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Abstract. Kottwitz conjectured a formula for the (semi-simple) trace of Frobenius on the
nearby cycles for the local model of a Shimura variety with Iwahori-type level structure. In

this paper, we prove his conjecture in the linear and symplectic cases by adapting an argument
of Gaitsgory, who proved an analogous theorem in the equal characteristic case.
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1. Introduction

For certain classical groups G and certain minuscule coweights m of G, M. Rapoport
and Th. Zink have constructed a projective scheme MðG; mÞ over Zp that is a local

model for singularities at p of some Shimura variety with level structure of Iwahori

type at p. Locally for the étale of topology, MðG; mÞ is isomorphic to a natural Zp-

model MðG; mÞ of the Shimura variety.
The semi-simple trace of the Frobenius endomorphism on the nearby cycles of

MðG; mÞ plays an important role in the computation of the local factor at p of the
semi-simple Hasse–Weil zeta function of the Shimura variety, see [17]. We can re-

cover the semi-simple trace of Frobenius on the nearby cycles ofMðG; mÞ from that
of the local model MðG; mÞ, see loc. cit. Thus the problem to calculate the function.

x 2MðG; mÞðFqÞ 7! TrssðFrq;RCð �Q‘ÞxÞ

comes naturally. R. Kottwitz has conjectured an explicit formula for this function.

To state this conjecture, we note that the set of Fq-points of MðG; mÞ can be
naturally embedded as a finite set of Iwahori-orbits in the affine flag variety of

GðFqððtÞÞÞ

MðG; mÞðFqÞ � GðFqððtÞÞÞ=I

where I is the standard Iwahori subgroup of GðFqððtÞÞÞ.
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CONJECTURE (Kottwitz). For all x 2MðG; mÞðFqÞ,

TrssðFrq;RCð �Q‘ÞxÞ ¼ q
hr;mizmðxÞ:

Here qhr;mizmðxÞ is the unique function in the center of the Iwahori–Hecke algebra of

I-bi-invariant functions with compact support in GðFqððtÞÞÞ, characterized by

qhr;mizmðxÞ
IK ¼ IKmK:

Here K denotes the maximal compact subgroup GðFq½½t��Þ and IKmK denotes the char-

acteristic function of the double-coset corresponding to a coweight m.
Kottwitz’ conjecture was first proved for the local model of a special type of

Shimura variety with Iwahori type reduction at p attached to the group GL(d)

and minuscule coweight (1, 0d1) (the ‘Drinfeld case’) in [9]. The method of that

paper was one of direct computation: Rapoport had computed the function

TrssðFrq;RCð �Q‘ÞxÞ for the Drinfeld case (see [17]), and so the result followed from

a comparison with an explicit formula for the Bernstein function zð1;0d1Þ. More gen-

erally, the explicit formula for zm in [9] is valid for any minuscule coweight m of any
quasi-split p-adic group. Making use of this formula, U. Görtz verified Kottwitz’

conjecture for a similar Iwahori-type Shimura variety attached to G ¼ GLð4Þ and

m ¼ ð1; 1; 0; 0Þ, by computing the function TrssðFrq;RCð �Q‘ÞxÞ for x ranging over

all 33 strata of the corresponding local model MðG; mÞ.
Shortly thereafter, A. Beilinson and D. Gaitsgory were motivated by Kottwitz’

conjecture to attempt to produce all elements in the center of the Iwahori–Hecke

algebra geometrically, via a nearby cycle construction. For this they used Beilinson’s

deformation of the affine Grassmannian: a space over a curve X whose fiber over a

fixed point x 2 X is the affine flag variety of the group G, and whose fiber over every

other point of X is the affine Grassmannian of G. In [5] Gaitsgory proved a key com-

mutativity result (similar to our Proposition 21) which is valid for any split group G

and any dominant coweight, in the function field setting. His result also implies that

the semi-simple trace of Frobenius on nearby cycles (of a K-equivariant perverse

sheaf on the affine Grassmannian) corresponds to a function in the center of the

Iwahori–Hecke algebra of G.

The purpose of this article is to give a proof of Kottwitz’ conjecture for the cases

G ¼ GLðdÞ and G ¼ GSpð2dÞ. In fact we prove a stronger result (Theorem 11) which

applies to arbitrary coweights, and which was also conjectured by Kottwitz

(although only the case of minuscule coweights seems to be directly related to

Shimura varieties).

MAIN THEOREM. Let G be either GLðdÞ or GSpð2dÞ. Then for any dominant

coweight m of G, we have

TrssðFrq;RCMðAm;ZÞÞ ¼ ð1Þ2hr;mi
X
l4m

mmðlÞzl:

HereM is a member of an increasing family of schemesMn� which contains the local

models of Rapoport-Zink; the generic fiber of M can be embedded in the affine
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Grassmannian of G, and Am;Z denotes the K-equivariant intersection complex corre-

sponding to m. The special fiber ofM embeds in the affine flag variety of Gð �FqððtÞÞÞ so

we can think of the semi-simple trace of Frobenius on nearby cycles as a function in

the Iwahori–Hecke algebra of G.

The crucial step in the proof of the theorem is to show that the function

TrssðFrq;RCMðAm;ZÞÞ is in the center of the Iwahori–Hecke algebra. The basic strat-

egy to prove this is

(1) give a geometric construction of convolution of sheaves which corresponds to

the usual product in the Hecke algebra,

(2) show that convolution commutes with the nearby cycle functor,

(3) show that on the generic fiber, convolution of appropriate sheaves is commutative.

While the strategy of proof is similar to that of Beilinson and Gaitsgory, in order

to get a statement which is valid over all local non-Archimedean fields we use a

somewhat different model, based on spaces of lattices, in the construction of the

schemes Mn� (we have not determined the precise relation between our model and

that of Beilinson and Gaitsgory). This is necessary to compensate for the lack of

an adequate notion of affine Grassmannian over p-adic fields. The union of the

schemes Mn� can be thought of as a p-adic analogue of Beilinson’s deformation

of the affine Grassmannian.

2. Rapoport-Zink Local Models

2.1. SOME DEFINITIONS IN THE LINEAR CASE

Let F be a local non-Archimedean field. Let O denote the ring of integers of F and let
k ¼ Fq denote the residue field of O. We choose a uniformizer $ of O. We denote by
Z the generic point of S ¼ SpecðOÞ and by s its closed point.
For G ¼ GLðdÞ and for m the minuscule coweight

ð1; . . . ; 1;|fflfflfflfflffl{zfflfflfflfflffl}
r

0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
dr

Þ

with 14 r4 d 1, the local model Mm represents the functor which associates

to each O-algebra R the set of L� ¼ ðL0; . . . ;Ld1Þ where L0; . . . ;Ld1 are R-

submodules of Rd satisfying the following properties

. L0; . . . ;Ld1 are locally direct factors of corank r in Rd,

. a0ðL0Þ � L1; a0ðL1Þ � L2; . . . ; a0ðLd1Þ � L0 where a is the matrix

a0 ¼

0 1
. .
. . .

.

0 1
$ 0

0
BB@

1
CCA
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The projective S-scheme Mm is a local model for singularities of p of some Shimura

variety for unitary group with level structure of Iwahori type at p (see [17, 18]).

Following a suggestion of G. Laumon, we introduce a new variable t and rewrite

the moduli problem of Mm as follows. Let MmðRÞ be the set of L� ¼ ðL0; . . . ;Ld1Þ

where L0; . . . ;Ld1 are R½t�-submodules of R½t�
d=tR½t�d satisfying the following

properties

. as R-modules, L0; . . . ;Ld1 are locally direct factors of corank r in R½t�
d=tR½t�d,

. aðL0Þ � L1; aðL1Þ � L2; . . . ; aðLd1Þ � L0 where a is the matrix

a ¼

0 1
. .
. . .

.

0 1
tþ$ 0

0
BB@

1
CCA

Obviously, these two descriptions are equivalent because t acts as 0 on the quoti-

ent R½t�d=tR½t�d. Nonetheless, the latter description indicates how to construct larger

S-schemes Mm, where m runs over a certain cofinal family of dominant (nonminus-
cule) coweights.

Let n4 0 < nþ be two integers.

DEFINITION 1. LetMr;n� be the functor which associates each O-algebra R the set
of L� ¼ ðLo; . . . ;Ld1Þ where L0; . . . ;Ld1 are R½t�-submodules of

tnR½t�d=tnþR½t�d

satisfying the following properties:

. as R-modules, L0; . . . ;Ld1 are locally direct factors rank nþd r in

tnþR½t�d=tnþR½t�d,

. aðL0Þ � L1; aðL1Þ � L2; . . . ; aðLd1Þ � L0.

This functor is obviously represented by a closed sub-scheme in a product of

Grassmannians. In particular, Mr;n� is projective over S.

In some cases, it is more convenient to adopt the following equivalent description

of the functor Mr;n�. Let us consider a as an element of the group

a 2 GLðd;O½t; t1; ðtþ$Þ1�Þ:

Let V0;V1; . . . ;Vd be the fixed O½t�-submodules of O½t; t1; ðtþ$Þ1�d defined by

V i ¼ aiO½t�d. In particular, we have Vd ¼ ðtþ$Þ1V0. Denote by V i;R the tensor
V i �O R for any O-algebra R.

DEFINITION 2. LetMr;n� be the functor which associates to each O-algebra R the
set of

L� ¼ ðL0 � L1 � � � � � Ld ¼ ðtþ$Þ1L0Þ
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where L0;L1; . . . are R½t�-submodules of R½t; t1; ðtþ$Þ1�d satisfying the following

conditions

. for all i ¼ 0; . . . ; d 1, we have tnþV i;R � Li � tn  V i;R;

. as R-modules, Li=tnþV i;R is locally a direct factor of tnV i;R=tnþV i;R with rank
nþd r.

By using the isomorphism

ai : tnV i;R=tnþV i;R !
�
tnR½t�d=tnþR½t�d

we can associate to each sequence L� ¼ ðLiÞ as in Definition 1 ofMr;n�; the sequence

L� ¼ ðLiÞ as in Definition 2, in such a way that aiðLi=tnþV i;RÞ ¼ Li. This correspon-
dence is clearly bijective. Therefore, the two definitions of the functor Mr;n� are

equivalent.

It will be more convenient to consider the disjoint union Mn� of projective

schemes Mr;n� for all r for which Mr;n� makes sense, namely Mn� ¼
‘
dn4 r4 dnþ

Mr;n�, instead of each connected component Mr;n� individually.

2.2. GROUP ACTION

Definition 2 permits us to define a natural group action on Mn�. Every R½t�-module

Li as above is included in

tnþR½t�d � Li � tnðtþ$Þ1R½t�d:

Let �Li denote its image in the quotient
�Vn�;R ¼ tnðtþ$Þ1R½t�d=tn þ R½t�d:

Obviously, Li is completely determined by �Li.
Let �V i denote the image of V i in �Vn� . We can view �Vn� as the free R-module

Rðnþnþ1Þd equipped with the endomorphism t and with the filtration

�V� ¼ ð �V0 � �V1 � � � � �Vd ¼ ðtþ$Þ1 �V0Þ

which is stabilized by t.

We now consider the functor Jn� which associates to each O-algebra R the group
Jn�ðRÞ of all R½t�-automorphisms of

�Vn� fixing the filtration �V�. This functor is repre-
sented by a closed subgroup of GL((nþ  n þ 1Þd) over S that acts in the obvious

way of Mn� .

LEMMA 3. The group scheme Jn� is smooth over S.

Proof. Consider the functor J n� which associates to each O-algebra R the ring
J n�ðRÞ of all R½t�-endomorphisms of

�Vn� stabilizing the filtration �V�. This functor is
obviously represented by a closed sub-scheme of the S-scheme glððnþ  n þ 1ÞdÞ of
square matrices with rank ðnþ  n þ 1Þd.

The natural morphism of functors Jn� ! J n� is an open immersion. Thus it suf-

fices to prove that J n� is smooth over S.
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Giving an element of J n� is equivalent to giving d vectors v1; . . . ; vd such that

vi 2 t
n �V i. This implies that J n� is isomorphic to a trivial vector bundle over S of

rank

Xd
i¼1

rkOðt
nV i=tnþO½t�dÞ ¼ d2ðnþ  n þ 1Þ  ðd 1Þd=2:

This finishes the proof of the lemma. &

2.3. DESCRIPTION OF THE GENERIC FIBER

For this purpose, we use Definition 1 of Mn� . Let R be an F-algebra. The matrix a
then is invertible as an element

a 2 GLðd;R½t�=tnþnR½t�Þ;

the group of automorphisms of tnR½t�d=tnþR½t�d.

Let ðL0; . . . ;Ld1Þ be an element of Mn�ðRÞ. As R-modules, the Li are locally

direct factors of the same rank. For i ¼ 1; . . . ; d 1, the inclusion aðLi1Þ � Li
implies the equality aðLi1Þ ¼ Li. In this case, the last inclusion aðLd1Þ � L0 is auto-
matically an equality, because the matrix

ad ¼ diagðtþ$; . . . ; tþ$Þ

satisfies the property: adðL0Þ ¼ L0. In others words, the whole sequence ðL0; . . . ;
Ld1Þ is completely determined by L0.

Let us reformulate the above statement in a more precise way. Let Grassn� be the

functor which associates to each O-algebra R the set of R½t�-submodules L of

tnR½t�d=tnþR½t�d which, as R-modules, are locally direct factors of tnR½t�d=tnþR½t�d.

Obviously, this functor is represented by a closed subscheme of a disjoint union of

Grassmannians. In particular, it is proper over S.

Let p: Mn� ! Grassn� be the morphism defined by

pðL0; . . . ;Ld1Þ ¼ L0:

The above discussion can be reformulated as follows.

LEMMA 4. The morphism p: Mn� ! Grassn� is an isomorphism over the generic

point of Z of S. &

Let Kn� the functor which associates to each O-algebra R the group

Kn� ¼ GLðd;R½t�=t
nþnR½t�Þ: :

Obviously, it is represented by a smooth group scheme over S and acts naturally on

Grassn�. This action yields a decomposition into orbits that are smooth over S

Grassn� ¼
‘

l2Lðn�ÞOL, where Lðn�Þ is the finite set of sequences of integers
l ¼ ðl1; . . . ; ldÞ satisfying the following condition nþ5l15 � � � 5ld5 n: This

set Lðr; n�Þ can be viewed as a finite subset of the cone of dominant coweights of
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G ¼ GLðdÞ and conversely, every dominant coweight of G occurs in some Lðn�Þ. For
all l 2 Lðn�Þ, we have OlðF Þ ¼ KFt

lKF=KF: Here KF ¼ GLðd;F ½½t��Þ is the standard

maximal ‘compact’ subgroup of GF ¼ GLðd;FððtÞÞÞ and acts on Grassn�ðF Þ through

the quotient Kn�ðF Þ. The above equality holds if one replaces F by any field which is

also an O-algebra, since Kn� is smooth; in particular it holds for the residue field k.
We derive from the above lemma the description

Mn�ðF Þ ¼
a

l2Lðn�Þ

KFt
lKF=KF:

We will need to compare the action of Jn� on Mn� and the action of Kn� on

Grassn�. By definition, Jn�ðRÞ is a subgroup of

Jn�ðRÞ � GLðd;R½t�=t
nþnðtþ$ÞR½t�Þ

for any O-algebra R. By using the natural homomorphism

GLðd;R½t�=tnþnðtþ$ÞR½t�Þ !GLðd;R½t�=tnþnR½t�Þ

we get a homomorphism Jn�ðRÞ !Kn�ðRÞ. This gives rises to a homomorphism of

group schemes r: Jn� !Kn�, which is surjective over the generic point Z of S.
The proof of the following lemma is straightforward.

LEMMA 5. With respect to the homomorphism r: Jn� !Kn�, and to the morphism

p: Mn� !Grassn�, the action of Jn� on Mn� and the action of Kn� on Grassn� are

compatible.

2.4. DESCRIPTION OF THE SPECIAL FIBER

For this purpose, we will use Definition 2 of Mn�. The functor Mr;n� associates to

each k-algebra R the set of

L� ¼ ðL0 � L1 � � � � � Ld ¼ t1L0Þ
where L0;L1; . . . are R½t�-submodules of R½t; t

1�
d satisfying the following conditions

. for all i ¼ 0; . . . ; d 1, we have tnþV i;R � Li � tnV i;R;

. as an R-module, each Li=tnþV i;R is locally a direct factor of tnV i;R=tnþV i;R with
rank nþd r.

Let Ik denote the standard Iwahori subgroup of Gk ¼ GLðd; kððtÞÞÞ, that is, the

subgroup of integer matrices GLðd; k½½t��Þ whose reduction mod t lies in the subgroup

of upper triangular matrices in GLðd; kÞ. The set of k-points of Mn� can be realized

as a finite subset in the set of affine flags of GLðdÞ, i.e., Mn�ðkÞ � Gk=Ik. By defini-

tion, the k-points of Jn� are the matrices in GLðd; k½t�=t
nþnþ1k½t�Þ whose reduction

mod t is upper triangular. Thus, Jn�ðkÞ is a quotient of Ik. Obviously, the action of

Jn� on Mn�ðkÞ and the action of Ik on Gk=Ik are compatible. Therefore, for each r

such that dn4 r4 dnþ there exists a finite subset ~Wðr; n�Þ � ~W of the affine Weyl

group ~W such that
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Mn�ðkÞ ¼
a

w2 ~Wðn�Þ

IkwIK=Ik;

where ~Wðn�Þ ¼
‘
r
~Wðr; n�Þ. One can see easily that any element w 2 ~W occurs in the

finite subset ~Wðn�Þ for some n�. But the exact determination of the finite sets
~Wðr; n�Þ is a difficult combinatorial problem; for the case of minuscule coweights

of GLðdÞ (i.e., nþ ¼ 1 and n ¼ 0) these sets have been described by Kottwitz and

Rapoport [13].$

Let us recall that

Grassn�ðkÞ ¼
a

l2Lðn�Þ

Kkt
lKk=Kk:

The proof of the text lemma is straightforward.

LEMMA 6. The map pðkÞ: Mn�ðkÞ !Grassn�ðkÞ is the restriction of the natural

map Gk=Ik!Gk=Kk.

2.5. SYMPLECTIC CASE

For the symplectic case, we will give only the definitions of the symplectic analogies

of the objects which were considered in the linear case. The statements of Lemmas 3,

4, 5 and 6 remain unchanged.

In this section, the group G stands for GSp(2d) associated to the symplectic form

h ; i represented by the matrix

0 J
J 0

� �

where J is the anti-diagonal matrix with entries equal to 1. Let m denote the minus-
cule coweight

m ¼ ð1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
d

; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
d

Þ:

Following Rapoport and Zink ([18]) the local model Mm represents the functor

which associates to each O-algebra R the set of sequences L� ¼ ðL0; . . . ;LdÞ where

L0; . . . ;Ld are R-submodules of R
2d satisfying the following properties

� L0; . . . ;Ld are locally direct factors of R
2d of rank d,

� a1ðL0Þ � L1; . . . a0ðLd1Þ � Ld where a0 is the matrix of size 2d� 2d

$We refer to our subsequent work [10] for further progress in the description of the setsWðr; n�Þ. In
the terminology of Kottwitz and Rapoport [13], the set ~Wðr; n�Þ is precisely the set of m-permissible
elements, for m ¼ ðn

q
þ;Rþ n; n

dq1
 Þ, where q and R are defined by r dn ¼ qðnþ  nÞ þ R, with

04R < nþ  n: By the main result of [10], it is also the set of m-admissible elements. Similar remarks
apply to the sets ~Wðn�Þ occurring in the sympletic case, cf. end of Section 2.5.
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a0 ¼

0 1
. .
. . .

.

0 1
$ 0

0
BB@

1
CCA

� L0 and Ld are isotropic with respect to h ; i.

Just as in the linear case, let us introduce a new variable t and give the symplectic

analogue of Definition 2. We consider the matrix of size 2d� 2d

a0 ¼

0 1
. .
. . .

.

0 1
tþ$ 0

0
BB@

1
CCA

viewed as an element of

a 2 GLð2d;O½t; t1; ðtþ$Þ1�Þ:

Denote by V; . . . ;V2d1 the fixed O½t�-submodules of O½t; t1; ðtþ$Þ1�2d defined by

V i ¼ aiO½t�2d. For an O-algebra R, let V i;R denote V i �OR.

For any R½t�-submodule L of R½t; t1; ðtþ$Þ1�2d, the R[t]-module

L?0

¼ x 2 R½t; t1; ðtþ$Þ1�2d j8y 2 L; tnðtþ$Þn
0

hx; yi 2 R½t�
n o

is called the dual of L with respect to the form h ; i0 ¼ tnðtþ$Þn
0

h ; i. Thus V0 is auto-
dual with respect to the form h ; i and Vd is autodual with respect to the form
ðtþ$Þh ; i.

Here is the symplectic analogue of Definition 2 of the modelMn�. For n ¼ 0 and

nþ ¼ 1, Mn� will coincide with Mm, for m ¼ ð1d; 0dÞ:

DEFINITION 7. For any n4 0 < nþ, let Mn� be the functor which associates to

each O-algebra R the set of sequences

L� ¼ ðL0 � L1 � � � � � LdÞ
where L0; . . . ;Ld are R½t�-submodules of R½t; t1; ðtþ$Þ1�2d satisfying the follow-

ing properties:

. for all i ¼ 0; . . . ; d, we have tnþV i;R � Li � tnV i;R;

. as R-modules, Li=tnþV i;R is locally a direct factor of tnV i;R=tnþV i;R of rank
ðnþ  nÞd;

. L0 is autodual with respect to the form tnnþh ; i, and Ld is autodual with
respect to the form tnnþðtþ$Þh ; i.

Let us now define the natural group action onMn�. The functor Jn� associates to

each O-algebra R the group Jn�ðRÞ of R½t�-linear automorphisms of
�Vn�;R ¼ tnðtþ$Þ1R½t�2d=tnþR½t�2d
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which fix the filtration �V�;R ¼ ð �V0;R � � � � � �Vd;RÞ (the image of V�;R in �Vn�;R and
which fix, up to a unit R, the symplectic form tnnþðtþ$Þh ; i. This functor is

represented by an S-group scheme Jn� which acts on Mn�. Lemma 3 remains true

in the symplectic case: Jn� is a smooth group scheme over S. The proof is completely

similar to the linear case.

Let us now describe the generic fiber of Mn�. Let Grassn� be the functor which

associates to each O-algebra R the set of R[t]-submodules L of tnR½t�2d=tnþR½t�2d
which, as R-modules, are locally direct factors of rank ðnþ  nÞd and which are iso-

tropic with respect to tnnþh ; i. Then the morphism p: Mn� !Grassn� defined

by pðL�Þ ¼ L0 is an isomorphism over the generic point Z of S. Let Kn� denote
the functor which associates to each O-algebra R the group of R½t�-automorphisms
of tnR½t�2d=tnþR½t�2d which fix the symplectic form tnnþh ; i up to a unit in R. Then

Kn� is represented by a smooth group scheme over S, and it acts in the obvious way

on Grassn�. Consequently, we have a stratification in orbits of the generic fiber

Mn�;Z, i.e., Mn�;Z ¼
‘

l2Lðn�ÞOl;Z: Here Lðn�Þ is the set of sequences l ¼
ðl1; . . . ; ldÞ satisfying

nþ5l15 � � � 5ld5
nþ þ n
2

;

and can be viewed as finite subset of the cone of dominant, coweights of

G ¼ GSpð2dÞ. One can easily check that each dominant coweight of GSpð2dÞ occurs

in some Lðn�Þ. For any l 2 Lðn�Þ, we have also Ol;ZðF Þ ¼ KFt
lKF=KF, where

KF ¼ GðF ½½t��Þ is the ‘maximal compact’ subgroup of GF ¼ GðFððtÞÞÞ.

Next we turn to the special fiber of Mn� . For this it is most convenient to give a

slight reformulation of Definition 7 above. Let R be any O-algebra. It is easy to
see that specifying a sequence L� ¼ ðL0 � � � �LdÞ as in Definition 7 is the same as
specifying a periodic ‘‘lattice chain’’

� � � � L1 � L0 � � � � � L2d ¼ ðtþ$Þ1L0 � � � �

consisting of R½t�-submodules of R½t; t1; ðtþ$Þ1�2d with the following properties:

. tnþV i;R � Li � tnV i;R, where V i;R ¼ aiV0;R, for every i 2 Z,

. Li=tnþV i;R is locally a direct factor of rank ðnþ  nÞd, for every i 2 Z,

. L?i ¼ tn nþLi, for every i 2 Z,

where ? is defined using the original symplectic form h ; i on R½t; t1; ðtþ$Þ1�2d.

We denote by Ik the standard Iwahori subgroup of GSpð2d; k½½t��Þ, namely, the sta-

bilizer in this group of the periodic lattice chain V�;k½½t��. There is a canonical surjec-
tion Ik ! Jn�ðkÞ and so the Iwahori subgroup Ik acts via its quotient Jn�ðkÞ on the set

Mn�ðkÞ. Moreover, the Ik-orbits in Mn�ðkÞ are parametrized by a certain finite set
~Wðn�Þ of the affine Weyl group ~WðGSpð2dÞÞ, i.e., Mn�ðkÞ ¼

‘
w2 ~Wðn�Þ

Ik w Ik=Ik.

The precise description of the sets ~Wðn�Þ is a difficult combinatorial problem (see

[13] for the case nþ ¼ 1; n ¼ 0), but one can easily see that any w 2 ~WðGSpð2dÞÞ

is contained in some ~Wðn�Þ.
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The definitions of the group scheme action of Kn� on Grassn� , of the homomorph-

ism r: Jn� ! Kn� and the compatibility properties (Lemmas 5, 6) are obvious and

will be left to the reader.

3. Semi-Simple Trace on Nearby Cycles

3.1. SEMI-SIMPLE TRACE

The notion of semi-simple trace was introduced by Rapoport in [17] and its good

properties were mentioned there. The purpose of this section is only to give a more

systematic presentation in insisting on the important fact that the semi-simple trace

furnish a kind of sheaf-function dictionary à la Grothendieck. In writing this section,

we have benefited from very helpful explanations of Laumon.

Let �F be a separable closure of the local field F. Let G be the Galois group
Galð �F=F Þ of F and let G0 be the inertia subgroup of G defined by the exact sequence

1! G0 ! G! Galð �k=kÞ ! 1:

For any prime ‘ 6¼ p, there exists a canonical surjective homomorphism t‘:G0 !
Z‘ð1Þ.

Let R denote the Abelian category of continuous, finite dimensional ‘-adic repre-
sentations of G. Let ðr;V Þ be an object of R, i.e., r: G! GLðV Þ.

According to a theorem of Grothendieck, the restricted representation rðG0Þ is quasi-
unipotent, i.e. there exists a finite-index subgroup G1 of G0 which acts unipotently on
V (the residue field k is supposed finite). There exists then an unique nilpotent

morphism, the logarithm of r, N: Vð1Þ ! V characterized by the following property:

for all g 2 G1, we have rðgÞ ¼ expðNt‘ðgÞÞ.
Following Rapoport, an increasing filtration F of V will be called admissible if it is

stable under the action of G and such that G0 operates on the associated graded
grF� ðV Þ through a finite quotient. Admissible filtrations always exist: we can take

for instance the filtration defined by the kernels of the powers of N.

We define the semi-simple trace of Frobenius on V as

TrssðFrq;V Þ ¼
X
k

TrðFrq; gr
F
k ðV Þ

G0Þ:

LEMMA 8. The semi-simple trace TrssðFrq;V Þ does not depend on the choice of the

admissible filtration F .
Proof. Let us first consider the case where G0 acts on V through a finite quotient.

Since taking invariants under a finite group acting on a �Q‘-vector space is an exact

functor, the graded associated to the filtration F 0 of VG0 induced by F is equal to

grF� ðV Þ
G0 , i.e., grF

0

k ðV
G0 Þ ¼ grFk ðV Þ

G0 . Consequently

TrðFrq;V
G0 Þ ¼

X
k

TrðFrq; gr
F
k ðV Þ

G0 Þ:

In the general case, any two admissible filtrations admit a third finer admissible

filtration. By using the above case, one sees the semi-simple trace associated to each
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of the two first admissible filtrations is equal to the semi-simple trace associated to

the third one and the lemma follows. &

COROLLARY 9. The function defined by V 7! TrssðFrq;V Þ on the set of iso-

morphism classes V of R, factors through the Grothendieck group of R.

For any object C of the derived category associated to R, we put

TrssðFrq;C Þ ¼
X
i

ð1ÞiTrssðFrq;H
iðC ÞÞ :

By the above corollary, for any distinguished triangle C! C 0 ! C 00 ! C½1� the

equality

TrssðFrq;C Þ þ Tr
ssðFrq;C

00Þ ¼ TrssðFrq;C
0Þ

holds.

Let X be a k-scheme of finite type, X�s ¼ X�k �k. Let DbcðX�k ZÞ denote the derived
category associated to the abelian category of constructible ‘-adic sheaves on X�s equi-

pped with an action of G compatible with the action of G on X�s through Galð �k=kÞ, see

[3].$ Let C be an object of DbcðX�k ZÞ. For any x 2 XðkÞ, the fiber Cx is an object
of the derived category of R. Thus we can define the function semi-simple trace

t ssC XðkÞ ! Q‘ by t ssC ðxÞ ¼ Tr
ssðFrq; CxÞ:

This association C 7! tssC furnishes an analogue of the usual sheaf-function dic-
tionary of Grothendieck (see [7]):

PROPOSITION 10. Let f: X! Y be a morphism between k-schemes of finite type

ð1Þ Let C be an object of DbcðY�k ZÞ. For all x 2 XðkÞ, we have tssf
CðxÞ ¼ tssC ðfðxÞÞ:
ð2Þ Let C be an object of DbcðX�k ZÞ. For all y 2 YðkÞ, we have

tssRf!CðyÞ ¼
X
x2XðkÞ
fðxÞ¼y

tssC ðxÞ: :

Proof. The first statement is obvious because f 
Cx and Cf ðxÞ are canonically iso-
morphic as objects of the derived category of R.
It suffices to prove the second statement in the case Y ¼ s. By Corollary 9 and

‘shifting’, it suffices to consider the case where C is concentrated in only one degree,
say in the degree zero. Denote C ¼ H0ðCÞ and choose an admissible filtration of C

0 ¼ C0 � C1 � C2 � � � � � Cn ¼ C:

The associated spectral sequence

Ei;ji1 ¼ HjcðX�s;Ci=Ci1Þ ¼) HjcðX�s;C Þ

$The category DbcðX�k ZÞ is defined, following [4], to be �Q‘� the projective 2-limit of the categories

DbctfðX�k Z;Z=‘nZÞ, so it is not strictly speaking the derived category of the abelian category of
constructible ‘-adic sheaves.

128 T. HAINES AND B. C. NGÔ



yields an abutment filtration on HjcðX�s;CÞ with associated graded E
i;ji
1 . Since the

inertia group acts on Ei;ji1 through a finite quotient, the same property holds for

Ei;ji1 because Ei;ji1 is a subquotient of Ei;ji1 . Consequently, the abutment filtration

on HjcðX�s;C Þ is an admissible filtration and by definition, we have

TrssðFrq;Rf!C Þ ¼
X
i;j

ð1ÞjTrðFrq; ðE
i;ji
1 Þ

G0 Þ:

Now, the identity in the Grothendieck groupX
i;j

ð1ÞjEi;ji1 ¼
X
i;j

ð1ÞjEi;ji1

impliesX
i;j

ð1ÞjðEi;ji1 Þ
G0 ¼

X
i;j

ð1ÞjðEi;ji1 Þ
G0

because taking the invariants under a finite group is an exact functor.

The same exactness implies

ðEi;ji1 Þ
G0 ¼ HjcðX�s;Ci=Ci1Þ

G0 ¼ HjcðX�s; ðCi=Ci1Þ
G0 Þ:

By putting the above equalities together, we obtain

TrssðFrq;Rf!C Þ ¼
X
i;j

ð1ÞjTrðFrq;H
j
cðX�s; ðCi=Ci1Þ

G0 ÞÞ:

By using now the Grothendieck–Lefschetz formula, we haveX
x2XðkÞ

TrðFrq; ðCi=Ci1Þ
G0
x Þ ¼

X
j

ð1ÞjTrðFrq;H
j
cðX�s; ðCi=Ci1Þ

G0 ÞÞ:

Consequently,

TrssðFrq;Rf!C Þ ¼
X
x2XðkÞ

TrssðFrq;CxÞ: &

3.2. NEARBY CYCLES

Let �Z ¼ Specð �FÞ denote the geometric generic point of S; �S be the normalization of S

in �Z and �s be the closed point of �S. For an S-scheme X of finite type, let us denote by

�|X: X�Z ! X �S the morphism deduced from �|: �Z! �S and denote by �{X: X�s ! X �S the

morphism deduced from �{: �s! �S.

The nearby cycles of an ‘-adic complex CZ on XZ, is the complex of ‘-adic sheaves

defined by

RCXðCZÞ ¼ �iX;
R�|X
 �|
X;
CZ:

The complex RCXðCZÞ is equipped with an action of G compatible with the action of
G on X�s through the quotient Galð �k=kÞ.

For X a proper S-scheme, we have a canonical isomorphism
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RGðX�s;RCðCZÞÞ ¼ RGðX�Z;CZÞ

compatible with the natural actions of G on the two sides.
Let us suppose moreover the generic fiber XZ is smooth. In the order the compute

the local factor of the Hasse-Weil zeta function, one should calculate the traceX
j

ð1ÞjTrðFrq;H
jðX�Z; �Q‘Þ

G0 Þ:

Assuming that the graded pieces in the monodromy filtration of H jðX�Z; �Q‘Þ are pure

(Deligne’s conjecture), Rapoport proved that the true local factor is completely

determined by the semi-simple local factor, see [17]. Now by the above discussion

the semi-simple trace can be computed by the formulaX
j

ð1Þ jTrssðFrq;H
jðX�Z; �Q‘ÞÞ ¼

X
x2XðkÞ

TrssðFrq;RCð �Q‘ÞxÞ:

4. Statement of the Main Result

4.1. NEARBY CYCLES ON LOCAL MODELS

We have been in Subsection 2.3 (resp. 2.5 for sympletic case) that the generic fiber of

Mn� admits a stratification with smooth strata Mn�;Z ¼
‘

l2Lðn�ÞOl;Z:

Denote by �Ol;Z the Zariski closure �Ol;Z in Mn�;Z ; in general
�Ol;Z is no longer

smooth. It is natural to consider Al;Z ¼ ICðOl;ZÞ, its ‘-adic intersection complex.

We want to calculate the function

tss
RCMðAl;ZÞ

ðxÞ ¼ TrssðFrq;RCMðAl;ZÞxÞ

of semi-simple trace of the Frobenius endomorphism on the nearby cycle complex

RCMðAl;ZÞ defined in the last section. We are denoting the scheme Mn� simply by

M here.

As Ol;Z is an orbit of Jn�;Z, the intersection complex Al;Z is naturally Jn�;Z-equiv-

ariant. As we know that Jn� is smooth over S by Lemma 3, its nearby cycle complex

RCMðAl;ZÞ is Jn�;�s-equivariant. In particular, the function tss
RCMðAl;ZÞ

: Mn�ðkÞ !
�Q‘

is Jn�ðkÞ-invariant.

Now following the group theoretic description of the action of Jn�ðkÞ onMn�ðkÞ in

Subsection 2.4 (resp. 2.5), we can consider the function tss
RCMðAl;ZÞ

as a function on Gk
with compact support which is invariant on the left and on the right by the Iwahori

subgroup Ik, i.e., tssRCMðAl;ZÞ
2 HðGk==IkÞ.

The following statement was conjectured by R. Kottwitz, and is the main result of

this paper.

THEOREM 11. Let G be eitherGLðdÞ orGSpð2dÞ. Let M ¼Mn� be the scheme asso-

ciated to the group G and the pair of integers n�, as above. Then we have the formula

tss
RCMðAl;ZÞ

¼ ð1Þ2hr;li
X
l04l

mlðl
0
Þzl0 ;
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where zl0 is the function of Bernstein associated to the dominant coweight l
0, which lies

in the center ZðHðGk==IkÞÞ of HðGk==IkÞ.

Here, r is half the sum of positive roots for G and thence 2hr; li is the dimension
of Ol;Z. The integer mlðl

0
Þ is the multiplicity of weight l0 occurring in the represen-

tation of highest weight l. The partial ordering l04l is defined to mean that l l0

is a sum of positive coroots of G.

Comparing with the formula for minuscule m given in Kottwitz’ conjecture
(cf. Introduction), one notices the absence of the factor qhr;mi and the appearance

of the sign ð1Þ2hr;mi. This difference is explained by the normalization of the

intersection complex Am;Z. For minuscule coweights m, the orbit Om is closed. Conse-

quently, the intersection complex Am;Z differs from the constant sheaf only by a

normalization factor

Am;Z ¼
�Q‘½2hr; mi�ðhr; miÞ:

We refer to Lusztig’s article [14] for the definition of Bernstein’s functions. In fact,

what we need is rather the properties that characterize these functions. We will recall

these properties in the next subsection.

4.2. THE SATAKE AND BERNSTEIN ISOMORPHISMS

Denote by Kk the standard maximal compact subgroup Gðk½½t��Þ of Gk, where G is

either GL(d) or GSp(2d). The �Q‘-valued functions with compact support in Gk
invariant on the left and on the right by Kk form a commutative algebra

HðGk==KkÞ with respect to the convolution product. Here the convolution is defined
using the Haar measure on Gk which gives Kk measure 1. Denote by IK the charac-

teristic function of Kk. This element is the unit of the algebra HðGk==KkÞ. Similarly
we define the convolution onHðGk==IkÞ using the Haar measure on Gk which gives Ik
measure 1.

We consider the following triangle

Here �Q‘½X
�
W is the W-invariant sub-algebra of the �Q‘-algebra associated to the

group of cocharacters of the standard (diagonal) torus T in G and W is the Weyl

group associated to T. For the case G ¼ GLðdÞ, this algebra is isomorphic to the

algebra of symmetric polynomials with d variables and their inverses: �Q‘½X
�
1 ; . . . ;

X�d �
Sd .

The above maps

Sat: HðGk==KkÞ ! �Q‘½X
�
W
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and

Bern: �Q‘½X
�
W
! ZðHðGk==IkÞÞ

are the isomorphisms of algebras constructed by Satake, see [19] and by Bernstein,

see [14]. It follows immediately from its definition that the Bernstein isomorphism

sends the irreducible character wl of highest weight l to

BernðwlÞ ¼
X
l04l

mlðl
0
Þzl0 :

The horizontal map

ZðHðGk==IkÞÞ ! HðGk==KkÞ

is defined by f 7! f 
 IK where

f 
 IKðgÞ ¼

Z
Gk

fðgh1ÞIKðhÞdh:

The next statement seems to be known to the experts. It can be deduced easily see

[8], from results of Lusztig [14] and Kato [12]. Another proof can be found in an arti-

cle of Dat [2].

LEMMA 12. The above triangle is commutative.

It follows that the horizontal map is an isomorphism, and that ð1Þ2hr;li
P

l04l
mlðl

0
Þzl0 is the unique element in ZðHðGk==IkÞÞ whose image in HðGk==KkÞ has

Satake transform ð1Þ2hr;liwl.
Thus in order to prove the Theorem 11, it suffices now to prove the two following

statements.

PROPOSITION 13. The function tss
RCMðAl;ZÞ

lies in the center ZðHðGk==IkÞÞ of the
algebra HðGk==IkÞ.

PROPOSITION 14. The Satake transform of tss
RCMðAl;ZÞ


 IK is equal to ð1Þ
2hr;liwl,

where wl is the irreducible character of highest weight l.

In fact we can reformulate Proposition 14 in such a way that it becomes indepen-

dent of Proposition 13. We will prove Proposition 14 in the next section.

In order to prove Proposition 13, we have to adapt Lusztig’s construction of geo-

metric convolution to our context. This will be done in the Section 7. The proof of

Proposition 13 itself will be given in Section 8.

5. Proof of Proposition 14

5.1. AVERAGING BY K

The map

ZðHðGk==IkÞÞ ! HðGk==KkÞ
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defined by f 7! f 
 IK can be obviously extended to a map

CcðGk=IkÞ ! CcðGk=KKÞ

where CcðGk=IkÞ (resp. CcðGk=KkÞ) is the space of functions with compact support in

Gk invariant on the right by Ik (resp. Kk). This map can be rewritten as follows

f 
 IKðgÞ ¼
X

h2Kk=Ik

fðghÞ:

Therefore, this operation corresponds to summing along the fibers of the map

Gk=Ik ! Gk=Kk. For the particular function tssRCMðAl;ZÞ
, it amounts to summing along

the fibers of the map

pðkÞ :Mn�ðkÞ ! Grassn�ðkÞ;

(see Lemma 6).

By using now the sheaf-function dictionary for semi-simple trace, we get

tss
RCMðAl;ZÞ


IK ¼ tss
Rp�s;
RCMðAl;ZÞ:

The nearby cycle functor commutes with direct image by a proper morphism, so that

Rp �s;
RCMðAl;ZÞ ¼ RCGrassRpZ;
ðAl;ZÞ:

By Lemma 4, pZ is an isomorphism. Consequently, RpZ;
ðAl;ZÞ ¼ Al;Z.

According to the description of Grass ¼ Grassn� (see Subsections 2.3 and 2.5), we

can prove that RCGrassAl;Z ¼ Al; �s (note that the complex Al;Z over GrassZ can be

extended in a canonical fashion to a complex Al over the S-scheme Grass, thus

Al;�s makes sense). In particular, the inertia subgroup G0 acts trivially on

RCGrassAl;Z and the semi-simple trace is just the ordinary trace. The proof of a more

general statement will be given in the following appendix.

By putting together the above equalities, we obtain Rp�s;
RCMðAl;ZÞ ¼ Al;s.

To conclude the proof of Proposition 14, we quote an important theorem of

Lusztig and Kato, see [14] and [12]. We remark that Ginzburg and also Mirkovic

and Vilonen have put this result in its natural framework: a Tannakian equivalence,

see [6, 16].

THEOREM 15 (Lusztig, Kato). The Satake transform of the function tAl;s is

equal to SatðtAl;s Þ ¼ ð1Þ2hr;liwl, where wl is the irreducible character of highest
weight l.

5.2. APPENDIX

This appendix seems to be well known to the experts. We thank G. Laumon who has

kindly explained it to us.

Let us consider the following situation.

Let X be a proper scheme over S equipped with an action of a group scheme J

smooth over S. We suppose there is a stratification X ¼
‘

a2D Xa with each stratum
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Xa smooth over S. We assume that the group scheme J acts transitively on all fibers

of Xa. Moreover, we suppose there exists, for each a, a J-equivariant resolution of
singularities ~Xa; pa: ~Xa ! �Xa of the closure �Xa of Xa, such that this resolution
~Xa, smooth over S, contains Xa as a Zariski open; the complement ~Xa  Xa is also

supposed to be a union of normal crossing divisors.

If X is an invariant subscheme of the affine Grassmannian or of the affine flag

variety, we can use the Demazure resolution.

Let ia denote the inclusion map Xa ! X and let F a denote ia;! �Q‘. A bounded com-

plex of sheaves F with constructible cohomology sheaves (more precisely an object

of DbcðX;Q‘Þ – cf. the second footnote), is said to be D-constant if the cohomology
sheaves of F are successive extensions of F a with a 2 D. The intersection complex
of �Xa is D-constant.
For an ‘-adic complex F of sheaves on X, there exists a canonical morphism

F �s ! RCXðF ZÞ whose mapping cylinder is the vanishing cycle RFXðF Þ.

LEMMA 16. If F is a D-constant complex, then RFXðF Þ ¼ 0.
Proof. Clearly, it suffices to prove RFXðF aÞ ¼ 0. Consider the equivariant

resolution pa : ~Xa ! �Xa. We have a canonical isomorphism

Rpa;
RF
~XaðF aÞ !

�
RF

�XaðF aÞ:

It suffices then to prove RF ~XaðF aÞ ¼ 0. This is known because ~Xa is smooth over S

and ~Xa  Xa is a union of normal crossing divisors. &

COROLLARY 17. If F is D-constant and bounded, the inertia group G0 acts trivially
on the nearby cycle RCXðF ZÞ.

Proof. The morphism F �s ! RCXðF ZÞ is an isomorphism compatible with the

actions of G. The inertia subgroup G0 acts trivially on F �s, thus it acts trivially on

RCXðF ZÞ, too. &

6. Invariant Subschemes of G=I

We recall here the well known ind-scheme structure of Gk=Ik where G denotes the

group GL(d; kððtþ$ÞÞ) or the group GSp(2d; kððtþ$ÞÞ) and where I is its standard

Iwahori subgroup. The variable tþ$ is used instead of t in order to be compatible

with the definitions of local models given in Section 2.

6.1. LINEAR CASE

Let Nn� be the functor which associates to each O-algebra R the set of

L� ¼ ðL0 � L1 � � � � � Ld ¼ ðtþ$Þ1L0Þ

where L0;L1; . . . are R½t�-submodules of R½t; t1; ðtþ$Þ1�d such that for

i ¼ 0; 1; . . . ; d 1

ðtþ$ÞnþV i;R � Li � ðtþ$ÞnV i;R
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and Li=ðtþ$nþV i;R is locally a direct factor, of fixed rank independent of i, of the
free R-module ðtþ$ÞnV i;R=ðtþ$ÞnþV i;R. Obviously, this functor is represented
by a closed subscheme in a disjoint union of products of Grassmannians. In particu-

lar, Nn� is proper.

Let In� be the functor which associates to each O-algebra R the group R½t�-linear
automorphisms of

ðtþ$Þn1R½t�d=ðtþ$ÞnþR½t�d

fixing the image in this quotient of the filtration

V0;R � V1;R � � � � � Vd;R ¼ ðtþ$Þ1V0;R:
This functor is represented by a smooth group scheme over S which acts on Nn� .

6.2. SYMPLECTIC CASE

Let Nn� be the functor which associates to each O-algebra R the set of sequences

L� ¼ ðL0 � L1 � � � � � LdÞ:
where L0;L1; . . . are R½t�-submodules of R½t; t1; ðtþ$Þ1�2d satisfying

ðtþ$ÞnþV i;R � Li � ðtþ$ÞnV i;R
and such that Li=ðtþ$ÞnþV i;R is locally a direct factor of ðtþ$ÞnV i;R=ðtþ$ÞnþV i;R
of rank ðnþ  nÞd for all i ¼ 0; 1; . . . ; d, and L0 (resp. Ld) is autodual with respect to
the symplectic form ðtþ$Þnnþh ; i (resp. ðtþ$Þnnþþ1h ; iÞ.

Let In� be the functor which associates to each O-algebra R the group R½t�-linear
automorphisms of

ðtþ$Þn1R½t�2d=ðtþ$ÞnþR½t�2d

fixing the image in this quotient, of the filtration

V0;R � V1;R � � � � � V2d;R ¼ ðtþ$Þ1V0;R;

and fixing the symplectic form ðtþ$Þnnþ1 þ h ; i up to a unit in R. This functor is

represented by a smooth group scheme over S which acts on Nn�.

6.3. THERE IS NO VANISHING CYCLE ON N

For any algebraically closed field k over O, each Nn�ðkÞ is an In�-invariant subset of
the direct limit

!
lim

n�!�1
Nn�ðkÞ ¼ Gðkððtþ$ÞÞÞ=In�

where G denotes either the linear group or the group of symplectic similitudes. It fol-

lows from the Bruhat-Tits decomposition that Nn� admits a stratification by In�-

orbits Nn� ¼
Q
w2 ~W0ðn�Þ

Ow, where ~W0ðn�Þ is a finite subset of the affine Weyl group
~W of GL(d) (resp. GSp(2d).) Moreover, for all w 2 ~W 0ðn�Þ; Ow is isomorphic to

the affine space A
‘ðwÞ
S of dimension ‘ðwÞ over S, in particular it is smooth over S.
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By construction, In� acts transitively on each Ow. All this remains true if we replace S

by any other base scheme.

Let �Ow denote the closure of Ow. Let Iw;Z (resp. Iw;sÞ denote the intersection com-
plex of �Ow;Z (resp. �Ow;s). We have RCNðIw;ZÞ ¼ Iw;�s (see Appendix 5.2 for a proof).
In particular, the inertia subgroup G0 acts trivially on RCNðIw;ZÞ:
Let ~W be the affine Weyl group of GL(d), respectively GSp(2d). It can be easily

checked that ~W ¼ [n�
~W0ðn�Þ for the linear case as well as for the symplectic case.

7. Convolution Product of Al with Iw

7.1. CONVOLUTION DIAGRAM

In this section, we will adapt a construction due to Lusztig in order to define the con-

volution product of an equivariant perverse sheaf Al over Mn� with an equivariant

perverse sheaf Iw over Nn0
�
. See Lusztig’s article [15] for a quite general construction.

For any dominant coweight l and any w 2 ~W, we can choose n� and n
0
� so that l 2

Lðn�Þ and w 2 ~W 0ðn0�Þ. From now on, since l and w as well as n� and n
0
� are fixed,

we will often write M for Mn� and N for Nn0� . This should not cause any confusion.

The aim of this subsection is to construct the convolution diagram à la Lusztig

with the usual properties that will be made precise later.

7.2. LINEAR CASE

. The functor M ~�N associates to each O-algebra R the set of pairs ðL�;L0�Þ

L� ¼ ðL0 � L1 � � � � � Ld ¼ ðtþ$Þ1L0Þ;

L0� ¼ ðL00 � L01 � � � � � L0d ¼ ðtþ$Þ1L00Þ;

where LI, L0I are R½t�-submodules of R½t; t1; tðþ$Þ1�d satisfying the following
conditions

tnþV i;R � Li � tnV i;R;

ðtþ$Þn
0
þLi � L0i � ðtþ$Þn

0
Li:

As usual, Li=tnþV i;R is supposed to be locally a direct factor of tnV i;R=tnþV i;R,
and L0i=ðtþ$Þn

0
þLi locally a direct factor of ðtþ$Þn

0
Li=ðtþ$Þn

0
þLi as R-mod-

ules. The ranks of the projective R-modules Li=tnþ and Li;R and L0i=ðtþ$Þn
0
þLi

are each also supposed to be independent of i. It follows from the above con-

ditions that

tnþðtþ$Þn
0
þV i;R � L0i � tnðtþ$Þn

0
V i;R

136 T. HAINES AND B. C. NGÔ



and L0i=tnþðtþ$Þn
0
þV i;R is locally a direct factor of tnðtþ$Þn

0
V i;R=

tnþðtþ$Þn
0
þV i;R as an R-module. Thus defined the functorM ~�N is represented

by a projective scheme over S.

. The functor P associates to each O-algebra R the set of chains L0�
L0� ¼ ðL00 � L01 � � � � � L0d ¼ ðtþ$Þ1L00Þ;

where L0i are R[t]-submodules of R½t; t1; ðtþ$Þ1�d satisfying

tnþðtþ$Þn
0
þV i;R � L0i � tnðtþ$ÞnV i;R

and the usual conditions ‘locally a direct factor as R-modules’. As above,

ðkRðL0i=tnþðtþ$Þn
0
þV i;RÞ is supposed to be independent of i. Obviously, this

functor is represented by a projective scheme over S.

. The forgetting map mðL�;L0�Þ ¼ L0� yields a morphism m: M ~�N! P. This

map is defined: it suffices to note that tnðtþ$Þn
0
V i;R=L0i is locally free as an

R-module, being an extension of tnV i;R=Li by ðtþ$Þn
0
Li=L0i each of which

is locally free. Clearly, this morphism is a proper morphism because it source

and its target are proper schemes over S.

Now before we can construct the schemes ~M; ~N, and the remaining morphisms in

the convolution diagram, we need the following simple remark.

LEMMA 18. The function which associates to each O-algebra R the set of matrices
g 2 glsðRÞ such that the image of g: R

s ! Rs is locally a direct factor of rank r of Rs is

representable by a locally closed subscheme of gls.
Proof. For 14 i4 s, denote by Sti the closed subscheme of gls defined by the

equations: all minors of order at least iþ 1 vanish. By using Nakayama’s lemma, one

can see easily that the above functor is represented by the quasi-affine, locally closed

subscheme Str  Str-1 of gls. &

Now let �V0 � �V1 � � � � be the image of V0 � V1 � � � � in the quotient

�V ¼ tnðtþ$Þn
0
1O½t�d=tnþðtþ$Þn

0
þO½t�d:

Let �L0 � �L1 � � � � be the image of L0 � L1 � � � � in the quotient �VR ¼ �V �O R.

Because Li is completely determined by �Li, we can write �L� 2MðRÞ for L� 2
MðRÞ and so on.

. We consider the functor ~M which associates to each O-algebra R the set of R[t]-
endomorphisms g 2 End ð �VRÞ such that if �Li ¼ gðtn �V iÞ then

tnþ �V i;R � �Li � tn �V i;R

and �Li=tnþ �V i;R is locally a direct factor of tn �V i;R=tnþ �V i;R, of the same rank, for
all i ¼ 0; . . . ; d 1. Using Lemma 18 one sees this functor is representable and

comes naturally with a morphism p : ~M!M.
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. In a totally analogous way, we consider the functor ~N which associates to each

O-algebra R the set of R[t]-endomorphisms g 2 End ð �VRÞ such that if
�Li ¼ gððtþ$Þn

0
 �V i;RÞ then

ðtþ$Þn
0
þ �V i;R � �Li � ðtþ$Þn

0
 �V i;R

and �Li=ðtþ$Þn
0
þ �V i;R is locally a direct factor of ðtþ$Þn

0
 �V i;R=ðtþ$Þn

0
þ �V i;R, of

the same rank for all i ¼ 0; . . . ; d 1. As above, the representability follows

from Lemma 18. This functor comes naturally with a morphism p: ~N! N.

. Now we define the morphism p1: ~M� ~N!M�N by p1 ¼ p� p
0.

. We define the morphism p2: ~M� ~N!M ~�N by p2ðg; g
0Þ ¼ ðL�;L0�Þ with

ðL�;L0�Þ ¼ ðgðtnV�Þ; gg0ðtnðtþ$Þn
0
V�ÞÞ:

We have now achieved the construction of the convolution diagram. We need to

prove some facts related to this diagram.

LEMMA 19. The morphisms p1 and p2 are smooth and surjective. Their restrictions to

connected components of ~M� ~N with image in the corresponding connected compo-

nents of M�N and of M ~�N, have the same relative dimensions.

Proof. The proof is very similar to that of Lemma 3. Let us note that the

morphism p: ~M!M can be factored as p ¼ f � j where j: ~M! U is an open

immersion and f: U!M is the vector bundle defined as follows. For any O-algebra
R and any L� 2MðRÞ, the fiber of U over L� is the R-module

UðL�Þ ¼
Md1
i¼0

ðtþ$Þn
0
Li=tnþðtþ$Þn

0
þV i;R:

The morphisms p0, p1 and p2 can be described in the same manner. The equality of

relative dimensions of p1 and p2 follows from Lemma 24 (proved in Section 8) and

the fact that they are each smooth. &

Just as in Subsection 2.2, we can consider the group valued functor ~J which associ-

ates to each O-algebra R the group of R½t�-linear automorphisms of �VR which fix the
filtration �V0 � �V1 � � � � � �Vd. Obviously, this functor is represented by a connected
affine algebraic group scheme over S. The same proof as that of Lemma 3 proves

that ~J is smooth over S. Moreover, there are canonical morphisms of S-group

schemes ~J! J and ~J! I, where J ¼ Jn� (resp. I ¼ In0
�
) is the group scheme defined

in Subsection 2.2 (resp. 6.1).

. We consider the action a1 of ~J� ~J on ~M� ~N defined by

a1ðh; h0; g; g0Þ ¼ ðgh1; g0h01Þ:

Clearly, this action leaves stable the fibers of p1 : ~M� ~N!M�N.
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. We also consider the action a2 of ~J� ~J on the same ~M� ~N defined by

a2ðh; h0; g; g0Þ ¼ ðgh1; hg0h01Þ:

Clearly, this action leaves stable the fibers of p2 : ~M� ~N!M ~�N.

LEMMA 20. ðiÞ The action a1, respectively a2, is transitive on all geometric fibers of
p1, respectively p2. The geometric fibres of p1, respectively p2, are therefore connected.

ðiiÞ Moreover, the stabilizer under the action a1, respectively a2, of any geometric
point is a smooth connected subgroup of ~J� ~J.

Proof. Let E be a (separably closed) field containing the fraction field F of O or its
residue field k. Let g; g0 be elements of ~MðEÞ such that

L� ¼ pðgÞ ¼ pðg0Þ 2MðEÞ:

For all i ¼ 0; . . . ; d 1, denote by V̂ i and L̂i the tensors

V̂ i ¼ V i �O½t� E ½t�ðtðtþ$ÞÞ; L̂i ¼ Li �E ½t� E ½t�ðtðtþ$ÞÞ

where E ½t�ðtðtþ$ÞÞ is the localized ring of E ½t� at the ideal ðtðtþ$ÞÞ, i.e., the ring

S1E ½t� where S ¼ E ½t�  fðtÞ [ ðtþ$Þg; this is a semi-local ring. Of course, we

can consider the modules V̂ i and L̂i as E ½t�ðtðtþ$ÞÞ-submodules of EðtÞd.
Clearly, we have an isomorphism

V̂E ¼ tnðtþ$Þn
0
1V̂0=tnþðtþ$Þn

0
þ V̂0

so that E ½t�-endomorphisms of �VE are the same as E ½t�ðtðtþ$ÞÞ-endomorphisms of V̂0
taken modulo tnþnðtþ$Þn

0
þn

0
þ1.

By using the Nakayama lemma, g and g0 can be lifted to ĝ; ĝ0 2 GLðd;EðtÞÞ such

that

L̂i ¼ ĝtn V̂ i; L̂i ¼ ĝ0tn V̂ i:

This of course induces ĥ �V i ¼ �V i with �h ¼ ĝ1ĝ0 and for all i ¼ 0; . . . ; d 1.

Let h be the reduction modulo tnþnðtþ$Þn
0
þn

0
þ1 of ĥ. It is clear that g0 ¼ gh

and h lies in ~JðEÞ.

We have proved that ~J acts transitively on the geometric fibres of ~M!M.

We can prove in a completely similar way that ~J acts transitively on the geometric

fibers of ~N! N. Consequently, the action a1 is transitive on the geometric
fibers of p1.

The proof of the statement for a2 and p2 is similar. This completes the proof of (i).
For (ii), let L� 2MðEÞ and take g 2 ~MðEÞ over L�. We have to look at the points

h 2 ~JðEÞ such that gh ¼ g as endomorphisms of �VE. Let e1; . . . ; ed be the standard
generators of �VE so that the image in �VE of tnðtþ$Þn

0
V i is generated by

e1; . . . ; ei; ðtþ$Þeiþ1; . . . ; ðtþ$Þen. Let us denote that image by t
nðtþ$Þn

0
 �V i.

Now gh ¼ g if and only if hðeiÞ  ei belongs to KerðgÞ for all i ¼ 1; . . . ; d. The con-

dition h 2 ~JðEÞ says that hðeiÞ lies in the submodule generated by t
nðtþ$Þn

0
 �V i and h

is invertible. The dimension of the E-vector space KerðgÞ \ tnðtþ$Þn
0
 �V i depends
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only on L� and it is constant along each connected of M as the dimension of

gðtnðtþ$Þn
0
  �V iÞ ¼ ðtþ$Þn

0
 �Li is. This proves that the stabilizer group scheme

of ~J acting on M (i.e., the subscheme of ~J� ~M on which the action and projection

morphisms a, pr2 : ~J� ~M! ~M agree) is an open subscheme of a vector bundle over
~M. This shows that the stabilizer of a single point g 2 ~MðEÞ is a connected smooth

subgroup.

The same proof works for the actions a1 and a2. &

We remark that Lemmas 19 and 20 are essential for the construction of the con-

volution of perverse sheaves, discussed in Section 7.4.

The symmetric construction yields the following diagram

enjoying the same structures and properties. More precisely, we define N ~�M as fol-

lows: for each O-algebra R, let ðN ~�MÞðRÞ be the set of pairs ðL0�;L�Þ

L0� ¼ ðL00 � L01 � � � � � L0d ¼ ðtþ$Þ1L00Þ;
L� ¼ ðL0 � L1 � � � � � Ld ¼ ðtþ$Þ1L0Þ;

where L0i, Li are R½t�-submodules of R½t; t1; ðtþ$Þ1�d satisfying the following con-

ditions

ðtþ$Þn
0
þV i;R � L0i � ðtþ$Þn

0
V i;R

tnþL0i � Li � tnL0i

such that for each i ¼ 0; . . . ; d 1, the R-module L0i=ðtþ$Þn
0
þV i;R is locally a direct

factor of ðtþ$Þn
0
V i;R=ðtþ$Þn

0
þV i;R, and the R-module Li=tnþL0i is locally a direct

factor of tnL0i=tnþL0i. It is also supposed that rkRðL0i=ðtþ$Þn
0
þV i;RÞ and

rkRðLi=tnþL0iÞ are independent of i.
The morphisms p01, p

0
2, and m0 are defined in the obvious way: p01 ¼ p

0 � p,

m0ðL0�;L�Þ ¼ L�, and p02ðg0; gÞ ¼ ðg0ðtþ$Þn
0
V i;R, g0gðtnðtþ$Þn

0
 ÞV i;RÞ.

7.3. SYMPLECTIC CASE

In this section we construct the symplectic analogue of the convolution diagram just

discussed. In particular we need to define the schemes M ~�N, ~M; ~N;P, and the

morphisms p1; p2, and m. Moreover, we need to construct the smooth group scheme
~J which acts on the whole convolution diagram. Once this is done, defining the sym-

plectic analogues of the actions a1 and a2, proving the symplectic analogues of
Lemmas 19 and 20, and defining the symmetric construction are all straightforward

tasks and will be left to the reader.
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. The functor M ~�N associates to each O-algebra R the set of pairs ðL�;L0�Þ

L� ¼ ðL0 � L1 � � � � � LdÞ;
L0� ¼ ðL00 � L01 � � � � � L0dÞ;

where Li;L0i are R½t�-submodules of R½t; t1; ðtþ$Þ1�2d satisfying the follow-

ing conditions

tnþV i;R � Li � tnV i;R;
ðtþ$Þn

0
þLi � L0i � ðtþ$Þn

0
Li;

satisfying the usual ‘locally direct factors as R-modules’ conditions: Li=tnþV i;R is
locally a direct factor of tnV i;R=tnþV i;R of rank ðnþ  nÞd and L0i=ðtþ$Þn

0
þLi is

locally a direct factor of ðtþ$Þn
0
Li=ðtþ$Þn

0
þLi of rank ðn0þ  n0Þd. Moreover

we suppose L0;Ld;L00 and L0d are autodual with respect to tnnþh ; i, tnnþ
ðtþ$Þh ; i; tnnþðtþ$Þn

0
n

0
þ h ; i and tnnþðtþ$Þn

0
n

0
þþ1h ; i respectively.

. The functor P associates to each O-algebra R the set of chains L0�
L0� ¼ ðL00 � L01 � � � � � L0dÞ

where L0i are R½t�-submodules of R½t; t1; ðtþ$Þ1�2d satisfying

tnþðtþ$Þn
0
þV i;R � L0i � tnðtþ$Þn

0
V i;R;

such that the usual ‘locally a direct factor as R-modules of rank ðnþ

n þ n
0
þ  n

0
Þd ’ condition holds, and such that L00 and L0d are autodual with

respect to tnnþðtþ$Þn
0
n

0
þ h ; i and tnnþðtþ$Þn

0
n

0
þþ1h ; i respectively.

. The forgetting map mðL�;L0�Þ ¼ L0� yields a morphism m: M ~�N! P. Clearly,

m is a proper morphism between proper S-schemes.

. We consider the functor ~M which associates to each O-algebra R the set of R½t�-
endomorphisms g of

�VR ¼ tnðtþ$Þn
0
1V0;R=tnþðtþ$Þn

0
þV0;R

satisfying

hgx; gyi ¼ cgt
nþnhx; yi

for some cg 2 R
�, and such that if �Li ¼ gðtn �V iÞ for i ¼ 0; . . . ; d, then we have

tnþ �V i;R � �Li � tn �V i;R, and �Li=tnþ �V i;R is locally a direct factor of tn �V i;R=tnþ �V i;R
of rank ðnþ  nÞd. If g 2 ~MðRÞ then one sees using the definitions that automa-

tically, �L� ¼ gtnV�;R 2MðRÞ. The functor ~M is representable and comes natu-

rally with a morphism p: ~M!M.

. Next consider the functor ~N which associates to each O-algebra R the set
of R½t�-endomorphisms g of �VR satisfying hgx; gyi ¼ cgðtþ$Þn

0
þn

0
 hx; yi

for some cg 2 R
� and such that if �L0i ¼ gðtþ$Þn

0
 �V i;R for i ¼ 0; . . . ; d then

we have

ðtþ$Þn
0
þ �V i;R � �L0i � ðtþ$Þn

0
 �V i;R;
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and �L0i=ðtþ$Þn
0
þ �V i;R is locally a direct factor of ðtþ$Þn

0
 �V i;R=ðtþ$Þn

0
þ �V i;R of

rank ðn0þ  n
0
Þd. From the definitions one sees that

�L0� 2 NðRÞ. The functor ~N is

representable and comes with a morphism p: N! N.

. We define p1 ¼ p� p0. We define p2: ~M� ~N!M ~�N exactly as in the linear

case.

. We let ~J denote the functor which associates to any O-algebra R the group of
R½t�-linear automorphisms of �VR which fix the form tnnþðtþ$n0n

0
þþ1h ; i

up to an element in R� and which fix the filtration �V i;R. As in Lemma 3,
the group scheme ~J is smooth over S. There are canonical S-group scheme

morphisms ~J! J and ~J! I, where J ¼ Jn� (resp. I ¼ In0� ) was defined in

Subsection 2.5 (resp. 6.2).

7.4. DEFINITION OF THE CONVOLUTION PRODUCT

Let us recall the standard definition of convolution product due to Lusztig [15] (see

also [6] and [16]).

Let E be a field containing the fraction field F of O or its residue field k and let
E ¼ SpecðEÞ ! S be the corresponding morphisms. For an S-scheme X, let XE denote

the base change X�S E.
Let A be a perverse sheaf overME that is JE-equivariant. Let I be a perverse sheaf

over NE that is IE-equivariant. Both IE and JE are quotients of ~JE, so we can say that A
and I are ~JE-equivariant.

Since p1 is a smooth morphism, the pull-back p
1ðA &� E I Þ is also perverse
up to the shift by the relative dimension of p1. A priori, this pull-back is only

a1-equivariant. As A and I are ~JE-equivariant, p


1ðA &� E I Þ is also a2-equivariant.

Since p2 is smooth and the action a2 is transitive on its geometric fibers, the
perverse sheaf F ¼ p
1ðA &� E I Þ is constant along the fibers of p2. Moreover, the
stabilizers for a2 of geometric points are smooth and connected. Under these hypo-
theses there exists a perverse sheaf A ~&� E I , unique up to unique isomorphism,
such that p
1ðA &� E I Þ ¼ p
2ðA ~&� E I Þ. The uniqueness follows from Proposition

4.2.5 of [1] which only requires that p2 is smooth and its geometric fibers are

connected.

To prove the existence of the perverse sheaf A ~&� E I we need the transitive group
action on the fiber of p2, the fact that p2 is smooth and surjective, and the fact that

the action a2 has smooth connected stabilizers. We make use of the following general
lemma.

LEMMA 21. Suppose p: X! Y is a smooth surjective morphism of S-schemes, and

suppose GY is a smooth connected Y-group scheme which acts trivially on Y and on X

such that the action on each geometric fiber of p is transitive. Assume further that the
stabilizer in GY of any geometric point of X is a smooth connected subgroup. Then a

GY-equivariant perverse sheaf F on X descends along p.
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Proof. Assume temporarily that p possesses a section s. Then the action map
and the section s give rise to a morphism a: GY ! X, which is smooth and sur-

jective with geometrically connected fibers. Using the equivariance it follows

that a
p
s
F ¼ a
F . Since a and p � a are both smooth with geometrically
connected fibers, this implies that s
F is perverse up to the shift by the relative

dimension of p. Indeed, since the other perverse cohomologies of s
F are killed by

a
p
, they must be zero since this functor is fully faithful, by [1] 4.2.5. By applying
the same proposition for a
 now, we obtain an isomorphism between perverse

sheaves p
s
F ¼ F .
In the general case there is an étale covering Ui ! Y such that each

pi: X�Y Ui ! Ui has a section. Using the group action of GY �Y Ui, the previous

discussion shows that étale locally F descends along p. Using 4.2.5 of loc.cit. again
to descend the gluing data and using Theorem 3.2.4 of loc.cit. to glue perverse

sheaves, we see that F descends along p globally. &

By Lemmas 19 and 20, the morphism p2 satisfies the hypotheses on p in Lemma
21, with GY ¼ ð ~JE � ~JEÞ � ðM ~�NÞ acting via a2. We have thus proved the existence
of A ~&� E I . Note that no shift is needed because on each connected component, p1
and p2 have the same relative dimension by Lemma 19.

Now set A 
E I ¼ Rm
ðA ~&� E I Þ: By the symmetric construction, we can define the
convolution product I 
E A.
Let E be now the algebraic closure �k of the residual field k. We suppose that the

peverse sheaves A and I are equipped with an action of Galð �F=F Þ compatible with
the action of Galð �F=F Þ on the geometric special fiber through Galð �k=kÞ. In practice,

the inertia subgroup G0 acts trivially on I and nontrivially on A. As the semi-simple
trace provides a sheaf-function dictionary, we have:

tssA 
 t
ss
I ¼ tssA
�sI ; tssI 
 t

ss
A ¼ tssI
�sA

where the convolution on the left hand is the ordinary convolution in the Hecke alge-

bra HðGk==IkÞ. For the convenience of the reader let us recall the argument for this
rather standard statement.

Recall that the convolution product f 
 f 0 of two functions in HðGk==IkÞ can be
defined by

ðf 
 f 0ÞðxÞ ¼
X

y2Gk=Ik

fðyÞf 0ðy1xÞ

for all x 2 Gk=Ik. The right hand side is well defined since f
0 is bi-Ik-invariant. If

f ¼ tssA and f
0 ¼ tssI , one can check the above sum is exactly the summation along

the fiber of m of the semi-simple trace function associated to the perverse sheaf

A ~&� SpecðkÞI . The compatibility between the ordinary convolution and the geometric
convolution now follows from this, since the semi-simple trace behaves well with

respect to a proper push-forward, as was made explicit in Section 3.
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8. Proof of Proposition 13

8.1. COHOMOLOGICAL PART

According to the sheaf-function dictionary for semi-simple traces, it suffices to prove

the following statement. Beilinson and Gaitsgory have proved a related result in the

equal characteristic case, using a deformation of the affine Grassmannian of G,

see [5].

PROPOSITION 22. We have an isomorphism

RCMðAl;ZÞ 
�s Iw;�s !� Iw;�s 
�s RCMðAl;ZÞ:

Proof. The above statement makes sense because the functor RC sends perverse
sheaves to perverse sheaves, by a theorem of Gabber, see Corollary 4.5 in [11]. In

particular, RCMðAl;ZÞ is a perverse sheaf.

Let us recall that RCNðIw;ZÞ !� Iw;s so that we have to prove

RCMðAl;ZÞ 
�s RCNðIw;ZÞ !� RCMðIw;ZÞ 
�s RCMðAl;ZÞ:

First, let us prove that nearby cycle commutes with convolution product.

LEMMA 23. We have the isomorphisms

RCMðAl;ZÞ 
�s RCNðIw;ZÞ !� RCPðAl;Z 
Z Iw;ZÞ

RCNðIw;ZÞ 
�s RCMðAl;ZÞ !
�
RCPðIw;Z 
Z Al;ZÞ

Proof. According to a theorem of Beilinson-Bernstein (see Theorem 4.7 in [11])

we have an isomorphism of perverse sheaves

RCM�NðAl;Z &� Z Iw;ZÞ !� RCMðAl;ZÞ &� �sRCNðIw;ZÞ:

This induces an isomorphism between the pull-backs

p
1RC
M�NðAl;Z &� Z Iw;ZÞ !� p
1ðRC

MðAl;ZÞ &� �sRCNðIw;ZÞÞ

which are up to the shift by the relative dimension of p1, perverse too. By definition,

we have

p
1ðRC
MðAl;ZÞ &� �sRCNðIw;ZÞÞ !� p
2ðRC

MðAl;ZÞ ~&� �sRC
NðIw;ZÞÞ:

As p1, p2 are smooth, p


1 and p
2 commute with nearby cycle, so applying

RC
�M� �N to

p
1ðAl;Z &� ZIw;ZÞ !� p
2ðAl;Z ~&� Z Iw;ZÞ

gives an isomorphism

p
1RC
M�NðAl;Z &� ZIw;ZÞ!� p
2RC

M ~�NðAl;Z ~&� ZIw;ZÞ:
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Since p2 is smooth with connected geometric fibers, Proposition 4.2.5 of Beilinson-

Bernstein-Deligne [1] implies that we have an isomorphism

RCM ~�NðAl;Z ~&� ZIw;ZÞ!� RCMðAl;ZÞ ~&� �sRC
NðIw;ZÞ:

By applying now the functor Rm
, we have an isomorphism

Rm
RCM ~�NðAl;Z ~&� ZIw;ZÞ !� RCMðAl;ZÞ 
�s RCNðIw;ZÞ:

Since the functor RC commutes with the direct image of a proper morphism, we

have

RCPðAl;Z 
Z Iw;ZÞ !� Rm
RCM ~�NðAl;Z ~&� ZIw;ZÞ:

By composing the above isomorphisms, we get

RCMðAl;ZÞ 
�s RCNðIw;ZÞ !� RCPðAl;Z 
Z Iw;ZÞ:

By the same argument, we prove

RCNðIw;ZÞ 
�s RCMðAl;ZÞ !
�
RCPðIw;Z 
Z Al;ZÞ:

This finishes the proof of the lemma. &

Now it clearly suffices to prove Al;Z 
Z Iw;Z!� Iw;Z 
Z Al;Z which is an easy con-

sequence of the following lemma.

LEMMA 24. ð1Þ Over the generic point Z, we have two commutative triangles

where all arrows are isomorphisms.

ð2Þ Moreover, we have the following isomorphisms

i
ðAl;Z &� Iw;ZÞ !� Al;Z ~&� Iw;Z; i0
ðAl;Z &� Iw;ZÞ !� Iw;Z ~&� Al;Z

8.2. PROOF OF LEMMA 24

Let us prove the above lemma in the linear case.

Over the generic point Z, we have the canonical decomposition of

�VF ¼ tnðtþ$Þn
0
1F ½t�d=tnþðtþ$Þn

0
þF ½t�d
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into the direct sum �VF ¼ �VðtÞF ! �Vðtþ$ÞF where

�VðtÞF ¼ tnF ½t�d=tnþF ½t�d

�Vðtþ$ÞF ¼ ðtþ$Þn
0
1F ½t�d=ðtþ$Þn

0
þF ½t�d:

With respect to this decomposition, all the terms of the filtration

�V0 � �V1 � � � � � �Vd1
decompose to �V i ¼ �VðtÞi ! �Vðtþ$Þi for all i ¼ 0; . . . ; d 1. Here, we have

�VðtÞ0 ¼ � � � ¼ �VðtÞd1 ¼ F ½t�
d=tnþF ½t�d:

Let R be an F-algebra and let (L�;L0�) be an element of ðM ~�NÞðRÞ. These chains

of R½t�-modules verify

tnþV i;R � Li � tnV i;R; ðtþ$ÞZ
0
þLi � L0i � ðtþ$Þn

0
Li:

As usual, let �Li; �L0i denote the image of Li;L0i in �VR. As R½t�-modules, they decom-
pose to �Li ¼ �LðtÞi ! �Lðtþ$Þi and �L0i ¼ �LðtÞi ! �L0ðtþ$Þi . The above inclusion conditions

imply indeed

�LðtÞi ¼ �L0ðtÞi ; �Lðtþ$Þi ¼ �Vðtþ$Þi;R :

Consequently, L� is completely determined by L0�. In other terms, the map
mð �L�; �L0�Þ ¼ �L0� is an isomorphism of functors over Z. In the same way, the map

ið �LðtÞ� ! �Vðtþ$Þ�;R ; �LðtÞ� ! �L0ðtþ$Þ� Þ ¼ ð �LðtÞ� ! �Vðtþ$Þ�;R ; �VðtÞ�;R ! �L0ðtþ$Þ� Þ

yields an isomorphism i: MZ ~�NZ !
�
MZ �NZ. The composed isomorphism

j ¼ m � i1 is given by

jð �LðtÞ� ! �Vðtþ$Þ�;R ; �VðtÞ�;R ! �L0ðtþ$Þ� Þ ¼ �LðtÞ� ! �L0ðtþ$Þ� :

The analogous statement for the lower triangle in the diagram can be proved in the

same way and the first part of the lemma is proved.

By the very definition of Al;Z ~&� Iw;Z, in order to prove the second part of the
lemma, it suffices to construct an isomorphism

p
1ðAl;Z &� Iw;ZÞ !
�
p
2i


ðAl;Z &� Iw;ZÞ:

In fact, the triangle
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does not commute. Nevertheless this lack of commutativity can be corrected by

equivariance properties. We consider the diagram

defined as follows.

For any F-algebra R, an element g 2 ~MðRÞ is an R½t�-endomorphism of �VR such
that �L� ¼ gðtn �V�;RÞ 2MðRÞ. As �VR decomposes to �VR ¼ �VðtÞR ! �Vðtþ$ÞR , its R½t�-endo-

morphism g can be identified to a pair g ¼ ðgðtÞ; gðtþ$ÞÞ where gðtÞ, respectively gðtþ$Þ,

is an endomorphism of �VðtÞR , respectively of �Vðtþ$ÞR .

As we have seen above, for �L� 2MðRÞ, we have �Li ¼ �LðtÞi ! �Lðtþ$Þi with �Lðtþ$Þi ¼
�Vðtþ$Þi;R . Consequently, gðtþ$Þ is an automorphism of �Vðtþ$ÞR fixing the filtration
�Vðtþ$Þ�;R . In a similar way, an element g0 2 ~NðRÞ can be identified with a pair ðg0ðtÞ;

g0ðtþ$ÞÞ where g0ðtÞ is an automorphism of �VðtÞR fixing the filtration �VðtÞ�;R.
. The morphism q1 is defined by

q1ðg; g
0Þ ¼ ððg0ðtÞ; gðtþ$ÞÞ; gðtÞtn �VðtÞ�;R ! �Vðtþ$Þ�;R ;

�VðtÞ�;R ! g0ðtþ$Þðtþ$Þn
0
 �Vðtþ$Þ�;R Þ:

. The morphism q2 is defined by

q2ðg; g
0Þ ¼ ððg0ðtÞ; gðtþ$ÞÞ; gðtÞtn �VðtÞ�;R ! �Vðtþ$Þ�;R ;

gðtÞtn �VðtÞ�;R ! g0ðtþ$Þðtþ$Þn
0
 �Vðtþ$Þ�;R Þ:

. The morphism a is defined by

aððg0ðtÞ; gðtþ$ÞÞ; �LðtÞ� ! �Vðtþ$Þ�;R ; �LðtÞ� ! �L0ðtþ$Þ� Þ

¼ ð �LðtÞ� ! �Vðtþ$Þ�;R ; �LðtÞ� ! gðtþ$Þ �L0ðtþ$Þ� Þ:

. pr1 and pr2 are the obvious projections

We can easily check that this diagram commutes and that

pr1 � q1 ¼ p1; a � q2 ¼ p2:

Now it is clear that

p
1ðAl;Z &� Iw;ZÞ !
�
q
2pr



2i

ðAl;Z &� Iw;ZÞ:

Moreover, by equivariant properties of Al and Iw, we have

pr
2i

ðAl;Z &� Iw;ZÞ !

�
a
i
ðAl;Z &� Iw;ZÞ:
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(Note that the group IZ acts on MZ ~�NZ by acting on the second factor of

MZ �NZ ffiMZ ~�NZ and a gives the corresponding action of ~JZ via the projection
~JZ! IZ.) In putting these things together, we get the required isomorphism

p
1ðAl;Z &� Iw;ZÞ !
�
p
2i


ðAl;Z &� Iw;ZÞ:

This finishes the proof of the lemma in the linear case.

In the symplectic case, let us mention that the F-vector space

tnðtþ$Þn
0
1F ½t�2d=tnþðtþ$Þn

0
þF ½t�2d

equipped with the symplectic form tnnþðtþ$Þn
0
n

0
þþ1h ; i splits into the direct

sum of two vector spaces

tnF ½t�2d=tnþF ½t�2d ! ðtþ$Þn
0
1F ½t�2d=ðtþ$Þn

0
þF ½t�2d

equipped with symplectic forms tnnþh ; i and ðtþ$Þn
0
n

0
þþ1h ; i respectively. Fur-

ther, note that g 2 ~MðRÞ decomposes as g ¼ ðgðtÞ; gðtþ$ÞÞ where gðtÞ 2 AutR½t�
ðtnR½t�2d=tnþR½t�2dÞ is such that hgðtÞx; gðtÞyi ¼ cgðtÞ t

nþnþhx; yi (for some cgðtÞ 2 R
�Þ,

and gðtþ$Þ 2 AutR½t�ððtþ$Þn
0
1R½t�2d=ðtþ$Þn

0
þR½t�2dÞ is such that hgðtþ$Þx;

gðtþ$Þyi ¼ cgðtþ$Þ hx; yi (for some cgðtþ$Þ 2 R
�). A similar decomposition g0 ¼ ðg0ðtÞ;

g0ðtþ$ÞÞ holds, and thus ones sees ðg0ðtÞ; gðtþ$ÞÞ 2 ~JðRÞ. Thus, the maps q1 and q2 as

defined above make sense in the symplectic case as well. The rest of the argument

goes through without change as in the linear case.

This finishes the proof of Lemma 24. We have therefore finished the proof of Pro-

position 22, and thus Proposition 13 and Theorem 11 as well. &

9. The Parahoric Case

Similar results in the parahoric cases follow easily from the Iwahori case treated

above.

Let G denote a split connected reductive over F, let K denote a special good max-

imal compact subgroup of GðF Þ, let I denote an Iwahori subgroup contained in K,

and let P denote a parahoric subgroup with I � P � K. We have the corresponding

Hecke algebras of �Q‘-valued compactly supported bi-invariant functions H1;HP,

and HK. Let us define the convolution on the Hecke algebras using the Haar mea-

sures such that I (resp. P; K) has measure 1. There is map between their centers

ZðHIÞ !ZðHPÞ given by z 7! zP ¼ z 
 IP. (This is an algebra isomorphism; see

the Remark following Theorem 25.)

Let G be one of the groups GLðdÞ or GSpð2dÞ, and return to the notation

Gk; Ik; HðGk==IkÞ, etc. of Section 4.2.
Assume we are in the linear case (the symplectic case is similar and will be omitted

from this discussion). To a standard parahoric subgroup Pk with Ik � Pk � Kk we

can associate a set of integers f0 ¼ i0 < i1 < � � � < ip1 < ip ¼ dg such that Pk is the
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stabilizer in Gðk½½t��Þ of the ‘standard’ partial lattice chain VP� ¼ ðV0 �
V i1 � � � � � V ip ¼ ðtþ$Þ1V0Þ.
It is easy to define the analogue MP

r;n�
of the local model Mr;n� (cf. Definitions 1

and 2) as a scheme whose points are lattice chains

LP� ¼ ðL0 � Li1 � � � � � Lip ¼ ðtþ$Þ1L0Þ

such that for every j, the lattice Lij is in a specified position relative to the lattices
tn�V ij .
The obvious forgetful functor defines a proper map Mr;n� !MP

r;n�
which is an

isomorphism over the generic fibers. By using the same argument as in Section 5.1

we obtain the following result.

THEOREM 25. Let l be a dominant coweight of G ¼ GLðdÞ or GSpð2dÞ, and let P be
a standard parahoric subgroup of G. Then

TrssðFrq;RCMP

ðAl;ZÞÞ ¼ ð1Þ2hr;li
X
l04l

mlðl
0
ÞzPl0 :

Remark. LetWP denote the parabolic subgroup of the Weyl group corresponding

to P, and let WP denote the set of minimal representatives for the cosets in WPnW.

One can show using the theory of the Bernstein center that we have the following

commutative diagram of algebra isomorphisms

Therefore the right-hand side in Theorem 25 can be characterized as follows: it is

the unique element in ZðHðGk==PkÞÞ such that the Satake transform of its image

under  
IIkWPIk is equal to ð1Þ
2hr;liwl. &
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