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Abstract

Historically, Langlands has introduced the theory of endoscopy in order to
measure the failure of automorphic forms from being distinguished by their
L-functions as well as the defect of stability in the Arthur-Selberg trace formula
and `-adic cohomology of Shimura varieties. However, the number of impor-
tant achievements in the domain of automorphic forms based on the idea of
endoscopy has been growing impressively recently. Among these, we will report
on Arthur’s classification of automorphic representations of classical groups and
recent progress on the determination of `-adic galois representations attached
to Shimura varieties originating from Kottwitz’s work. These results have now
become unconditional; in particular, due to recent progress on local harmonic
analysis. Among these developments, we will report on Waldspurger’s work on
the transfer conjecture and the proof of the fundamental lemma.
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1. Langlands’ Functoriality Conjecture

This section contains an introduction of the functoriality principle conjectured
by Langlands in [39].

1.1. L-functions of Dirichlet and Artin. The proof by Dirichlet
for the infiniteness of prime numbers in an arithmetic progression of the form
m + Nx for some fixed integers m,N with (m,N) = 1, was a triumph of
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the analytic method in elementary number theory, cf. [13]. Instead of studying
congruence classes modulo N which are prime to N , Dirichlet attached to each
character χ : (Z/NZ)× → C× of the group (Z/NZ)× of invertible elements in
Z/NZ, the Euler product

LN (s, χ) =
∏

p-N

(1− χ(p)p−s)−1. (1)

This infinite product converges absolutely for all complex numbers s having real
part <(s) > 1 and defines a holomorphic function on this domain of the com-
plex plane. For N = 1 and trivial character χ, this function is the Riemann zeta
function. As for the Riemann zeta function, general Dirichlet L-function has
a meromorphic continuation to the whole complex plane. However, in contrast
with the Riemann zeta function that has a simple pole at s = 1, the Dirichlet
L-function associated with a non trivial character χ admits a holomorphic con-
tinuation. This property of holomorphicity was a key point in Dirichlet’s proof
for the infiniteness of prime numbers in an arithmetic progression. Another
important property is the functional equation relating L(s, χ) and L(1− s, χ̄).

Let σ : Gal(Q̄/Q) → C× be a finite order character of the Galois group of the
field of rational numbers Q. For each prime number p, we choose an embedding
of the algebraic closure Q̄ of Q into the algebraic closure Q̄p of the field of p-adic
numbers Qp. This choice induces a homomorphism Gal(Q̄p/Qp) → Gal(Q̄/Q)
from the local Galois group at p to the global Galois group. The Galois group
Gal(F̄p/Fp) of the finite field Fp is a canonical quotient of Gal(Q̄p/Qp). We
have the exact sequence

1 → Ip → Gal(Q̄p/Qp) → Gal(F̄p/Fp) → 1 (2)

where Ip is the inertia group. Recall that Gal(F̄p/Fp) is an infinite procyclic
group generated by the substitution of Frobenius x 7→ xp in F̄p. Let the inverse
of this substitution denote Frp.

Let σ : Gal(Q̄/Q) → C× be a character of finite order. For all but finitely
many primes p, say for all p - N for some integer N , the restriction of σ to the
inertia group Ip is trivial. In that case σ(Frp) ∈ C× is a well defined root of
unity. Artin defines the L-function

LN (s, σ) =
∏

p-N

(1− σ(Frp)p
−s)−1. (3)

Artin’s reciprocity law implies the existence of a Dirichlet character χ such that

LN (s, χ) = LN (s, σ). (4)

As a consequence, the LN (s, σ) satisfies all the properties of the Dirichlet L-
functions. In particular, it is holomorphic for nontrivial σ and it satisfies a
functional equation with respect to the change of variables s ↔ 1− s.
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Finite abelian quotients of Gal(Q̄/Q) correspond to finite abelian extensions
of Q. According to Kronecker-Weber’s theorem, abelian extensions are obtained
by adding roots of unity to Q. Since general extensions of Q are not abelian, it
is natural to seek a non abelian generalization of Artin’s reciprocity law.

Let σ : Gal(Q̄/Q) → GL(n,C) be a continuous n-dimensional complex
representation. Since Galois groups are profinite groups, the image of σ is a
finite subgroup of GL(n,C). There exists an integer N , such that for every
prime p - N , the restriction of σ to the inertia group Ip is trivial. In that case,
σ(Frp) is well defined in GL(n,C), and its conjugacy class does not depend on
the particular choice of embedding Q̄ → Q̄p. The Artin L-function attached to
σ is the Euler product

LN (s, σ) =
∏

p-N

det(1− σ(Frp)p
−s)−1. (5)

Again, this infinite product converges absolutely for a complex number s with
real part <(s) > 1 and defines a holomorphic function on this domain of the
complex plane. It follows from the Artin-Brauer theory of characters of finite
groups that the Artin L-function has meromorphic continuation to the complex
plane.

Conjecture 1 (Artin). If σ is a nontrivial irreducible n-dimensional complex
representation of Gal(Q̄/Q), the L-function L(s, σ) admits holomorphic contin-
uation to the complex plane.

The case n = 1 follows from Artin’s reciprocity theorem and Dirichlet’s the-
orem. The general case would follow from Langlands’s conjectural nonabelian
reciprocity law. According to this conjecture, it should be possible to attach to
σ as above a cuspidal automorphic representation π of the group GL(n) with
coefficients in the ring of the adeles AQ so that the Artin L-function of σ has the
same Eulerian development as the principal L-function attached to σ. Accord-
ing to the Tamagawa-Godement-Jacquet theory cf. [62, 17], the latter extends
to an entire function on complex plane that satisfies a functional equation. In
the case n = 2, if the image of σ is solvable, the reciprocity law was established
by Langlands and Tunnel by means of the solvable base change theory. The
case where the image of σ in PGL2(C) = SO3(C) is the the nonsolvable group
of symmetries of the icosahedron is not known in general, though some progress
on this question has been made [64].

1.2. Elliptic curves. Algebraic geometry is a generous supply of rep-
resentations of Galois groups. However, most interesting representations have
`-adic coefficients instead of complex coefficients. Any system of polynomial
equations with rational coefficients, homogeneous or not, defines an algebraic
variety. The groups of `-adic cohomology attached to it are equipped with a con-
tinuous action of Gal(Q̄/Q). In contrast with complex representations, `-adic
representations might not have finite image.
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The study of the case of elliptic curves is the most successful so far. Let E
be an elliptic curve defined over Q. The first `-adic cohomology group of E is a
2-dimensional Q`-vector space equipped with a continuous action of Gal(Q̄/Q).
In other words, we have a continuous 2-dimensional `-adic representation

σE,` : Gal(Q̄/Q) → GL(2,Q`) (6)

for every prime `. The Q-elliptic curve E can be extended to a Spec(Z[N−1])-
elliptic curve EN for some integer N , i.e. E can be defined by homogeneous
equation with coefficients in Z[N−1] such that for every prime p - N , the re-
duction of EN modulo p is an elliptic curve defined over the finite field Fp. If
p 6= `, this implies that the restriction of σE,` to inertia Ip is trivial. It follows
that the conjugacy class of σE,`(Frp) in GL(2,Q`) is well defined. The number
of points on EN with coefficients in Fp is given by the Grothendieck-Lefschetz
fixed points formula

|EN (Fp)| = 1− tr(σE,`(Frp)) + p. (7)

It follows that tr(σE,`(Frp)) is an integer independent of the prime `. Since it
is also known that det(σE,`(Frp)) = p, the eigenvalues of σE(Frp) are conju-
gate algebraic integers of eigenvalue p1/2, independent of `. We can therefore
drop the ` in the expressions tr(σE,`(Frp)) and det(σE,`(Frp)) as well as in the
characteristic polynomial of σE,`(Frp).

The L-function attached to the elliptic curve E is defined by Euler product

LN (s,E) =
∏

p-N

det(1− σE(Frp)p
−s)−1. (8)

Since the complex eigenvalues of σE(Frp) are of complex absolute value p1/2,
the above infinite product is absolute convergent for <(s) > 3/2 and converges
to a homolomorphic function on this domain of the complex plane.

Shimura, Taniyama and Weil conjectured that the there exists a weight two
holomorphic modular form f whose L-function L(s,E) has the same Eulerian
development as LN (s,E) at the places p - N . It follows, in particular, that
L(s,E) has a meromorphic continuation to the complexe plane and it satisfies
a functional equation. As it was shown by Frey and Ribet, a more spectac-
ular consequence is the last Fermat’s theorem is actually true. The Shimura-
Taniyama-Weil conjecture is now a celebrated theorem of Wiles and Taylor
[73, 63] in the semistable case. The general case is proved in [7].

The Shimura-Taniyama-Weil conjecture fits well with Langlands’s reci-
procity conjecture, cf. [39]. Though the main drive of Wiles’s work consists
of the theory of deformation of Galois representations, it needed as input the
reciprocity law for solvable Artin representations σ : Gal(Q̄/Q) → GL2(C)
that was proved by Langlands and Tunnell. The interplay between the p-adic
theory of deformations of Galois representations and Langlands’s functoriality
principle should be a fruitful theme to reflect upon cf. [44].
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1.3. The Langlands conjectures. Let G be a reductive group over
a global field F which can be a finite extension of Q or the field of rational
functions of a smooth projective curve over a finite field. For each absolute
value v on F , Fv denotes the completion of F with respect to v, and if v is
nonarchimedean, Ov denotes the ring of integers of Fv. Let AF denote the ring
of adeles attached to F , defined as the restricted product of the Fv with respect
to Ov.

By discrete automorphic representation, we mean an irreducible represen-
tation of the group G(AF ), the group of adeles points of G, that occurs as a
subrepresentation of

L2(G(F )\G(AF ))χ (9)

where χ is an unitary character of the center of G [6]. Such a representation

can develop as a completed tensor product π = ˆ⊗
vπv where πv are irreducible

admissible smooth representations of G(Fv) for all nonarchimedean place v.
For almost all nonarchimedean place v, πv has a unique G(Ov)-invariant line
lv. The Hecke algebra Hv of compactly supported complex valued functions on
G(Fv) that are bi-invariant under the action of G(Ov) acts on that line. Assume
that G is unramified at v then Hv is a commutative algebra whose structure
could be described in terms of a duality between reductive groups, [8].

Reductive groups over an algebraically closed field are classified by their
root datum (X∗, X∗,Φ,Φ

∨), where X∗ and X∗ are the group of characters,
respectively cocharacters of a maximal torus and Φ ⊂ X∗,Φ∨ ⊂ X∗ are, re-
spectively, the finite subset of roots and of coroots, cf. [61]. By the exchange
of roots and coroots, we have the dual root datum which is the root datum
of a complex reductive group Ĝ. The reductive group G is defined over F and
becomes split over a Galois extension E of F . The group Gal(E/F ) acts on the
root datum of G in fixing a basis. It thus defines an action of Gal(E/F ) on the
complex reductive group Ĝ. The semi-direct product LG = ĜoGal(E/F ) was
introduced by Langlands and is known as the L-group attached to G, cf. [39].

Suppose G unramified at a nonarchimedean place v; in other words, assume
that the finite extension E is unramified over v. After a choice of embedding
E → F̄v, the Frobenius element Frv ∈ Gal(F̄v/Fv), where Fv denotes the residue
field of Fv, defines an element of Frv ∈ Gal(E/F ). There exists an isomorphism,
known as the Satake isomorphism, between the Hecke algebra Hv and the
algebra of Ĝ-invariant polynomial functions on the connected component Ĝo
{Frv} of LG = Ĝ o Gal(E/F ). The line lv acted on by the Hecke algebra
Hv defines a semisimple element sv ∈ Ĝ o {Frv} up to Ĝ-conjugacy in this
component.

Unramified representations of G(Fv) are classified by semisimple Ĝ-
conjugacy classes in Ĝ o {Frv}. In order to classify all irreducible admissible
smooth representations of G(Fv) for all non-archimedean v, Langlands intro-
duced the group

LFv
= WFv

× SL(2,C)
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where WFv
is the Weil group of Fv. The subgroup WFv

of Gal(F̄v/Fv) consists
of elements whose image in Gal(F̄v/Fv) is an integral power of Frv.

According to theorems of Laumon, Rapoport, and Stuhler in equal char-
acteristic case, and Harris-Taylor and Henniart in unequal characteristic case,
there is a natural bijection between the set of n-dimensional representations of
LFv

and the set of irreducible admissible smooth representations of GLn(Fv)
preserving L-factors and ε-factors of pairs, [51, 20, 22, 23].

According to Langlands, there should be also a group LF attached to the
global field F such that automorphic representations of GLn(n,AF ) are classi-
fied by n-dimensional complex representations of LF . The hypothetical group
LF should be equipped with a surjective homomorphism to the Weil group WF .

When F is the field of rational functions of a curve defined over a finite
field Fq, the situation is much better. Instead of complex representations of
the hypothetical L-group LF , one parametrizes automorphic representations
by `-adic representations of the Weil group WF . Recall that in the function
field case WF is the subgroup of Gal(F̄ /F ) consisting of elements whose image
in Gal(F̄q/Fq) is an integral power of Frq. In a tour de force, Lafforgue proved
that there exists a natural bijection between irreducible n-dimensional `-adic
representation of the Weil group WF and cuspidal automorphic representations
of GLn(AF ) following a strategy initiated by Drinfeld, who settled the case
n = 2 [14, 46, 47]. In the number fields case, only a part of `-adic representa-
tions of WF coming from motives should correspond to a part of automorphic
representations.

Let us come back to the general case where G is a reductive group over
a global field that can be either a number field or a function field. According
to Langlands, automorphic representations should be partitioned into packets
parametrized by conjugacy classes of homomorphisms LF → LG compatible
with the projections to WF . At non-archimedean places, irreducible admissible
smooth representations of G(Fv) should also be partitioned into finite packets
parametrized by conjugacy of homomorphism LFv

→ Ĝ o WFv
compatible

with the projections to WFv
. The parametrization of the local component of an

automorphic representation should dervie from the global parametrization by
the homomorphism LFv

→ LF that is only well defined up to conjugation.
This reciprocity conjecture on global parametrization of automorphic rep-

resentations seems for the moment out of reach, in particular because of the
hypothetical nature of the group LF . In constrast, Langlands’ functoriality
conjecture is not dependent on the existence of LF .

Conjecture 2 (Langlands). Let H and G be reductive groups over a global
field F and let φ be a homomorphism between their L-groups LH → LG com-
patible with projection to WF . Then for each automorphic representation πH

of H(AF ), there exists an automorphic representation π of G(AF ) such that at
each unramified place v where πH is parametrized by a conjugacy class sv(πH)
in Ĥ o {Frv}, the local component of π is also unramified and parametrized by
φ(sv(πH)).



Endoscopy Theory of Automorphic Forms 7

At least in the number field case, the existence of LF seems to depend
upon the validity of the functoriality principle. Some of the most important
conjectures in number theory and in the theory of automorphic representations.
As explained in [39], Artin conjecture follows from the case of functoriality when
Ĥ is trivial. It is also explained in loc. cit how the generalized Ramanujan
conjecture and the generalized Sato-Tate conjecture would also follow from the
functoriality conjecture.

The approach based on a combination of the converse theorem of Cogdell
and Piateski-Shairo, and the Langlangs-Shahidi method was succesful in estab-
lishing some startling cases of functoriality beyond endoscopy, cf. [26]. However,
it suffers obvious limitation as Langlands-Shahidi method is based on the rep-
resentation of a Levi component of a parabolic group on the Lie algebra of its
unipotent radical.

Recently, the p-adic method was also successful in establishing a weak form
of the functoriality conjecture. The most spectacular result is the proof of the
Sato-Tate conjecture [21] deriving from this weak form. We will not discuss this
topic in this survey.

So far, the most successful method in establishing special cases of func-
toriality is endoscopy. We will discuss this topic in more details in the next
section.

2. Endoscopy Theory and Applications

The endoscopy theory is primarily focused in the structure of the packet of
representations that have the same conjectural parametrization, either global
LF → LG or local LFv

→ Ĝ o WFv
. The existence of the packet is closely

related to the lack of stability in the trace formula. As shown in [42], the
answer to this question derives from the comparison of trace formulas. It is quite
remarkable that the inconvenient unstability in the trace formula turned out to
be a possibility. The quest for a stable trace formula bringing the necessity of
comparing two trace formulas, turned out to be an efficient tool for establishing
particular cases of functoriality.

A good number of known cases of functoriality fits into a general scheme
that is nowadays known as the theory of endoscopy and twisted endoscopy:
Jacquet-Langlands theory, solvable base change, automorphic induction and
the Arthur lift from classical groups to linear groups.

Another source of endoscopic phenomenon was the study of continuous co-
homology of Shimura varieties as first recognized by Langlands [40]. The work
of Kottwitz has definitely shaped this theory by proposing precise conjecture on
the `-adic cohomology of Shimura variety as Galois module [34]. This descrip-
tion has been established in many important cases by means of comparison of
the Grothendieck-Lefschetz fixed points formula and the Arthur-Selberg trace
formula.
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2.1. Packets of representations. First intuitions of endoscopy come
from the theory of representations of SL(2,R). The restriction of discrete se-
ries representations of GL(2,R) to SL(2,R) is reducible. Their irreducible fac-
tors having the same Langlands parameter obtained by composition W (R) →
GL(2,C) → PGL(2,C) and thus belong to the same packet. Packet of represen-
tations is understood to be dual stable conjugacy relation between conjugacy
classes. For instance, the rotations of angle θ and −θ centered at the origin
of the plane are not conjugate in SL(2,R), but become conjugate either in
GL(2,R) or in SL(2,C).

In general, if G is a quasi-split reductive group over a local field Fv, and
Πv(G) is the set of irreducible representations of G, Langlands conjectured that
Π(G) is a disjoint union of finite sets Πv,φ(G) that are called L-packets and
indexed by admissible homomorphisms φv : LFv

→ LGv. The work of Shelstad
[59] in the real case suggested the following description of the set Πv(G) in
general, cf. [42].

Let Sφv
denote the centralizer of the image of φv in Ĝ, and S0(φv) its

neutral component. Let Z(Ĝ) denote the center of Z(Ĝ) and Z(Ĝ)Γ denote
the subgroup of invariants under the action of the Galois group Γ. The group
Sφv

= Sφv
/S0

φv
Z(Ĝ)Γ should control completely the structure of the finite set

Πφv
and also the characters of the representations belonging to Πφv

. If we
further assume φv tempered, i.e its image is contained in a relatively compact
subset of Ĝ, then there should be a bijection π 7→ 〈s, π〉 from Πφv

onto the set
of irreducible characters of Sφv

. In particular, the cardinal of the finite set Πφv

should equal the number of conjugacy classes of Sφv
.

There is also a conjectural description of multiplicity in the automorphic
spectrum of each member of a global L-packet. We can attach any admissible
homomorphism φ : LF → LG local parameter φv : LFv

→ LGv. By definition,
the global L-packet Πφ is the infinite product of local L-packets Πφv

. For a
representation π = ⊗vπv with πv ∈ Πv to appear in the automorphic spec-
trum, all but finitely many local components must be unramified. For those
representations, there is a conjectural description of its automorphic multi-
plicity m(π, φ) that was made precise by Kottwitz based on the case of SL2

worked out by Labesse and Langlands cf. [38]. In [31], Kottwitz introduced a
group Sφ equipped with homomorphism Sφ → Sφv

. The conjectural formula
for m(π, φ) is

m(π, φ) = |Sφ|
−1

∑

ε∈Sφ

∏

v

〈εv, πv〉.

For each v, εv denotes the image of ε in Sφv
and 〈εv, πv〉, the value of the

character of Sφv
corresponding to πv evaluated on εv.

If the above general description has an important advantage of putting the
automorphic theory in perspective, it also suffers a considrable inconvenience
of being dependent on the hypothetical Langlands group LF .

For quite a long time, we have known only a few low rank cases includ-
ing the case of inner forms of SL(2) due to Labesse and Langlands [38], the
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cyclic base change for GL(2) due to Saito, Shintani and Langlands [41] and the
case of U(3) and its base change due to Rogawski [58]. Later, the cyclic base
change for GL(n) was established by Arthur and Clozel [3]. Recently, this field
has been undergoing spectacular developments. For quasisplit classical groups,
Arthur has been able to establish the existence and the description of local
packets as well as an automorphic multiplicity formula for global packets [2].
For p-adic groups, the local description becomes unconditional based on the
local Langlands conjecture for GL(n) proved by Harris-Taylor and Henniart.
Arthur’s description of global packet as well as his automorphic multiplicity
formula is based on cuspidal automorphic representations of GL(n) instead of
the hypothetical group LF . This description relies on a little bit of intricate
combinatorics that goes beyond the scope of this report. The unitary case was
also settled by Moeglin [52], the case of inner forms of SL(n) by Hiraga and
Saito [24]. The general case of Jacquet-Langlands correspondence has been also
established by Badulescu [4].

Most of the above developments were made possible by the formidable ma-
chine that is the Arthur trace formula and its stabilization. The comparison of
the trace formula for two different groups, one being endoscopic to the other,
proved to be a quite fruitful method. Arthur’s parametrization of automorphic
forms on quasisplit classical groups derives from the possibility of realizing these
groups as twisted endoscopic groups of GL(n) and the comparison between the
twisted trace formula of GL(n) and the ordinary trace formula for the classical
group. This procedure is known as the stabilization of the twisted trace formula.
The structure of the L-packets derives from the stabilization of ordinary trace
formula for classical groups. For both twisted and untwisted, Arthur needed to
assume the validity of certain conjectures on orbital integrals: the transfer and
the fundamental lemma.

2.2. Construction of Galois representations. Based on indica-
tions given in Shimura’s work, Langlands proposed a general strategy to con-
structing Galois representations attached to automorphic representation incor-
porated in `-adic cohomology of Shimura varieties. This domain also recorded
important developments due to Kottwitz, Clozel, Harris, Taylor, Yoshida,
Labesse, Morel, Shin and others.

In particular, a non negligible portion of the global Langlands correspon-
dence for number fields is now known. A number field F is of complex multipli-
cation if it is a totally imaginary quadratic extension of a totally real number
field F+. In particular, the complex conjugation induces an automorphism c
of F that is independent of complex embedding of F . Let Π =

⊗

v Πv be
a cuspidal automorphic representation of GL(n,AF ) such that Π∨ ' Π ◦ c,
whose component at infinity Π∞ has the same infinitesimal character as
some irreducible algebraic representation satisfying certain regularity condi-
tion. Then for every prime number `, there exists a continuous representa-
tion σ : Gal(F̄ /F ) → GL(n, Q̄`) so that for every prime p of F that does
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not lie above `, the local component πv of π corresponds to the `-adic local
representation of Gal(F̄v/Fv) via the local Langlands correspondence estab-
lished by Harris-Taylor and Henniart. This important theorem is due to Clozel,
Harris, and Labesse [11], Morel [53] and Shin [60] with some difference in the
precision.

Under the above assumptions on the number field F and the automor-
phic representation Π, there exists a unitary group U(F+) with respect to the
quadratic extension F/F+ that gives rise to a Shimura variety and an automor-
phic representation π of U whose base change to GL(n, F ) is Π. The base change
from the unitary group U to the linear group GL(n, F ) is a case of the theory
of twisted endoscopy. It is based on a comparison of the twisted trace formula
for GL(n, F ) and the ordinary trace formula for U(F+). For more details, see
[10, 37].

Following the work of Kottwitz on Shimura varieties, it is possible to attach
Galois representation to automorphic forms. Algebraic cuspidal automorphic
representations of unitary group appears in `-adic cohomology of Shimura vari-
ety. In [35], Kottwitz proved a formula for the number of points on certain type
of Shimura varieties with values in a finite field at a place of good reduction,
and in [34], he showed how to stabilize this formula in a very similar manner
to the stabilization of the trace formula. He also needed to assume the validity
of the same conjectures on local orbital integrals as in the case of stabilization
of the trace formula.

Kottwitz’ formula for the number of points allow to show the compatibility
with the local correspondence at the unramified places. More recently, Shin
proved a formula for fixed points on Igusa varieties that looks formally similar
to Kottwitz’ formula that allows him to prove the compatibility with the local
correspondence at a ramified place [60].

Morel was able to calculate the intersection cohomology of non-compact
unitary Shimura varieties when the other authors confined themselves in the
compact case [53]. The description of the intersection cohomology has been
conjectured by Kottwitz.

We observe the remarkable similarity between Arthur’s works on the classi-
fication of automorphic representations of classical groups and the construction
of Galois representations attached to automorphic representations by Shimura
varieties. Both need the stablization of a twisted trace formula and of an ordi-
nary trace formula or similar formula thereof.

3. Stabilization of the Trace Formula

The main focus of the theory of endoscopy is the stabilization of the trace
formula. The trace formula allows us to derive properties of automorphic rep-
resentations from a careful study of orbital integrals. The orbital side of the
trace formula is not stable but the defect of stability can be expressed by an
endoscopic group. It follows the endoscopic case of the functoriality conjecture.
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This section will give more details about the stabilization of the orbital side of
the trace formula.

3.1. Trace formula and orbital integrals. In order to simplify the
exposition, we will consider only semisimple groups G defined over a global field
F . The Arthur-Selberg trace formula for G has the following form

∑

γ∈G(F )/∼

Oγ(f) + · · · =
∑

π

trπ(f) + · · · (10)

where γ runs over the set of anisotropic conjugacy classes of G(F ) and π over
the set of discrete automorphic representations. The trace formula contains also
more complicated terms related to hyperbolic conjugacy classes on one side and
the continuous spectrum on the other side.

The test function f is of the form f =
⊗

v fv where for v, fv is a smooth
compactly supported function on G(Fv) and for almost all nonarchimedean
places v, fv the unit function of the unramified Hecke algebra of G(Fv). The
global orbital integral

Oγ(f) =

∫

Iγ(F )\G(A)

f(g−1γg)dg (11)

is convergent for anisotropic conjugacy classes γ ∈ G(F ). Here Iγ(F ) is the
discrete group of F -points on the centralizer Iγ of γ. After choosing a Haar
measure dt =

⊗

dtv on Iγ(A), we can express the above global integral as
follows

Oγ(f) = vol(Iγ(F )\Iγ(A), dt)
∏

v

Oγ(fv, dgv/dtv). (12)

The torus Iγ has an integral form well defined up to finitely many places, and
the measure dt is chosen so that Iγ(Ov) has volume one for almost all v. Over
a nonarchimedean place, the local orbital integral

Oγ(fv, dgv/dtv) =

∫

Iγ(Fv)\G(Fv)

f(g−1γg)
dgv
dtv

(13)

is defined for every locally constant function fv ∈ C∞
c (G(Fv)) with compact

support. Local orbital integral Oγ(fv, dgv/dtv) is convergent for every v and
equals 1 for almost all v. The volume term is finite when the global conjugacy
class γ is anisotropic.

Arthur introduced a truncation operator to deal with the continuous spec-
trum in the spectral expansion and hyperbolic conjugacy classes in the geomet-
ric expansion. In the geometric expansion, Arthur has more complicated local
integrals that he calls weighted orbital integrals, see [2].
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3.2. Stable orbital integrals. For GL(n), two regular semisimple ele-
ments in GL(n, F ) are conjugate if and only if they are conjugate in GL(n, F̄ ),
where F̄ is an algebraic closure of F and this latter condition is tantamount to
request that γ and γ′ have the same characteristic polynomial. For a general
reductive group G, we also have a characteristic polynomial map χ : G → T/W
where T is a maximal torus and W is its Weyl group. An element is said to
be strongly regular semisimple if its centralizer is a torus. Strongly regular
semisimple elements γ, γ′ ∈ G(F̄ ) have the same characteristic polynomial if
and only if they are G(F̄ )-conjugate. However, there are possibly more than one
G(F )-conjugacy classes within the set of strongly regular semisimple elements
having the same characteristic polynomial in G(F ). These conjugacy classes
are said to be stably conjugate.

Let γ, γ′ ∈ G(F ) be such that there exist g ∈ G(F̄ ) with γ′ = gγg−1. For all
σ ∈ Gal(F̄ /F ), since γ, γ′ are defined over F , σ(g)−1g belongs to the centralizer
of γ. The map

σ 7→ σ(g)−1g (14)

defines a cocycle with values in Iγ(F̄ ) whose image in G(F̄ ) is a boundary.
For a fixed γ ∈ G(F ), assumed strongly regular semisimple, the set of G(F )-
conjugacy classes in the stable conjugacy class of γ can be identified with the
subset Aγ of elements H1(F, Iγ) whose image in H1(F,G) is trivial. For local
fields, the group H1(F, Iγ) is finite but for global field, it can be infinite.

For a local non-archimedean field F , Aγ is a subgroup of the finite abelian
group H1(F, Iγ). One can form linear combinations of orbital integrals within a
stable conjugacy class using characters of Aγ . In particular, the stable orbital
integral

SOγ(f) =
∑

γ′

Oγ′(f)

is the sum over a set of representatives γ′ of conjugacy classes within the stable
conjugacy class of γ. One needs to choose in a consistent way Haar measures
on different centralizers Iγ′(F ). For strongly regular semisimple γ, the tori Iγ′

for γ′ in the stable conjugacy class of γ, are in fact canonically isomorphic,
so that we can transfer a Haar measure from Iγ(F ) to Iγ′(F ). Obviously, the
stable orbital integral SOγ depends only on the characteristic polynomial of γ.
If a is the characteristic polynomial of a strongly regular semisimple element
γ, we set SOa = SOγ . A stable distribution is an element in the closure of the
vector space generated by the distributions of the forms SOa with respect to
the weak topology.

In some sense, stable conjugacy classes are more natural than conjugacy
classes. In order to express the difference between orbital integrals and stable
orbital integrals, one needs to introduce other linear combinations of orbital in-
tegrals known as κ-orbital integrals. For each character κ : Aγ → C×, κ-orbital
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integral is a linear combination

Oκ
γ(f) =

∑

γ′

κ(cl(γ′))Oγ′(f)

over a set of representatives γ′ of conjugacy classes within the stable conjugacy
class of γ, cl(γ′) being the class of γ′ in Aγ . For any γ′ in the stable conjugacy
class of γ, Aγ and Aγ′ are canonical isomorphic so that the character κ on Aγ

defines a character of A′
γ . Now,O

κ
γ andOκ

γ′ are not equal but differ by the scalar
κ(cl(γ′)) where cl(γ′) is the class of γ′ in Aγ . Even though this transformation
rule is simple enough, we can’t a priori define κ-orbital Oκ

a for a characteristic
polynomial a as in the case of stable orbital integral. This is a source of an
important technical difficulty in the theory of endoscopy: the transfer factor.

3.3. Stable distributions and the trace formula. Test functions
for the trace formula are finite combination of functions f on G(A) of the form
f =

⊗

v∈|F | fv where for all v, fv is a smooth function with compact support on

G(Fv) and for almost all finite place v, fv is the characteristic function of G(Ov)
with respect to an integral form of G which is well defined almost everywhere.

The trace formula defines a linear form in f . For each v, it induces an
invariant linear form in fv. There exists a Galois theoretical cohomological
obstruction that prevents this linear form from being stably invariant. Let γ ∈
G(F ) be a strongly regular semisimple element. Let (γ′

v) ∈ G(A) be an adelic
element with γ′

v stably conjugate to γ for all v and conjugate for almost all
v. There exists a cohomological obstruction that prevents the adelic conjugacy
class (γ′

v) from being rational. In fact the map

H1(F, Iγ) →
⊕

v

H1(Fv, Iγ) (15)

is not surjective in general. Let Îγ denote the dual complex torus of Iγ equipped
with a finite action of the Galois group Γ = Gal(F̄ /F ). For each place v, the
Galois group Γv = Gal(F̄v/Fv) of the local field also acts on Îγ . By local Tate-
Nakayama duality as reformulated by Kottwitz, H1(Fv, Iγ) can be identified

with the group of characters of π0(Î
Γv
γ ). By global Tate-Nakayama duality, an

adelic class in
⊕

v H
1(Fv, Iγ) comes from a rational class in H1(F, Iγ) if and

only if the corresponding characters on π0(Î
Γv
γ ), after restriction to π0(Î

Γ
γ ),

sum up to the trivial character. The original problem with conjugacy classes
within a stable conjugacy class, complicated by the presence of the strict subset
Aγ of H1(F, Iγ), was solved in Langlands [42] and in a more general setting by
Kottwitz [32].

In [42], Langlands outlined a program to derive from the usual trace formula
a stable trace formula. The key point is to apply Fourier transform on the finite
group π0(Î

Γ
γ ) and the part of the trace formula corresponding to the stable

conjugacy class of γ becomes a sum over the group of characters of π0(Î
Γ
γ ).
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By definition, the term corresponding to the trivial character of π0(Î
Γ
γ ) is the

stable trace formula. The other terms can be expressed as product of κ-orbital
integrals.

Langlands conjectured that these κ-orbital integrals can also be expressed
in terms of stable orbital integrals of endoscopic groups. The precise constant
occuring in these conjectures were worked out in his joint work with Shelstad cf.
[45]. There are in fact two conjectures: the transfer and the fundamental lemma
that we will review in a similar but simpler context of Lie algebras. Admitting
these conjectures, Langlands and Kottwitz proved that the correction terms
in the elliptic part match with the stable trace formula for endoscopic groups.
This equality is known under the name of the stabilization of the elliptic part
of the trace formula.

The whole trace formula was eventually stabilized by Arthur under more
local assumptions that are the weighted transfer and the weighted fundamental
lemma cf. [1]. Arthur’s classification of automorphic forms of quasisplit clas-
sical groups depends upon the stabilization of twisted trace formula. For this
purpose, Arthur’s local assumptions are more demanding: the twisted weighted
transfer and the twisted weighted fundamental lemma.

3.4. The transfer and the fundamental lemma. We will state
the two conjectures about local orbital integrals known as the transfer conjec-
ture and the fundamental lemma in the case of Lie algebra. The statements in
the case of Lie group are very similar but the constant known as the transfer
factor more complicated.

Assume for simplicity that G is a split group over a local non-archimedean
field F . Let Ĝ denote the connected complex reductive group whose root system
is related to the root system of G by exchanging roots and coroots. Let γ be
a regular semisimple F -point on the Lie algebra g of G. Its centralizer Iγ is a
torus defined over F . By the Tate-Nakayama duality, a character κ of H1(F, Iγ)

corresponds to a semisimple element of Ĝ that is well defined up to conjugacy.
Let Ĥ be the neutral component of the centralizer of κ in Ĝ. For a given
torus Iγ , we can define an action of the Galois group of F on Ĥ that factors

through the component group of the centralizer of κ in Ĝ. By duality, we
obtain a quasi-split reductive group H over F which is an endoscopic group
of G.

The endoscopic group H is not a subgroup of G in general. Nevertheless,
it is possible to transfer stable conjugacy classes from H to G, and from the
Lie algebra h = Lie(H) to g. Assume for simplicity that H is also split. The
inclusion Ĥ = Ĝκ ⊂ Ĝ induces an inclusion of Weyl groups WH ⊂ W . It follows
that there exists a canonical map t/WH → t/W that realizes the transfer of
stable conjugacy classes from h to g. If γH ∈ h(F ) has characteristic polynomial
aH ∈ t/WH(F ) mapping to the characteristic polynomial a of γ ∈ G(F ), we
will say that the stable conjugacy class of γH transfers to the stable conjugacy
class of γ.
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Kostant has constructed a section t/W → g of the characteristic polynomial
morphism g → t/W cf. [29]. For every a ∈ (t/W )(F ), the Kostant section
defines a distinguished conjugacy class with the stable conjugacy class of a. As
showed by Kottwitz cf. [36], the Kostant section provides us a rather simple
definition of the Langlands-Shelstad transfer factor in the case of Lie algebra.
Let ∆(γH , γ) be the unique complex function depending on regular semisimple
conjugacy classes γH ∈ h(F ) and γ ∈ g(F ) with the characteristic polynomial
aH ∈ (t/WH)(F ) of γH mapping to the characteristic polynomial a ∈ (t/W )(F )
of γ and satisfying the following property

• ∆(γH , γ) depends only on the stable conjugacy class of γH ,

• if γ and γ′ are stably conjugate then ∆(γH , γ′) = 〈inv(γ, γ′), κ〉∆(γH , γ)
where inv(γ, γ′) is the cohomological invariant lying in H1(F, Iγ) defined
by the coccyle (14),

• if γ is conjugate to the Kostant section at a, ∆(γH , γ) =
|∆G(γ)

−1∆H(γH)|1/2 where ∆G,∆H are the usual discriminant func-
tions on g and h and |.| denotes the standard absolute value of the non-
archimedean field F .

Conjecture 3 (Transfer). For every f ∈ C∞
c (G(F )) there exists fH ∈

C∞
c (H(F )) such that

SOγH
(fH) = ∆(γH , γ)Oκ

γ(f) (16)

for all strongly regular semisimple elements γH and γ with the characteristic
polynomial aH ∈ (t/WH)(F ) of γH mapping to the characteristic polynomial
a ∈ (t/W )(F ) of γ.

Under the assumption γH and γ regular semisimple with the characteristic
polynomial aH ∈ (t/WH)(F ) of γH mapping to the characteristic polynomial
a ∈ (t/W )(F ) of γ, their centralizers in H and G are canonically isomorphic
tori. We can therefore transfer Haar measures between those locally compact
groups.

Assume that we are in unramified situation i.e. both G andH have reductive
models over OF . Let 1g(OF ) be the characteristic function of g(OF ) and 1h(OF )

the characteristic function of h(OF ).

Conjecture 4 (Fundamental lemma). The equality (16) holds for f = 1g(OF )

and fH = 1h(OF ).

In the case of Lie group instead of Lie algebra, there is a more general
version of the fundamental lemma. Let HG be the algebra of G(OF )-biinvariant
functions with compact support on G(F ) and HH the similar algebra for H(F ).
Using Satake isomorphism, we have a canonical homomorphism b : HG → HH .

Conjecture 5. The equality (16) holds for any f ∈ HG and for fH = b(f).
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In [68], Waldspurger also stated another beautiful conjecture in the same
spirit. Let G1 and G2 be two semisimple groups with isogeneous root systems
i.e. there exists an isomorphism between their maximal tori which maps a root
of G1 on a scalar multiple of a root of G2 and conversely. In this case, there is
an isomorphism t1/W1 ' t2/W2. We can therefore transfer regular semisimple
stable conjugacy classes from g1(F ) to g2(F ) and back.

Conjecture 6 (Nonstandard fundamental lemma). Let γ1 ∈ g1(F ) and
γ2 ∈ g2(F ) be regular semisimple elements having the same characteristic poly-
nomial. Then we have

SOγ1
(1g1(OF )) = SOγ2

(1g2(OF )). (17)

3.5. The long march. Let us remember the long march to the conquest
of the transfer conjecture and the fundamental lemma.

The theory of endoscopy for real groups is almost entirely due to Shelstad.
She proved, in particular, the transfer conjecture for real groups. The funda-
mental lemma does not make sense for real groups.

Particular cases of the fundamental lemma were proved in low rank case
by Labesse-Langlands for SL(2) [38], Kottwitz for SL(3) [30], Rogawski for
U(3) [58], Hales, Schroder and Weissauer for Sp(4). The first case of twisted
fundamental lemma was proved by Saito, Shintani and Langlands in the case of
base change for GL(2). The conjecture 4 in the case of stable base change was
proved by Kottwitz [33] for unit and then 5 by Clozel and Labesse independently
for Hecke algebra. Kazhdan [27], and Waldspurger [66] proved 4 for SL(n). More
recently, Laumon and myself proved the case U(n) [50] in equal characteristic.

The following result is to a large extent a collective work.

Theorem 7. The conjectures 3, 4, 5 and 6 are true for p-adic fields.

In the landmark paper [67], Waldspurger proved that the fundamental
lemma implies the transfer conjectures. Due to his and Hales’ works, the case of
Lie group follows from the case of Lie algebra. Waldspurger also proved that the
twisted fundamental lemma follows from the combination of the fundamental
lemma with his nonstandard variant [68]. In [19], Hales proved that if we know
the fundamental lemma for the unit for almost all places, we know it for the
entire Hecke algebra for all places. In particular, if we know the fundamental
lemma for the unit element at all but finitely many places, we also know it at
the remaining places. More details on Hales’ argument can be found in [53].

The problem is reduced to the fundamental lemma for Lie algebra. Follow-
ing Waldspurger and, independently, Cluckers, Hales and Loeser, it is enough
to prove the fundamental lemma for a local field in characteristic p, see [69]
and [12].

For local fields of characteristic p, the approach using algebraic geometry
was eventually successful. This approach originated in the work of Kazhdan
and Lusztig who introduced the affine Springer fiber, cf. [28]. In [18], Goresky,
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Kottwitz and MacPherson gave an interpretation of the fundamental lemma in
terms of the cohomology of the affine Springer. They also introduced the use of
the equivariant cohomology and proved the fundamental lemma for unramified
elements assuming the purity of cohomology of affine Springer fiber. Later in
[49], Laumon proved the fundamental lemma for general element in the Lie al-
gebra of unitary group also by using the equivariant cohomology and admitting
the same purity assumption. The conjecture of purity of cohomology of affine
Springer fiber is still unproved.

The Hitchin fibration was introduced in this context in [54]. Laumon and
I used this approach, combined with [49], to prove the fundamental lemma for
unitary group in [50]. The equivariant cohomology is no longer used for effective
calculation of cohomology but to prove a qualitative property of the support of
simple perverse sheaves occurring in the cohomology of Hitchin fibration. Later,
I realized that the equivariant cohomology does not work in general simply due
to the lack of toric action. The general case was proved in [56] with essentially
the same strategy as in [50] but with a major difference. Since the equivari-
ant cohomology does not provide a general argument for the determination of
the support of simple perverse sheaves occurring in the cohomology of Hitchin
fibration, an entirely different argument was needed. This new argument is a
blend of an observation of Goresky and MacPherson on perverse sheaves and
Poincaré duality with some particular geometric properties of algebraic inte-
grable systems cf. [57].

4. Affine Springer Fibers and the Hitchin

Fibration

In this section, we will describe the geometric approach to the fundamental
lemma.

4.1. Affine Spriger fibers. Let k = Fq be a finite field with q elements.
Let G be a reductive group over k and g its Lie algebra. Let F = k((π)) and
OF = k[[π]]. Let γ ∈ g(F ) be a regular semisimple element. According to
Kazhdan and Lusztig [28], there exists a k-scheme Mγ whose set of k points is

Mγ(k) = {g ∈ G(F )/G(OF ) | ad(g)
−1(γ) ∈ g(OF )}.

They proved that the affine Springer fiber Mγ is finite dimensional and locally
of finite type.

The centralizer Iγ(F ) acts on Mγ(k). The group Iγ(F ) can be given a

structure of infinite dimensional group P̃γ over k, acting on Mγ . There exists

a unique quotient Pγ of P̃γ such that the above action factors through Pγ and
there exists an open subvariety of Mγ over which Pγ acts simply transitively.
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Here is a simple but important example. Let G = SL2 and let γ be the
diagonal matrix

γ =

(

π 0
0 −π

)

.

In this case Mγ is an infinite chain of projective lines with the point ∞ in each
copy being identified with the point 0 of the next one. The group Pγ is Gm×Z
with Gm acting on each copy of P1 by rescaling and the generator of Z acting
by translation from each copy to the next one. The dense open orbit is obtained
by removing from Mγ its double points.

We have a cohomological interpretation for stable κ-orbital integrals. Let us
fix an isomorphism Q̄` ' C so that κ can be seen as taking values in Q̄`. Then
we have the formula

Oκ
γ(1g(OF )) = ]P0

γ(k)
−1tr(Frq,H

∗(Mγ ⊗k k̄, Q̄`)κ)

where Frq denotes the action of the geometric Frobenius on the `-adic cohomol-
ogy of the affine Springer fiber. In the case where the component group π0(Pγ)
is finite, H∗(Mγ , Q̄`)κ is the biggest direct summand of H∗(Mγ , Q̄`) on which
Pγ acts through the character κ. By taking κ = 1, we obtained a cohomological
interpretation of the stable orbital integral

SOγ(1g(OF )) = ]P0
γ(k)

−1tr(Frq,H
∗(Mγ , Q̄`)st)

where the index st means the direct summand where Pγ acts trivially. When
π0(Pγ) is infinite, the definition of H∗(Mγ , Q̄`)st and H∗(Mγ , Q̄`)κ is a little
bit more complicated.

Cohomological interptration of the fundamental lemma follows from the
above cohomological interpretation of stable and κ-orbital integrals. In general,
it does not seem possible to prove the cohomological fundamental lemma by
a direct method because the `-adic cohomology of the affine Springer fiber is
as complicated as the orbital integrals. Nevertheless, in the case of unrami-
fied conjugacy classes, by using a large torus action of the affine Springer fiber
and the Borel-Atiyah-Segal localization theorem for equivariant cohomology,
Goresky, Kottwitz and MacPherson proved a formula for the `-adic cohomol-
ogy of unramified affine fibers in assuming the purity conjecture. It shuold be
noticed however that there may be no torus action on the affine Springer fibers
associated to most ramified conjugacy classes.

4.2. The Hitchin fibration. The Hitchin fibration appears in a quite
remote area from the trace formula and the theory of endoscopy. It is fortunate
that the geometry of the Hitchin fibration and the arithmetic of endoscopy
happen to be just different smiling faces of Bayon Avalokiteshvara.

In [25], Hitchin constructed a large family of algebraic integrable systems.
Let X be a smooth projective complex curve and BunstG the moduli space of
stable G-principal bundles on X. The cotangent bundle T ∗BunstG is natuturally
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a symplectic variety so that its algebra of analytic functions is equipped with a
Poisson bracket {f, g}. It has dimension 2d where d is the dimension of BunG.
Hitchin proves the existence of d Poisson commuting algebraic functions on
T ∗BunG that are algebraically independent

f = (f1, . . . , fd) : T
∗BunstG → Cd. (18)

The Hamiltonian vector fields associated to f1, . . . , fd form d commuting vector
fields along the fiber of f . Hitchin proved that generic fibers of f are open
subsets of abelian varieties and Hamiltonian vector fields are linear.

To recall the construction of Hitchin, it is best to relax the stability condition
and consider the algebraic stack BunG of all principal G-bundles instead of its
open substack BunstG of stable bundles. Following Hitchin, a Higgs bundle is
a pair (E, φ), where E ∈ BunG is a principal G-bundle over X and φ is a
global section of ad(E) ⊗ K, K being the canonical bundle of X. Over the
stable locus, the moduli space M of all Higgs bundles coincide with T ∗BunstG
by Serre’s duality.

According to Chevalley and Kostant, the algebra C[g]G of adjoint invariant
function is a polynomial algebra generated by homogeneous functions a1, . . . , ar
of degree e1+1, . . . , er+1 where e1, . . . , er are the exponents of the root system.
If (E, φ) is a Higgs bundle then ai(φ) is well defined as a global section of
K⊗(ei+1). This defines a morphism f : M → A where A is the affine space

A =
r

⊕

i=1

H0(X,K⊗(ei+1)).

whose dimension equals somewhat miraculously the dimension d of dim(BunG).
This construction applies also to a more general situation where K is replaced
by an arbitrary line bundle, but of course the symplectic form as well as the
equality of dimension are lost. It is not difficult to extend Hitchin’s argument to
prove that, after passing from the coarse moduli space to the moduli stack, the
generic fiber of f is isomorphic to an extension of a finite group by an abelian
variety. More canonically, the generic fiber of f is a principal homogeneous space
under the action of the extension of a finite group by an abelian variety. On
the infinitesimal level, this action is nothing but the action of the Hamiltonian
vector fields along the fibers of f . We observe that Hamiltonian vector fields act
also on singular fibers of f , and we would like to understand the the geometry
of those fibers by this action.

In [54], we constructed a smooth Picard stack g : P → A that acts on
f : M → A. In particular, for every a ∈ A, Pa acts on Ma in integrating the
infinitesimal action of the Hamiltonian vector fields. For generic parameters a,
the action of Pa on Ma is simply transitive but for degenerate parameters a,
it is not. We observe the important product formula

[Ma/Pa] =
∏

v∈X

[Ma,v/Pa,v] (19)
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that expresses the quotient [Ma/Pa] as an algebraic stack as the product of
affine Springer fibers Ma,v by its group of symmetry Pa,v. For almost all v,
Ma,v is a disrete set acted on simply transitively by Pa,v.

In order to get an insight of the product formula, it is best to switch the
base field from the field of complex numbers to a finite field k. In this case, it
is instructive to count the number of k-points on the Hitchin fiber Ma as well
as on the quotients [Ma/Pa]. In order to get actual numbers, we assume that
the component group π0(Pa) is finite. This is the case for a in an open subset
Aell of A, called the elliptic part, to which we will restrict ourselves from now
on.

More details about the following discussion can be found in [54, 55]. For
a ∈ Aell(k), the fiber Ma is a proper Deligne-Mumford stack and the number
of its k-points can be expressed as a sum

|Ma(k)| =
∑

γ∈g(F )/∼,χ(f)=a

Oγ(1D) (20)

over rational conjugacy classes γ ∈ g(F )/ ∼, F denoting the function field of
X within the stable conjugacy class defined by a, of global orbital integral (11)
of certain adelic function 1D, whose local expression 1D =

∏

v∈|X| 1Dv
is given

by the choice of a global section of the line bundle K = OX(D). The number
of k-points on the quotient [Ma/Pa] can be expressed as a product of stable
orbital integrals

|[Ma/Pa](k)| =
∏

v∈|X|

SOa(1Kv
) (21)

We will now look for an expression of the sum of global orbital integrals (20)
in terms of stable orbital (21) plus correcting terms as in the stabilization of
the trace formula. In our geometric terms, this expression becomes

|Ma(k)| = |P0
a(k)|

∑

κ

Oκ
γa
(1D) (22)

where Oκ
γa

are κ-orbital integrals attached to the Kostant conjugacy class γa in
the stable class a with respect to a Frobenius invariant character κ : π0(Pa) →
Q`

×. The component group π0(Pa) or the smile of Avalokiteshvara is the origin
of endoscopic pain.

The cohomological interpretation of the formula (22) is the decomposition
into direct sum of the cohomology of Ma with respect to the action of π0(Pa)

H∗(Ma ⊗k k̄,Q`) =
⊕

κ:π0(Pa)→Q`
×

H∗(Ma ⊗k k̄,Q`)κ. (23)

It is not obvious to understand how this decomposition depends on a since
the component group π0(Pa) also depends on a. According to a theorem of
Grothendieck, the component groups π0(Pa) for varying a can be interpolated
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as fiber of a sheaf of abelian groups π0(P) for the étale topology of A. Restricted
to the elliptic part Aell, π0(P) is a sheaf of finite abelian groups. One of the
difficulties to understand the decomposition (23) lies in the fact that π0(P) is
not a constant sheaf. Nevertheless, the sheaf π0(P) acts on the perverse sheaves
of cohomology

pHn(f∗Q`|A)

and decomposes it into a direct sum canonically indexed by a finite set of
semisimple conjugacy classes of the dual group Ĝ

pHn(f∗Q`|Aell) =
⊕

[κ]∈Ĝ/∼

pHn(f∗Q`|Aell).

This peculiar decomposition reflects the combinatorial complexity of the sta-
bilization of the trace formula, see [54, 55]. Among the direct summand, the
main term corresponding to κ = 1 is called the stable piece. For instance, the
surprising appearance of semisimple conjugacy classes of the dual group reflects
the presence of the equivalence classes of endoscopic groups in the stabilization
of the trace formula.

The stabilization of the trace formula as envisionned by Langlands and Kot-
twitz suggests that the [κ]-part in the above decomposition should correspond
to the stable part in the similar decomposition for an endoscopic group. This
prediction can be realized in a clean geometric formulation after we pass to the
étale scheme Ã over A cf. [56] which depends on the choice of a point ∞ ∈ X.
It was constructed in such a way that over Ã, π0(P) becomes a quotient of the
constant sheaf, whose sections over any connected test scheme are cocharacters
of the maximal torus T . Over Ãell, we obtain a finer decomposition

pHn(f∗Q`|Ãell) =
⊕

κ∈T̂

pHn(f∗Q`|Ãell)κ

indexed by a finite subset of the maximal torus T̂ in Ĝ.
Let κ ∈ T̂ correspond to a nontrivial piece in the above decomposition. The

κ-component of the above direct sum is supported by the locus Ãell
κ in Ãell

given by the elements ã ∈ Ãell such that κ : X∗(T ) → Q×
` factors through

π0(Pã). This locus is not connected; its connected components are classified
by homomorphism ρ : π1(X,∞) → π0(Ĝκ). Such a homomorphism defines a
reductive group scheme H over X whose dual group is Ĥρ by outer twisting. It

can be checked that the connected component of Ãell
κ corresponding to ρ is just

the Hitchin base AHρ
for the reductive group scheme Hρ. Let ικ,ρ : ÃHρ

→ Ã
denote this closed immersion.

Theorem 8. Let G be a split semisimple group. There exists an isomorphism

⊕

n

pHn(f∗Q`|Ãell)κ[2r](r) ∼
⊕

ρ

(ικ,ρ)∗
⊕

n

pHn(fHρ,∗Q`|Ãell
Hρ

)st
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where ρ are homomorphisms ρ : π1(X,∞) → π0(Ĝκ) and where r is some
multiple of deg(K).

Here we stated our theorem in the case of split group, but it is valid for
quasi-split group as well. In fact, the theorem was first proved for quasi-split
unitary group by Laumon and myself in [50] before the general case was proved
in [56]. To be more precise, the above theorem is proved under the assumption
that the characteristic of the residue field is at least twice the Coxeter number
of G.

The fundamental lemma for Lie algebra in equal characteristic case follows
from the above theorem by a local-global argument. The unequal characteristic
case follows from the equal characteristic case by theorem of Waldspurger [69]
oand Cluckers, Hales, Loeser [12]. Waldspurger assumes that p does not divide
the order of the Weyl group and Cluclers, Hales, Loeser needs a much stronger
lower bound on p. In number field case, these assumptions do not matter as
Hales proved that the validity of the fundamental lemma at almost all places
implies its validity at the remaining places. Currently, the fundamental lemma
for local fields of positive characteristic small with respect to G, is not known.

4.3. Support theorem. The main ingredient in the proof of theorem 8
is the determination of the support of simple perverse sheaves that appear as
constituent of perverse cohomology of f∗Q`.

Let C be a pure `-adic complex over a scheme S of finite type over a finite
field k. Its perverse cohomology pHn(C) are then perverse sheaves and geomet-
rically semisimple according to a theorem of Beilinson, Bernstein, Deligne and
Gabber cf. [5]. According to Goresky and MacPherson, geometrically simple
perverse sheaves are of the following form: let Z be a closed irreducible sub-
scheme of S⊗k k̄ with i : Z → S⊗k k̄ denoting the closed immersion, let U be a
smooth open subscheme of Z with j : U → Z denoting the open immersion, let
K be a local system on U , then K = i∗j!∗K[dim(Z)] is a simple perverse sheaf,
j!∗ being the functor of intermediate extension, and every simple perverse sheaf
on S ⊗k k̄ is of this form. In particular, the support Z = supp(K) of a simple
perverse sheaf is well defined. For a pure `-adic complex C over a scheme S,
we can ask the question what is the set of supports of simple perverse sheaves
occurring as direct factors of the perverse sheaves of cohomology pHn(C).

The main topological ingredient in the proof of theorem 8 is the determi-
nation of this set of supports. We state only the result in characteristic zero.
In characteristic p, we prove a weaker result, more complicated to state but
enough for the purposes of the fundamental lemma.

Theorem 9. Assume the base field k is the field of complex numbers. Then for
any simple perverse sheaf K direct factor of pHn(f∗Q`|Ãell)st, the support of K

is Ãell. Similarly, if K is a direct factor of pHn(f∗Q`|Ãell)κ, then the support of

K is of the form ιρ(ÃHρ
) for certain homomorphism ρ : π1(X,∞) → π0(Ĝκ).
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If we know two perverse sheaves having simple constituents of the same
support, in order to construct an isomorphism between them, it is enough to
construct an isomorphism over an open subset of the support. Over a small
enough open subscheme, the isomorphism can be constructed directly.

Let us explain the proof of the nonstandard fundamental lemma con-
jectured by Waldspurger. Let G1, G2 be semisimple groups with isogeneous
root systems. Their Hitchin moduli spaces M1,M2 map to the same base
A = A1 = A2. Let restrict to the elliptic locus and put A = Aell. In order to
prove (f1∗Q`)st ∼ (f2∗Q`)st, it is enough to prove that they are isomorphic over
an open subscheme of A, as we know every simple perverse sheaf occurring in
either one of these two complexes have support Aell. Over an open subscheme
of Aell, M1 is acted on simply transitively by extension of a finite group by an
abelian scheme and so isM2. The nonstandard fundamental lemma follows now
from the fact that the above two abelian schemes are isogeneous and isogeneous
abelian varieties have the same cohomology.

4.4. Weighted fundamental lemma. According to Waldspurger,
the twisted fundamental lemma follows from the usual fundamental lemma
and its nonstandard variant. Combining with his theorem that the fundamen-
tal lemma implies the transfer, the local results needed to stabilize the elliptic
part of the trace formula and the twisted trace formula.

The classification of automorphic forms on quasisplit classical group requires
the full power of the stabilization of the entire trace formula. For this purpose,
Arthur needs more the twisted weighted fundamental lemma. This conjecture
is an identity between twisted weighted orbital integrals.

The weighted fundamental lemma is now a theorem due to Chaudouard
and Laumon cf. [9]. In the particular case of Sp(4), it was previously proved by
Whitehouse cf. [72]. They introduced a condition of χ-stability in Higgs bundles
such that the restriction of the Hitchin map f : M → A to the open subset
A♥ of stable conjugacy classes that are generically regular semisimple and to
moduli stack of χ-stable bundles M♥

χ−st

f♥
χ−st : M

♥
χ−st → A♥

is a proper morphism. This is an extension of the proper morphism fell :
Mell → Aell that depends on a stability parameter χ. Chaudouard and Lau-
mon extended the support theorem from fell to f♥

χ−st. They also showed that

the number of points on a hyperbolic fiber of A♥ can be expressed in terms
of weighted orbital integrals. The weighted fundamental lemma follows. It is
quite remarkable that the moduli space depends on the stability parameter χ,
though the number of points and the `-adic complex of cohomology don’t.

Finally, Waldspurger showed that the twisted weighted fundamental lemma
follows from the weighted fundamental lemma and its nonstandard variant. He
also showed that, if these statements are known for a local field of characteristic
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p, tehy are also known for a p-adic local field with the same residue field,
provided the residual characteristic does not divide the order of the Weyl group.

5. Functoriality Beyond Endoscopy

The unstability of the trace formula has been instrumental in establishing the
first cases of the functoriality conjecture. The stable trace formula now fully
established by Arthur should be the main tool in our quest for more general
functoriality.

In [43], Langlands proposed new insights for the general case of functori-
ality principle. He observed that we are primarily concerned with the ques-
tion how to distinguish automorphic representations π of G whose hypothetical
parametrization σ : LF → LG has image contained in a smaller subgroup.
Assume π of Ramanujan type (or tempered), the Zariski closure of the image
of σ is not far from being determined by the order of the pole at 1 of the
L-functions L(s, ρ, π) for all representations ρ of LG. Though we are not in
position to work directly with these L-functions individually, the stable trace
formula can be effective in dealing with the sum of L-functions attached to
all automorphic representations π or the sum of their logarithmic derivative.
Nontempered representations, especially the trivial representation, represent
an obstacle to this strategy as they contribute to this sum the dominant term.
The subsequent article [15], directly inspired from [43], might have proposed a
method to subtract the dominant contribution. Other works [65, 48, 16], more
or less inspired from [43], are the first encouraging steps on this new path that
might lead us to the general case of functoriality.
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26 Ngô Bao Châu
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Project.

[38] Labesse, J.-P., Langlands, R. L-indistinguishability for SL(2) , Can. J. Math. 31
(1979), p. 726–785.

[39] Langlands, R., Problems in the Theory of Automorphic Forms, Lecture Notes in
Mathematics, Vol. 170. Springer-Verlag, Berlin-New York, 1970.

[40] Langlands, R., Letter to Lang (1970) and Langlands’ comments on this letter,
available at http://publications.ias.edu/rpl.

[41] Langlands, R. Base change for GL(2). Annals of Mathematics Studies, 96. Prince-
ton University Press, Princeton, N.J., 1980.
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