Basic operations on G-reps (and their effect on characters)

1) Direct sum: Suppose V and W are G-reps.
 We define $V \oplus W$ to be the G-rep with the G-action
 $g \cdot (u \oplus w) = (g \cdot u \oplus g \cdot w)$
 i.e. $\rho_{V \oplus W}(g)(u \oplus w) = (\rho_V(g)u, \rho_W(g)w)$
 $\rho_{V \oplus W}(g)$ is a basis with the property
 that $\rho_{V \oplus W}(g)$ has the block form
 \[
 \begin{pmatrix}
 \rho_V(g) & 0 \\
 0 & \rho_W(g)
 \end{pmatrix}
 \]
 in this basis.

2) Computing the trace of this block matrix, we find
 $\chi_{V \oplus W}(g) = \text{Tr}(\rho_{V \oplus W}(g)) = \text{Tr}(\rho_V(g)) + \text{Tr}(\rho_W(g))$
 $\chi_V(g) + \chi_W(g)$

So characters are additive w.r.t. direct sums.

2) Dual space: Suppose V is a G-rep.
 We wish to define a natural G-action on the dual $V^* = \text{Hom}_C(V, C)$.
 There is a natural way in which a linear map $T: V \to W$ induces a linear map on the dual spaces
 $V^* \to W^* : T^*$
 (going in the opposite direction)
 namely - if $\alpha \in W^*$ is a linear functional on W, define $T^*\alpha \in V^*$ to be the
 linear functional $\alpha \circ T : V \to C$.
 T^* is called the dual map.

- How does $()^*$ react to composition?
 If $V \xrightarrow{T} W \xrightarrow{S} U$ is dualized, we get
 $V^* \xrightarrow{T^*} W^* \xrightarrow{S^*} U^*$
 i.e. $(S \circ T)^* = T^* \circ S^*$ - reverses the direction of composition!

- Given a G-rep ρ_V on the space V we can try defining
 $V^* \xleftarrow{\rho_V^*} V^*$
 for all $g \in G$, but because of the arrow reversal we would get
 $\rho_V^*(gh)^* = (\rho_V^*(g)\rho_V^*(h))^* = \rho_V^*(h)\rho_V^*(g)^*$
 and this does not satisfy the composition rule.

 To get the arrows back in the right direction, we replace g by g^{-1}:
 $V \xrightarrow{\rho_V(h)} V^* \xleftarrow{\rho_V(h)^*} V^* \xrightarrow{\rho_V(g)} V^*$
 $V \xrightarrow{\rho_V(g^{-1})} V^* \xleftarrow{\rho_V(g^{-1})^*} V^*$

 and this diagram has the form of a G-rep.

- We therefore define
 $\rho_V^*(g) := \rho_V(g^{-1})^*$
 the dual rep. to V.
8) Let's compute the character of the dual rep.

For some $g \in G$. Since $g^* = 1$ we have $\rho(g^*)$ is a diagonalizable transformation, and all its eigenvalues are n-th roots of unity. In particular they all lie on the unit circle \mathbb{C}^*.

Let $u_1, ..., u_n \in V$ be a diagonalizing basis for $\rho(g^*)$, and

$$\rho(g) u_i = \lambda_i u_i.$$

In matrix form $\rho(g)$ is

$$\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

and $x_V(g) = \text{Tr}(\rho(g)) = \lambda_1 + \cdots + \lambda_n$.

The diagonal coefficient of g is the complex conjugate of that of g^*.

Ex: If $T : V \to V$ has matrix form $\begin{pmatrix} a_{ij} \end{pmatrix}$ w.r.t. a basis (u_i), and (u^*_i) is the dual basis (i.e. $f_i(u_j) = \delta_{ij}$) then $T^* : V^* \to V^*$ has matrix form $\begin{pmatrix} a_{ji} \end{pmatrix}$ in the dual basis.

In particular $\text{Tr}(T) = \text{Tr}(a) = \text{Tr}(a^*) = \text{Tr}(T^*)$.

Cor. $x_{V^*}(g) = \text{Tr}(\rho(g)^*) = \overline{x_V(g)}$ and we find:

$\overline{x_V} = x_{V^*}$ complex conjugates.

3) Tensor products:

If V and W are G-reps. then $V \otimes W$ is a G-rep via the induced action $\rho_{V \otimes W}(g) = (\rho_V(g) \otimes \rho_W(g))$. If $u_1, ..., u_n \in V$ and $w_1, ..., w_m \in W$ are bases, then $(u_i \otimes w_j)_i$ is a basis for $V \otimes W$.

If $\rho_V(g) u_i = \sum a_{ij} u_j$

$\rho_W(g) w_k = \sum b_{ik} w_k$

then $\rho_{V \otimes W}(g) (u_i \otimes w_k) = \sum a_{ij} b_{kl} u_j \otimes w_k$.

The diagonal coefficient of (l, l)-th coefficient is $a_{ll} b_{ll}$.

$$x_{V \otimes W}(g) = \sum_{i,l} a_{ll} b_{ll} = (\sum_{i,l} (\xi_i, b_{ll})).$$

$\implies x_{V \otimes W} = x_V \cdot x_W$ the product of characters.

4) Homomorphism space: Let V and W be G-reps.

By similar considerations to the one made for V^*, there is a natural G-action on the space $\text{Hom}_G(V, W) = \{T : V \to W : T \text{ linear} \}$ given by $g \cdot (T) = gTg^*$ i.e.

$$\rho_{\text{Hom}}(g)(T) = \rho_g(g) \circ T \circ \rho_g(g)^* \in \text{Hom}_G(V, W).$$

We described an isomorphism of vector spaces $V^* \otimes W \cong \text{Hom}_G(V, W)$.

Ex. Prove that this is an iso. of G-representations!

8) Computing the character,

$$x_{\text{Hom}_G(V, W)} = x_{V^* \otimes W} = x_V \cdot x_W = \overline{x_V} \cdot x_W.$$

Rem: G-homomorphisms $\text{Hom}_G(V, W)$ are precisely the maps fixed by all $g \in G$.
Properties of the character table

Rem 1: By the fundamental thm. of character theory,
\[V \text{ is irreducible} \iff \frac{1}{|G|} \sum_{g \in G} |\chi_V(g)|^2 = 1. \]

Since \(|\chi_V(g)| = |\chi_V(g)| \), we find that \(\chi^* \) is irreducible \(\iff \chi \) is real.

\[\implies \] For every irrep, we find, if \(\chi \) is not a real function, then \(\chi^* \) is a distinct irrep of \(G \).

Rem 2: For every vec. space \(V \),
\[\text{Tr}(\text{id}_V) = \dim V. \]
- Therefore, if \(\chi \) is the character of some \(G \)-rep. \(W \), then
\[\chi(1) = \dim W. \]
- \(\forall g \in G \), \(\chi(g) = \frac{1}{|G|} \sum_{i=1}^n \lambda_i \) - the eigenvalues of \(\rho_g(g) \).

\[\implies |\chi(g)| \leq \frac{1}{|G|} \sum_{i=1}^n |\lambda_i| = \frac{1}{|G|} \dim W \]
and equality holds \(\iff \lambda_1 = \lambda_2 = \cdots = \lambda_n \)
i.e., \(\rho(g) = \chi(g) \text{id}_W \)

So the character tells us some direct information about the rep.

Example: Character table for \(D_4 \).
The Dihedral group of order 8 \(\text{is the symmetry group of a square} \)
\[
\begin{array}{c|c|c|c|c}
& e & r & r^2 & r^3 \\
\hline
\sigma & 1 & 1 & 1 & 1 \\
\tau & 1 & -1 & 1 & -1 \\
\end{array}
\]
it's generated by:
- a rotation by 90° - \(\tau \)
 \((\tau^4 = 1) \)
- a reflection along the horizontal axis - \(\sigma \)
 \((\sigma^2 = 1) \)

and these are subject to the relation \(\sigma \tau \sigma = \tau^{-1} \)
(rotation in the opposite direction)

\(* \) The conjugacy classes are:
\[\{e\}, \{\sigma, \tau^3\sigma\}, \{\sigma \tau, \tau^3 \sigma^2\}, \{\sigma, \tau^3\}, \{\tau^3\} \]
so we will have 5 irreps!

\(* \) We have a relation between \(|G| \) and the dimensions of the irreps.
\[8 = |G| = \sum_{i=1}^5 (\dim V_i)^2 \]
and since these are integers, the only possibility is \((\dim V_i) = (1,1,1,1,2)\).

\(* \) Let's find the 1-dim. reps.

Note: If \(V_i \) is 1-dim, then
\[\rho_i(g) = \text{multiplication by some scalar } \lambda_i \in \mathbb{C}^x \]

In particular,
\[\rho_i(gh) = \rho_i(g)\rho_i(h) = \rho_i(g) \rho_i(h) = \rho_i(hg). \]
For \(D_4 \), this means,
\[\rho_i(r^2 \sigma) = \rho_i(\sigma r^2 \sigma) = \rho_i(\sigma) \rho_i(r^2) = \rho_i(r^2) \]
\[\implies \rho_i(r^2) = 1. \]

Thus \(\rho_i \) factors through the quotient \(D_4 \rightarrow D_4/_{r^2} \rightarrow \text{GL}(V) \)

Ex: \(D_4/_{r^2} \)
\[\begin{array}{c|c|c|c}
\sigma & 1 & 1 & 1 \\
\tau & -1 & -1 & 1 \\
\end{array} \]

by \(\sigma \rightarrow (1,0) \)
\(\tau \rightarrow (-1,0) \).

And we know exactly 4 non-iso.
1-dim. representations of \(\mathbb{Z}_2^2 \):
(1) \(V_{\text{triv}} \in V_{\text{triv}} \otimes V_{\text{triv}} \)
(2) \(V_{\text{sign}} \in V_{\text{sign}} \otimes V_{\text{sign}} \)
(3) \(V_{\text{triv}} \in V_{\text{triv}} \cdot V_{\text{sign}} \)
(4) \(V_{\text{sign}} \in V_{\text{sign}} \cdot V_{\text{sign}} \)
\[\tau^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \tau^3 = \tau^* = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} \]

and \(\sigma \tau \) switches \(V_i \) and \(V_{-i} \).

so always have trace 0.

\[\text{Tr}(\tau^2) = 1 - 1 = 0 \]
\[\text{Tr}(\tau^3) = -1 - 1 = -2 \]
\[\text{Tr}(\tau^*) = -i + i = 0 \]

and we have completed our character table:

<table>
<thead>
<tr>
<th>(C_4)</th>
<th>(C_7)</th>
<th>(C_7^2)</th>
<th>(C_7^3)</th>
<th>(C_7^4)</th>
<th>(C_7^5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Ex. Verify that the rows and columns of this 5\times5 table are orthogonal w.r.t. the inner product:

\[\frac{1}{16} \sum_{c \in C} \chi_c(\tau) \chi_c(\sigma) \]

\[= \frac{1}{16} \sum_{g \in G} \chi_{1}(g) \chi_{2}(g) \]

\[= \frac{1}{16} \sum_{g \in G} \chi_{(c,1)}(g) \chi_{(c,i)}(g) \]