂S∂σ
+

1
2
εβ2 ∂

2C

∂σ2
+ εα

∂C

∂σ
+ rS

∂C

∂S
= rC
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satisfied by the call price under stochastic volatility. This leads to an expansion
for C in powers of ε, which in turn leads to the implied volatility expansion

I ≈ σ0 +
√
ε

[
ρβ

2σ0
x+

ρσ0β

4
T

]
+ ε

[((
ββ′

6σ2
− 5β2

12σ3

)
ρ2 +

β2

6σ3

)
x2 +

((
σβ2

12
+
σ2ββ′

24

)
ρ2 − σβ2

24

)
T 2

−
(
β2

24σ
− ββ′

6

)
ρ2Tx+

((
β2

24σ
− ββ′

6

)
ρ2 +

α

2
− β2

12σ

)
T

]
,

where β′ := ∂β/∂σ. In particular, short-dated implied volatility satisfies

I(x, 0) ≈ σ0 +
√
ε
ρβ

2σ0
x. (3.13)

Remark 3.15. The slow-mean-reversion approximation is particularly suited for
pricing short-dated options; in that short time horizon, volatility has little time
in which to vary, so relative to the time scale of the option’s lifetime, volatility
can indeed be considered to mean-revert slowly.

Note that (3.13) agrees precisely with the leading terms of Lewis’s short-
dated skew approximation (3.10).

Remark 3.16. In contrast to the case of rapid mean-reversion, the level to which
volatility reverts here plays no role in the leading-order coefficients. With a small
rate of mean-reversion, today’s volatility will have the dominant effect.

Remark 3.17. For ρ 6= 0, the at-the-money skew exhibits a slope whose sign
agrees with ρ. For ρ = 0 the skew has a parabolic shape.

Remark 3.18. In agreement with a result of Ledoit, Santa-Clara, and Yan [34],
we have I(x, T ) → σ0 as (x, T ) → (0, 0).

Application 3.19. In principle, given a parametric form for b, the fact that the
short-dated skew has slope ρb gives information that can simplify parameter
calibration. For example, if the modelling assumption is that b = βf(V ) for
some constant parameter β and known function f , then directly from the short-
dated skew and its slope, one obtains the product of the parameters ρ and
β.

Application 3.20. Lewis observes, moreover, that this tool facilitates the in-
ference of the functional form of b. Specifically, observe time-series of the
short-dated at-the-money data pair: (implied volatility, skew slope). As im-
plied volatility ranges over its support, the functional form of b is, in principle,
revealed.

Remark 3.21. Note that the T → 0 skew slope is O(1), which is strictly smaller
than the O(T−1/2) constraint. To the extent that the short-dated volatility
skew slope empirically seems to attain the O(T−1/2) upper bound instead of
the O(1) diffusion behavior, this observed skew will not be easily captured by
standard diffusion models. Two approaches to this problem, and subjects for
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further research, are to remain in the stochastic-volatility diffusion framework
but introduce time-varying coefficients (as in Fouque-Papanicolaou-Sircar-Solna
[22]); or alternatively to go outside the diffusion framework entirely and intro-
duce jump dynamics, such as in Carr-Wu [12].

4 Dynamics

While traditional diffusion models specify the dynamics of the spot price and
its instantaneous volatility, a newer class of models seeks to specify directly the
dynamics of one or more implied volatilities. One reason to take I as primitive is
that it enjoys wide acceptance as a descriptor of the state of an options market.
A second reason is that the observability of I makes calibration trivial.

In this section, today’s date t is not fixed at 0, because we are now concerned
with the time evolution of I.

4.1 No-arbitrage approach

4.1.1 One implied volatility

Consider the time-evolution of a single implied volatility I at some fixed strike
K and maturity date T . Schönbucher [41] models directly its dynamics as

dIt = utdt+ γtdW
(0)
t + vtdWt,

where W and W (0) are independent Brownian motions. The spot price has
dynamics

dSt = rStdt+ σtStdW
(0)
t ,

where σt is yet to be specified.
Since the discounted call price e−r(T−t)CBS(t, St, It) must be a martingale

under the pricing measure, we have for all I > 0 the following drift restriction
on the call price:

∂CBS

∂t
+rS

∂CBS

∂S
+u

∂CBS

∂I
+

1
2
σ2S2 ∂

2CBS

∂S2
+γσS

∂2CBS

∂I∂S
+

1
2
v2 ∂

2CBS

∂I2
= rCBS .

This reduces to a joint restriction on the diffusion coefficients of I, the drift of
I, and the instantaneous volatility σ:

Iu =
I2 − σ2

2(T − t)
− 1

2
d1d2v

2 +
d2√
T − t

σγ. (4.1)

Since S, t, and T are observable, we have that the volatility of I, together with
the drift of I, determines the spot volatility. Other papers [10, 34] have arrived
at analogous results in which one fixes not (strike, expiry), but instead some
other specification of exactly which implied volatility is to be modelled, such as
(moneyness, time to maturity).
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Schönbucher imposes a further constraint to ensure that I does not blow up
as t→ T . He requires that

(I2 − σ2)− d1d2(T − t)v2 + 2d2

√
T − tσγ = O(T − t) t→ T, (4.2)

which simplifies to
I2σ2 + 2γxIσ − I4 + x2v2 = 0.

This can be solved to get expiration-date implied volatility in terms of expiration-
date spot volatility. The solution is particularly simple in the zero-correlation
case, where γ = 0. Then, suppressing subscripts T ,

I2 =
1
2
σ2 +

√
σ2

4
+ x2v2.

Under condition (4.2), therefore, implied volatility behaves as σ + O(x2) for x
small, but O(|x|1/2) for x large. Both limits are consistent with the statics of
sections 3.1.2 and 3.3.1.

Application 4.1. Schönbucher applies this model to the pricing of other deriva-
tives as follows. Subject to condition (4.2), the modeller specifies the drift and
volatility of I, and infers the dependence of instantaneous volatility σ on the
state variables (S, t, I) according to (4.1). Then the price C(S, t, I) of a non-
strongly-path-dependent derivative satisfies the usual two-factor pricing equa-
tion

∂C

∂t
+ rS

∂C

∂S
+ u

∂C

∂I
+

1
2
σ2S2 ∂

2C

∂S2
+ γσS

∂2C

∂S∂I
+

1
2
v2 ∂

2C

∂I2
= rC

with boundary conditions depending on the particular contract. Finite differ-
ence methods can solve such a PDE.

Care should be taken to ensure that I does not become negative.

4.1.2 Term structure of implied volatility

Schönbucher extends this model M different maturities. The implied volatilities
to be modelled are It(Km, Tm) for m = 1, . . . ,M , where T1 < T2 < · · · < TM .
Let

V
(m)
t := I2

t (Km, Tm)

be the implied variance. One specifies the dynamics for the shortest-dated
variance V (1), as well as all “forward” variances

V (m,m+1) :=
(Tm+1 − t)V (m+1) − (Tm − t)V (m)

Tm+1 − Tm
.

The spot volatility σt and the drift and diffusion coefficients of V (1)
t are jointly

subject to the drift restriction (4.1) and the no-explosion condition (4.2). Then,
given the σt and V

(1)
t dynamics, specifying each V (m,m+1) diffusion coefficient

determines the corresponding drift coefficient, by applying (4.1) to V (m+1).
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Application 4.2. To price exotic contracts under these multi-factor dynamics,
Schönbucher recommends Monte Carlo simulation of the spot price (which de-
pends on simulation of implied volatilities). Upon expiry of the T1 option, the
T2 option becomes the “front” contract; at that time V (2) coincides with V (1,2),
and at later times its evolution is linked to spot volatility via the drift and the
no-explosion conditions. Similar transitions occur at each later expiry.

Care should be taken to avoid negative forward variances.

4.2 Statistical approach

Direct modelling of arbitrage-free evolution of an entire implied volatility surface
remains largely unresolved. Unlike traditional models of spot dynamics, direct
implied volatility models face increasing difficulty in enforcing no-arbitrage con-
ditions, when multiple strikes are introduced at a maturity.

Instead of demanding no-arbitrage, the modeller may have a goal more sta-
tistical in nature, namely to describe the empirical movements of the implied
volatility surface. According to Cont and da Fonseca’s [15] analysis of SP500
and FTSE data, the empirical features of implied volatility include the following:

Three principal components explain most of the daily variations in implied
volatility: one eigenmode reflecting an overall (parallel) shift in the level, an-
other eigenmode reflecting opposite movements (skew) in low and high strike
volatilties, and a third eigenmode reflecting convexity changes. Variations of
implied volatility along each principal component are autocorrelated, mean-
reverting, and correlated with the underlying.

To quantify these features, Cont and da Fonseca introduce and estimate a
d-factor model of the volatility surface, viewed as a function of moneyness m
and time-to-maturity τ . The following model is specified under the statistical
probability measure:

log It(m, τ) = log I0(m, τ) +
d∑

k=1

y
(k)
t f (k)(m, τ),

where the eigenmodes f (k), such as the three described above, can be estimated
by principal component analysis; the coefficients y(k) are specified as mean-
reverting Ornstein-Uhlenbeck processes

dy
(k)
t = −λ(k)(y(k)

t − ȳ(k))dt+ v(k)dW
(k)
t .

Remark 4.3. If one takes y(k)
t = 0 for all k, then I(m, τ) does not vary in

time. This corresponds to an ad-hoc model known to practitioners as “sticky
delta.” Balland [5] proves that if the dynamics of S are consistent with such a
model (or even a generalized sticky delta model in which It(m, τ) is time-varying
but determinstic), then assuming no arbitrage, S must be the exponential of a
process with independent increments.

Application 4.4. A natural application is the Monte Carlo simulation of implied
volatility, for the purpose of risk management.
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However, this model, unlike the theory of section 4.1, is not intended to
determine the consistent volatility drifts needed for martingale pricing of exotic
derivatives. How best to introduce the ideas from this model into a no-arbitrage
theory remains an open question.
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