History

Group characters first appeared long before representations!

In analytic number theory, series were used. The most famous of which is the Riemann zeta function
\[\zeta(s) = \prod_{\text{prime}} (1 - p^{-s})^{-1} \]
but also functions of the form
\[\zeta(s) = \prod_{\text{prime}} (1 - \frac{\chi(p)}{p^s})^{-1} \]
for some multiplicative function \(\chi : \mathbb{N} \rightarrow \mathbb{C}^* \)
(\(\chi(nm) = \chi(n)\chi(m) \).
(The zeta function corresponding to the case \(s = 1 \)).

Their importance fueled the study of characters:

homomorphisms \(\chi : \mathbb{Z}/N \rightarrow \mathbb{C}^* \)

and more generally, homomorphisms \(\chi : G \rightarrow S \leq \mathbb{C}^* \).

\(\otimes \) Dedekind disclosed that for an abelian group \(G \), one can write the multiplication table of \(G \) as

\[
\begin{array}{ccc}
g_1 & g_2 & \cdots & g_n \\
g_1 & & & \\
g_2 & & & \\
\vdots & & & \\
g_n & & & \\
\end{array}
\]

and taking the determinant
\[P(x_1, \ldots, x_n) = \det (x_{g_i g_j}) = \text{polynomial in } g_1, \ldots, g_n \]
one finds that \(P \) splits as a product of linear factors

\[P = \prod_{\chi} (\sum_{x \in G} \chi(x) x^*)^{-1} \]
where \(\chi \) are all the irreducible characters of \(G \) (meaning that they can't be realized as a character of a quotient of \(G \)).

But when taking \(G \) non-abelian, Dedekind couldn't generalize his formula.

He sent this puzzle to Frobenius to solve.

\(\otimes \) Frobenius realized that there is on orthonormal basis of class functions \(\chi_1, \ldots, \chi_k \)
s.t. \(\omega_i = \chi_i(1) \) and \(P \) splits as a product
\[P = \prod F_i^{\chi_i(1)} \]
where the coeff. \(\frac{\chi_i(1)}{x_i} \) of \(x_i \) in \(F_i \) is \(\chi_i(1) \).

\(\otimes \) Still very mysterious, he found an explicit construction:

If \(\rho : G \rightarrow GL_d(\mathbb{C}) \) is a homomorphism, and there is no basis in which \(p(g) = \begin{pmatrix} A & 0 \\ \# & B \end{pmatrix} \)
[i.e. no invariant subspace - irrep.]
then \(\chi_i(\rho(g)) = \text{Tr}(\rho_i(g)) \).

- But still he cared only about the functions \(\chi_i \) and not about \(\rho_i \).

\(\otimes \) Later, Dedekind and Schur descided to study the \(\rho_i \)'s in their own right and made them the focus of the theory.
The center \(Z(G) \) in the character table

1. In your HW you defined
 \[\ker (x) = \{ g \in G : x(g) = \dim V \} \]
 and worked out that
 \[\ker (x) = \ker (\phi) \triangleleft G \text{ a normal subgroup.} \]
 \[\Rightarrow \text{ The character table detects normal subgroups of } G. \]

2. **Claim:** \(Z(G) = \bigcap \{ g \in G : \dim V = \chi(g) \} \) for \(\chi \) irreps.

 PF. We showed in a previous problem session (2) that
 \[|\chi(g)| = \dim V \iff \chi(g) = \chi_1 \]
 for \(\chi_1 \in \chi \) some root of 1.
 Thus \(|\chi(g)| = \dim V \iff \chi(g) \) commutes with any other matrix.
 In particular \(\chi(g)\chi(h) = \chi(h)\chi(g) \forall g,h \in G \).
 But if this is the case on every irrep, it will be true on any \(G \)-rep.
 In particular on \(CG \):
 \[e_{gn} = \phi(g)e_1 = \phi(g)\phi(h)e_1 = \phi(h)\phi(g)e_1 = e_{ng} \]
 \[\Rightarrow gh = hg \forall g,h \in G, \]
 i.e. \(g \in Z(G) \).

Conversely, if \(g \in Z(G) \) then the map \(\chi(g) : V \to V \) is \(G \)-linear
\[\chi(g)\chi(h) = \chi(h)\chi(g) \]
 i.e. \(T \circ \chi(h) = \chi(h) \circ T \)
 where \(T = \chi(g) \).

 and thus by Schur's lemma, \(\chi(g) = \chi_1 \) on every irrep.

Algebraic integers

1. In a general setting:
 \[S \leq R \text{ two integral domains.} \]
 We proved in class that if \(\alpha \in R \) satisfies
 \[\alpha^n + s_1 \alpha^{n-1} + \ldots + s_n = 0 \]
 then \(S[\alpha] \) is finitely generated over \(S \), e.g. by \(1, \alpha, \ldots, \alpha^n \).
 Claim: The converse is also true.
 PF. Suppose \(\alpha_1, \ldots, \alpha_n \in S[\alpha] \) are a generating set. Then \(\forall r_i, \alpha_i \in S[\alpha] \Rightarrow r_i S_i \subseteq S \) st.
 \[\alpha_i = \sum S_i r_i \]
 or, in matrix form \(A = (S_i) \)
 \[(\alpha_i) = A (r_i) \Rightarrow (dI - A) (r_i) = 0 \]

Let \(\text{adj}(dI - A) \) be the adjoint matrix
(this can be defined over any commutative ring, and has the same properties).

Multiplying by it: \(\text{adj}(A) \cdot \alpha = \text{det}(A)I \)
\[0 = \text{det}(A) (r_i) \]

But since \(R \) is a domain,
\[\text{det}(A) \neq 0 \]
But \(\text{det}(dI - A) = \alpha^n - \text{tr}(A) \alpha^{n-1} + \ldots \]
i.e. \(\alpha \) is integral over \(S \).

2. **Application of \(\mathbb{Z} \cap \mathbb{Q} = \mathbb{Z} \).**
 Claim: \(\alpha \in \mathbb{Q} \) is an algebraic integer (in \(\mathbb{Z} \)) if it's minimal polynomial over \(\mathbb{Q} \) has integer coeff.
 PF. (\(\Rightarrow \)) is clear by def.
 (\(\Leftarrow \)) Let \(\alpha, \alpha_1, \ldots, \alpha_n \in \mathbb{Q} \) be all the conjugates of \(\alpha \) over \(\mathbb{Q} \)
i.e. the roots of the minimal polynomial of \(\alpha \).

\(\alpha \) is integral \(\Leftrightarrow \exists q \in \mathbb{Z}[\alpha] \) s.t.

\[q(\alpha) = 0. \]

But then \(\forall i = 1, 2, \ldots, n \)

\[q(\alpha_i) = 0 \text{ as well} \Rightarrow \{\alpha_i\} \text{ are all algebraic integers.} \]

Since the algebraic integers are closed under addition and multiplication, all symmetric functions

\(s_i(\alpha_1, \ldots, \alpha_n) \) are algebraic integers.

But \(p_i = s_i(\alpha_1, \ldots, \alpha_n) \) is the coefficient of \(\alpha^i \) in the minimal polynomial of \(\alpha \)

\[\Rightarrow p_i \in \mathbb{Q}. \]

Since \(p_i \in \mathbb{Z} \cap \mathbb{Q} = \mathbb{Z} \) we conclude that \(\min(\alpha) \in \mathbb{Z}[\alpha] \) a monic integer polynomial.

\(\square \)