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Introduction

The formal arc space L X of an algebraic variety X carries an important amount
of information on singularities of X . Little is known about singularities of the
formal arc scheme itself. According to Grinberg, Kazhdan [12] and Drinfeld [9]
it is known, nevertheless, that the singularity of L X at a non-degenerate arc is
finite dimensional i.e. for every non-degenerate arc x ∈L X , the formal comple-
tion of L X at x is isomorphic to Yy ×D∞ where Yy is the formal completion of
a finite dimensional variety Y at some point y ∈ Y and D∞ is the infinite power
of the formal disc.

One can hope to define the intersection complex of L X via its local finite
dimensional models and study the intersection complex as a measure of the sin-
gularity of L X . In this paper, we show that the trace of Frobenius function on
the intersection complex is well defined on the space of non-degenerate arcs (to
be defined in Section 1). The main result of this paper is the calculation of this
function in the cases where X is a toric variety or a special but important class
of reductive monoids.

The main motivation behind this calculation is an expectation that, at least
when X is an affine spherical variety under the action of a reductive group G ,
this function is, in a suitable sense, a generating series for an unramified local
L-function (or product thereof). This expectation was stated in [19] in order to
give a conceptual explanation to the Rankin-Selberg method, but the idea draws
from the work of Braverman and Kazhdan who studied the Schwartz space of
the basic affine space [8], and from relevant work in the geometric Langlands
program [6, 5].

In the case when X is in the class of reductive monoids that we term “L-
monoids” (first introduced by Braverman and Kazhdan in [7]), a precise conjec-
ture was formulated in [17]. It states that this function, the trace of Frobenius on
the intersection complex of the formal arc space, is the generating series of the
local unramified L-function for the irreducible representation of the dual group
whose highest weight determines the isomorphism class of the L-monoid. This

1



generalizes the (local unramified) construction of Godement and Jacquet [11] in
the case X = Matn . A proof of this conjecture is presented in the present paper.

In the case of affine toric varieties, the trace of Frobenius function on the
intersection complex can be expressed as a generating series whose coefficients
are the number of ways to decompose an element of the strictly convex cone of
coweights defining the isomorphism class of the variety as a sum of its gener-
ators. In particular, these coefficients are natural numbers which are indepen-
dent of the base field. This function can also be seen as the generating function
for the product of local unramified L-functions of the torus determined by the
generators in this coweight cone.

Since our method in the two cases are somewhat similar, one can hope to
generalize the result to general spherical varieties.
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1 IC-function on the formal arc space

Let X be a scheme of finite type over a field k. For every positive integer n, we
consider the n-arc functor Jn(X ) whose R-points are the R[t ]/t n+1-points of X .
For n = 0, J0(X ) = X . For n = 1, J1(X ) is the tangent bundle of X . If X is affine,
Jn(X ) is representable by an affine scheme of finite type. It follows that in gen-
eral, Jn(X ) is representable as an affine X -scheme of finite type. For m > n, the
truncation maps

pm
n : Jm(X ) → Jn(X )

are thus affine. If X is smooth, the maps pm
n are smooth and surjective for all

n > m.
The inverse limit L X of Jn X is called the formal arc space. The set of its

R-points is a projective limit

L X (R) = X (R[[t ]]) = lim←−−
n→∞

Jn(R). (1.1)
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For each integer n, we have a canonical map pn : L X → Jn(X ). If X is smooth,
the maps pn are formally smooth and surjective. In the case where X is not
smooth, the geometry of pn is rather complicated. We refer [10] for a good ac-
count of this theory.

Definition 1.1. A finite dimensional formal model of L X at x ∈ L X (k) is the
formal completion Yy of a k-scheme of finite type Y at a point y ∈ Y equipped
with an isomorphism of formal schemes

(L X )x ' Yy ×D∞ (1.2)

where D is the formal disc.

Let X be an integral scheme over k. Let X ◦ be a smooth dense open subset
in X . Let us denote Z the complement of X ◦. We will denote L ◦X the space of
arcs which generically map into X ◦, i.e. for any test scheme S we have L ◦X (S) =
the set of maps φ : D×S → X such that φ−1(X ◦) is an open U ⊂ D×S surjecting
to S. Such arcs will be called non-degenerate with respect to X ◦. We have

L ◦X (k) =L X (k)−L Z (k). (1.3)

According to Drinfeld [9] (and Grinberg, Kazhdan [12]), finite dimensional
formal models exist for every point x ∈L ◦X .

One should be able to use Drinfeld’s theorem to define the notion of perverse
sheaves over L ◦X , and in particular the intersection complex of L ◦X . In this
paper, we will show a weaker statement: when k is a finite field, one can define a
canonical function on L ◦X (k) that has to be seen as the function of Frobenius
trace on the sought-after intersection complex on L X . 1

Because we are dealing with infinite dimensional schemes, we need to renor-
malize the cohomological shift in the construction of intersection complex. Let
X be a scheme of finite type over k. Let U be a smooth open dense subscheme
of X with U =⊔

i Ui where Ui are the connected components of U . If ji : Ui → X
denotes the open embedding, then in the usual definition of [3], the intersection
complex of X would be the direct sum of ji ,!∗Q`[dim(Ui )]. In constrast with the
usual definition, we set

ICX =⊕
i

ji ,!∗Q`. (1.4)

In our normalization, the restriction of ICX to Ui is the constant sheafQ` placed
on degree 0 disregarding the dimension of X .

1Recently, after the completion of this paper, Bouthier and Kazhdan set up a foundation for a
theory of perverse sheaves on the space of non-degenerate formal arcs, see [4].
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This naive normalization does not behave well with the Verdier duality, how-
ever it is more convenient in certain other aspects. If p : Y → X is a smooth
morphism, then we have

ICY = p∗ICX . (1.5)

Also, if p : Y → X is a finite morphism which is an isomorphism over a dense
open subscheme of X , and if Y is smooth, then we have

ICX = p∗Q`Y (1.6)

whereQ`Y is the constant sheaf of valueQ` on Y .
If k is a finite field with q elements, then the trace of the Frobenius operator

on the stalk of the intersection complex of a scheme X of finite type defines a
function, to be denoted by the same symbol

ICX : X (k) →Q`. (1.7)

This function takes value 1 on the k-points of smooth open subscheme of X . It
can be regarded as a numerical invariant of singularity of X .

Proposition 1.2. Let Y ,Y ′ be k-schemes of finite type and y ∈ Y (k), y ′ ∈ Y ′(k)
such that there exists an isomorphism of formal schemes

Yy ×̂D∞ ' Y ′
y ′×̂D∞. (1.8)

Then the equality
ICY (y) = ICY ′(y ′) (1.9)

holds.

Proof. It will be enough to prove that there exists a formally smooth morphism

Y ′
y ′ ×Dm′ → Yy . (1.10)

If we assume (1.10) exists, then according to [20, Prop. 2.5(i)] there exists an
integer m such that (1.10) factors through an isomorphism

Y ′
y ′ ×Dm′ ' Yy ×Dm . (1.11)

It follows from Artin’s approximation [1, Cor.2.6] that if two pointed k-schemes
(X , x) and (Y , y) of finite type have isomorphic formal neighborhoods, then there
exist étale neighborhoods (U , x) of x in X and (V , y) of y in Y such that (U , x) and
(V , y) are isomorphic. (One should be aware that this isomorphism is not canon-
ical, and in particular the isomorphism it induces between formal completions
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may not coincide with the given one, but can be congruent to it to an arbitratry
high order.) In the situation (1.11), we infer that Y ′×Am′

and Y ×Am have iso-
morphic étale neighborhoods at (y ′,0) and (y,0) respectively. The stalks of the
intersection complexes of Y and Y ′ at y and y ′ are therefore isomorphic, and in
particular, they have the same trace under the Frobenius operator.

We now prove the existence of (1.10).
The map is in fact easy to describe: it will be the bottom map in the diagram

Yy ′×̂D∞ Yy ×̂D∞

Yy ′ ×Dm′
Yy

φ+

φ′

(1.12)

where the left vertical map is induced from an embedding of a finite-dimensional
formal disk into the infinite formal disk, the upper horizontal map is (1.8), and
the right vertical map is the canonical projection. What we need to prove is that
for m′ large enough, φ′ is formally smooth.

We can assume that Y is a closed subscheme of the affine space An with
coordinates x1, . . . , xn defined by the equations f1, . . . , fr ∈ k[x1, . . . , xn]. In other
words, we have Y = Spec(A) with

A = k[x1, . . . , xn]/( f1, . . . , fr ).

We will also also that y correspond to the maximal ideal mA of A generated by
x1, . . . , xn . We denote A the completion of A with respect to mA .

We consider the polynomial A-algebra A+ = A[u1,u2, . . .] where the variables
u1,u2, . . . are countably infinite in number. Let mA+ be the maximal ideal of A+
generated by x1, . . . , xn and u1,u2, . . ., and let A+ denote the completion of A+
with respect to mA+ :

A+ = proj lim
n

A+/mh
A+ .

We have
Yy ×̂D∞ = Spf(A+).

If we denote mh
A+

the kernel of the homomorphism A+ → A+/mh
A+

, then we
have an isomorphism

A+/mh
A+ → A+/mh

A+
. (1.13)

This induces for every h, an isomorphism

mh
A+/mh+1

A+ →mh
A+

/mh+1
A+

. (1.14)
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In particular, for h = 1, m1
A+

/m2
A+

is an infinite dimensional vector space gener-
ated by the images of x1, . . . , xn and u1,u2, . . ., in other words every element of

m1
A+

is congruent modulo m2
A+

to a finite linear combination of x1, . . . , xn and
u1,u2, . . ..

Similarly, Y ′ = Spec(B) with

B = k[y1, . . . , yn′ ]/(g1, . . . , gr ′).

and y ∈ Y (k) corresponds to the maximal ideal mB generated by y1, . . . , yn′ . We
denote B the completion of B with respect to mB .

We also denote by B+ the polynomial algebra B [v1, v2, . . .] in countably many
variables v1, v2, . . ., mB+ the maximal ideal generated by y1, . . . , yn′ and v1, v2, . . .,
and B+ the completion of B+ with respect to mB+ . The complete ring B+ is also

filtered by the ideals mh
B+

with

mh
B+

/mh+1
B+

'mh
B+/mh+1

B+ .

We have
Y ′

y ′×̂D∞ = Spf(B+).

The isomorphism (1.8) induces an isomorphismφ+ : A+ → B+. Let us denote
φi = φ(xi ) for all i = 1, . . . ,n. There exists an integer m′ such that the images of
φi in mB+/m2

B+ are linear combinations of images of y1, . . . , yn′ and v1, v2, . . . , vm′ .
For this integer m′, we claim that the induced morphism φ′ in diagram (1.12) is
formally smooth.

In algebra, the morphism Y ′
y ′×Dm′ → Yy corresponds to the homomorphism

φ′ : A → B [[v1, v2, . . . , vm′ ]] (1.15)

given by xi 7→ φ′(xi ) where φ′(xi ) is the formal series obtained from φ+(xi ) by
setting v j = 0 for all j > m′. In order to prove that φ′ is formally smooth, it is
enough to construct another isomorphism

φ′
+ : Yy ′×̂D∞ → Yy ×̂D∞, (1.16)

such that the diagram

Yy ′×̂D∞ Yy ×̂D∞

Yy ′ ×Dm′
Yy

φ′+

φ′

(1.17)
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in which vertical maps are canonical projections, is commutative. Indeed, the
formal smoothness of φ′ would then follow from the formal smoothness of the
three other maps in this diagram.

In algebra, φ′+ : A+ → B+ is given by φ′+(xi ) =φ′(xi ) and φ′+(u j ) =φ+(u j ). It
remains to prove that φ′+ : A+ → B+ is an isomorphism of complete algebras. By
construction we have

φ+(xi ) ≡φ′
+(xi ) mod m2

B+
. (1.18)

We observe that φ′+(mA+) ⊂mB+ . It follows

φ′
+(mh

A+
) ⊂mh

B+

for all h. It is now enough to prove that the induced morphism

grh(φ′+) :mh
A+

/mh+1
A+

→mh
B+

/mh+1
B+

(1.19)

is an isomorphism for all h ∈ N.
Because of (1.14) and (1.18), φ+ and φ′+ induce the same map on graded

pieces; in other words, the equality

grh(φ′+) = grh(φ+)

holds for every h ∈ N. Now since φ+ : A+ → B+ is an isomorphism, grh(φ′+) and
grh(φ+) are isomorphisms between graded pieces, and thusφ′+ : A+ → B+ is also
an isomorphism.

It follows from this proposition that we have a well defined function on the
set of of non-degenerate arcs

ICL X : L ◦X (k) →Q`. (1.20)

2 Global model for the formal arc space of a group embed-
ding

In the case of group embeddings, one can construct a finite-dimensional formal
model at points of the formal arc space by constructing a moduli problem for
bundles over a smooth projective curve with additional data. Let X be an affine
normal integral variety over a field k equipped with an open embedding of a
reductive group G ,→ X and an action of G ×G which extends the action on G
by left and right multiplication. This action automatically extends to X , making
it into a monoid. For the purposes of defining the space L ◦X according to the
previous section, we take X ◦ to be the image of G in X .
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We will consider the algebraic stack [G\X /G] whose value on each test scheme
S is the groupoid of pairs of (left) principal G-bundles E , E ′ on S equipped with
a G-equivariant morphism: φ : S → X ∧G×G (E ×E ′), where by ∧G×G we denote
the quotient of the product by the diagonal action of G ×G .

Such a section φ will be called an X -morphism from E to E ′. Since X is
equipped with the structure of a monoid, X -morphisms between G-bundles can
be composed.

Let C be a smooth projective geometrically connected curve over k. We fix a
principal G-bundle E0 of G over C , which will serve as our G-bundle of reference.
We consider the the stack Map(C , [G\X /G]) of all maps from C to the quotient
stack [G\X /G]; according to [14], Map(C , [G\X /G]) is an algebraic stack locally
of finite type. Over each test scheme S, an object of Map(C , [G\X /G]) is a map
φ : C × S → [G\X /G], in other words a X -morphism φ : E → E ′ between two
principal G-bundles E and E ′ over C ×S. Such map is said to be non-degenerate
ifφ−1([G\G/G]) is an open subset of C×S whose projection on S is surjective. We
will denote Map◦(C , [G\X /G]) the open substack of Map(C , [G\X /G]) consisting
of non-degenerate maps only.

The stack Map(C , [G\X /G]) comes equipped with two maps to the moduli
stack BunG of principal G-bundles on C : the “left” and the “right” one. We de-
note by Map(C , [G\X /G])0 the fiber of the left one over E0 (i.e. the base change
with respect to the map pt → BunG defined by E0). When E0 is trivial, this is just
the stack Map(C , [X /G]). Except when the contrary is expressly mentioned, E0

will be the trivial G-bundle. We will consider the open substack

M = Map◦(C , [G\X /G])0 (2.1)

of non-degenerate X -morphisms E0 → E between principal G-bundles over X .
In later sections, we will show that, in some cases of interest, M is an algebraic
space locally of finite type.

We assume that C (k) 6= ;, and fix once and for all a k-point v ∈ C (k), an
identification of its formal neighborhood Cv with the formal disk D.

We will denote C − {v} by C ′. We consider the stack M̃ classifying pairs (φ,ξ)
whereφ is a point of M corresponding to an G-torsor E on C and ξ is a trivializa-
tion of the restriction of E to the formal completion Cv . Points of M̃ over a test
scheme S consist in a principal G-bundle E over C ×S, a morphism φ : E0 ×S →
X ∧G E which induces an isomorphism between E0 ×U and E |U over an open
U ×C ×S surjecting to S, and a trivialization of the underlying G-bundle E over
CS on the formal completion (CS)v of CS along {v}×S. We have the canonical
projection

π : M̃ → M (2.2)
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which is a torsor under the group L G .
Restricted to (CS)v ' D×̂S, and taking into account the fixed trivialization

of E0 over D, (φ,ξ) induces a morphism: (CS)v → X such that the preimage of
X ◦ =G is an open subset U ⊂ (CS)v whose projection on S is surjective. Thus we
have a morphism

h : M̃ →L ◦X . (2.3)

This morphism is not formally smooth, because of singularities introduced
when a mapφ as above has image in the singular locus of [X /G] at a point v ′ 6= v .
For our purposes, though, we only need to look at the formal neighborhood of a
point (φ,ξ) ∈ M̃ such that the only singularity of φ is at v .

Proposition 2.1. Let m̃ = (φ,ξ) ∈ M̃(k) have the property that over C ′ the map φ
has image in X •, where X • denotes the smooth locus of X . Then the morphism of
formal neighbourhoods induced by (2.3):

M̃m̃ →L ◦Xx ,

where x ∈L ◦X (k) is the image of m̃ under h, is formally smooth.

Proof. The formal smoothness of formal neighbourhoods can be proved by the
lifting property of points with values in local artinian rings. Let (R,m) be a lo-
cal artinian k-algebra and R̄ = R/I where I is an ideal of R with I 2 = 0. We will
denote S = SpecR and S̄ = SpecR̄. Let (φ̄, ξ̄) denote an R̄-point of M̃ whose re-
duction modulo m/I is equal to m̃. (Hence, necessarily, R/m = k.) Denote its
image in L ◦X by φ̄v – its reduction modulo m is equal to x. Let φv be an R-
point of L ◦X lifting φ̄v . The morphism (2.3) is formally smooth if and only if in
each situation as above, there exists an R-point (φ,ξ) of M , which lifts (φ̄, ξ̄) and
maps to φv .

According to a variant of the Beauville-Laszlo formal patching theorem due
to Heinloth [13], the R̄-point (φ̄, ξ̄) of M̃ corresponds to the following collection
of data:

• a formal arc φ̄v : (CS̄)v → X which is non-degenerate with respect to G =
X ◦;

• a morphism φ̄′ : C ′
S̄
→ [X /G] inducing a principal G-bundle Ē ′ on C ′× S̄;

notice that φ̄′ will necessarily factor through [X •/G], since this is the case
for its reduction modulo m/I ;

• a trivialization β̄ of Ē ′ over the "punctured formal disc" (CS̄)∗v such that the
equality β̄∗(φ̄′) = φ̄v holds over (CS̄)∗v .
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Here the “punctured formal disc” (CS̄)∗v is defined to be the cartesian product of
(CS̄)v and C ′

S̄
over CS̄ . The meaning of the equality β̄∗(φ̄′) = φ̄v also needs to be

unraveled: φ′ is given as a section of [X /G] giving rise to a principal G-bundle
E ′, which is trivialized over (CS̄)∗v , thus φ′ defines via this trivialization a section
β̄∗(φ̄′) of X • over (CS̄)∗v , to be compared with the restriction of φ̄v .

Similarly, the R-point (φ,ξ) of M̃ is equivalent to the following collection of
data

• a formal arc φv : (CS)v → X which is non-degenerate with respect to X ◦;

• a morphism φ′ : C ′
S → [X /G] inducing a principal G-bundle E ′ on C ′×S;

as above, φ′ will actually factor through [X •/G];

• a trivialization β of E ′ over the "punctured formal disc" (CS)∗v , such that
the equality β(φ′) =φv holds over (CS)∗v .

Among the above list of data, the first item φv is given. We will need to con-
struct φ′ and β lifting φ̄′ and β̄ respectively. First, as X • is smooth, the map
φ̄′ : C ′

S̄
→ [X •/G] can be lifted to a map φ′ : C ′

S → [X •/G]. This map gives rise to a
principal G-bundle E ′ on C ′

S .
Consider the restriction E ′

v of E ′ to the punctured formal disc (CS)∗v . Its re-
duction to R̄, denoted by Ē ′

v , is trivialized by β̄. By smoothness of G-bundle,
there exists a trivialization β′ of the G-bundle E ′

v over (CS)∗v , extending β̄.
A priori, the restrictions of (β′)∗(φ′) and φv to (CS)∗v define two different sec-

tions of X which however coincide on (CS̄)∗v . We will need to correct the trivi-
alization so that the equality β(φ′) = φv occurs over (CS)∗v . This amounts to the
existence of α ∈G(R((t ))) such that

β(φ′) =α(φv ) (2.4)

which moreover maps to identity in G(R̄((t ))).
It is enough to prove that the restrictions of (β′)∗(φ′) and φv to (CS)∗v define

sections (CS)∗v → X , which factor through G . Indeed, in that case the elementα ∈
G(R((t ))) satisfying (2.4) would exist uniquely. This would prove the existence of
α ∈G(R((t ))) satisfying (2.4) and the equality ᾱ= 1 in G(R̄((t ))) simultaneously.

In order to prove that these maps factor through G , we use the crucial as-
sumption that R is an artinian local ring. Under this assumption, the under-
lying topological space of (CS)∗v has just one point since its reduced scheme is
Speck((t )). As the image of these maps in X is not contained in X −G , being just
a point, it is entirely contained in G .
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Suppose k is a finite field. Let m ∈ M(k) and x ∈ L ◦X (k) such that there
exists m̃ ∈ M̃(k) satisfying the assumptions of Proposition 2.1 and such that
π(m̃) = m and h(m̃) = x where π : M̃ → M is the map (2.2) and h : M̃ → L X
is the map (2.3). Since M̃m̃ → (L X )x is formally smooth, and M is an algebraic
space locally of finite type in the cases of interest, Mm is a finite dimensional
formal model of (L X )x . According to Proposition 1.2, there is an equality of
numbers

ICM (m) = ICL X (x). (2.5)

Finally, we prove that we can always find m and m̃ as in the previous proposition.

Proposition 2.2. For any x ∈ L ◦X (k), there exists m̃ ∈ M̃(k) satisfying the as-
sumptions of Proposition 2.1, with h(m̃) = x.

Proof. Since L ◦X (k) = X (O )∩G(F ), an element x ∈L ◦X (k) defines a k-point in
the affine Grassmannian G(F )/G(O ). In other words, x gives rise to a G-bundle
E on the formal disc Cv = D equipped with a trivialization over the punctured
formal disc D∗. By glueing with the trivial G-bundle on C ′ = C − {v}, we obtain,
according to Beauville-Laszlo [2], a G-bundle E on C with a section φ′ over C ′.
The assumption x ∈ X (O )∩G(F ) implies that φ′ can be extended as a section
φ : C → M ∧G E . Thus we have constructed a point m = (E ,φ) ∈ M(k) satisfying
the assumptions of Proposition 2.1. By construction, there exists a unique point
m̃ ∈ M̃(k) over m such that h(m̃) = x.

3 Toric case

In this section, X will be a affine normal toric variety, and G will be a split k-
torus T . Let Λ∗(T ) = Hom(Gm ,T ) denote the group of cocharacters of T and
Λ∗(T ) the group of characters. We recall that a toric variety is a pair (X ,T ) where
X is a algebraic variety containing a torus T as an open dense subset such that
the action of T on itself by translation can be extended as an action of T on X .
In case where there is no confusion to be feared, we use the letter X to denote
the toric variety (X ,T ). We will only consider toric varieties X which are affine,
and whose torus is split.

The affine toric variety X is determined by the strictly convex (i.e. not con-
taining lines) cone in Λ∗(T )⊗R generated by the monoid c of cocharacters λ ∈
Λ∗(T ) such that limt→0λ(t ) exists in X . This monoid is finitely generated and,
by normality, saturated inside ofΛ∗(T ); in this section, we will be using the term
“monoid” for finitely generated submonoids of torsion-free abelian groups, and
we will be saying that a monoid c is “saturated” inside of an abelian group Λ if
nλ ∈ c for n ≥ 0 implies that n ∈ c.
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We can also reconstruct X from its ring of regular functions

k[X ] = Speck
[
eα |α ∈ c∗

]
, (3.1)

where
c∗ = {

α ∈Λ∗(T )|〈λ,α〉 ≥ 0,∀λ ∈ c
}

(3.2)

and eα denotes the regular function T → A1 attached to the character α : T →
Gm .

Let T denote the category whose objects are normal, affine toric varieties,
and morphisms are morphisms of tori which extend to the toric varieties. The
above construction

(X ,T ) 7→ (c,Λ∗(T )) (3.3)

that associates a toric variety (X ,T ) to the saturated submonoid c of Λ∗(T ), de-
fines an equivalence of categories from T to the category of pairs (c,Λ) where
Λ is a finitely generated free abelian group and c ⊂ Λ is its intersection with a
strictly convex cone generated by finitely many elements of Λ.

In particular, for every normal affine toric variety X , each element λ ∈ c cor-
responds to a morphismGm → T which extends to a morphismGa → X . In other
words, each element λ ∈ c corresponds to a morphism (Ga ,Gm) → (X ,T ). In
the opposite direction, an element α ∈ c∗ corresponds to a morphism (X ,T ) →
(Ga ,Gm).

The formal arc space of X is the functor L X that associates to every k-
algebra R the set X (OR ) where OR = R[[t ]] is the ring of formal series of vari-
able t with coefficients in R. As is section 1, we will only consider the sub-
functor L ◦X of L X consisting of non-degenerate formal arcs with respect to
the smooth open subset X ◦ = T . For every k-algebra R, L ◦X (R) is the set of
x : Spec(OR ) → X such that the projection from the open subset U = x−1(T ) to
Spec(R) is surjective. This subfunctor is represented by an open subscheme of
L X which is the complement of L (X −T ).

We observe that every morphism (X ,T ) → (X ′,T ′) in the category T induces
a morphism L X → L X ′ and L ◦X → L ◦X ′. In particular, for λ ∈ c, we have a
corresponding morphism of toric varieties λ : (Ga ,Gm) → (X ,T ). We will denote

tλ =λ(t ) (3.4)

the image of t ∈O ∩F× in X (O )∩T (F ), where O = k[[t ]] and F = k((t )). We have
a canonical bijection

L ◦X (k) = X (O )∩T (F ). (3.5)

The orbits of T (O ) on L ◦X (k) are parametrized by the monoid c:

X (O )∩T (F ) = ⊔
λ∈c

T (O )tλ. (3.6)

12



Indeed, X (O )∩T (F ) is a T (O )-invariant subset of T (F ) = ⊔
λ∈ΛT (O )tλ, and by

very definition of c, we have tλ ∈ X (O ) if and only if λ ∈ c.

Theorem 3.1. Suppose that k is a finite field. The IC function of L ◦X is T (O )-
invariant and can be identified with a formal series with exponents in c:

ICL ◦X = ∑
λ∈c

mλeλ ∈Q`[[c]] (3.7)

where mλ denotes the value of the IC-function at tλ.
Let Prim(c) be the set of primitive elements of c i.e nonzero elements µ ∈ c that

cannot be decomposed as a sum µ=µ1 +µ2 where λ1,λ2 are nonzero elements of
c. Then the equality

ICL ◦X = ∏
ν∈Prim(c)

(1−eν)−1. (3.8)

holds in Q`[[c]]. In other words, for every λ ∈ c, mλ is the number of ways to
decompose λ as sum of primitive elements.

To prove the theorem, we consider the global analogue of L X . Let C be
a smooth projective geometrically connected curve defined over k. We con-
sider the functor M = MX on the category of k-algebras which associates to ev-
ery k-algebra R the groupoid of maps φ : CR → [X /T ] such that the preimage
φ−1([T /T ]) of [T /T ] is an open subset U ⊂ CR whose projection on Spec(R) is
surjective. The association X → M = MX is functorial in T .

Proposition 3.2. The functor R 7→ M(R) defined as above is representable by count-
able disjoint union of projective schemes over k.

Proof. First, we consider the case where T =Gm and X =A1. In this case, M clas-
sifies pairs (E ,φ) where E is a invertible sheaf over C and φ is a nonzero global
section. The zero divisor of φ defines a point of the n-th symmetric power Cn of
C where n is the degree of E . It is well known that this induces an isomorphism
of functors

M =CN = ⊔
n∈N

Cn (3.9)

between M and the disjoint union of symmetric powers of C .
Next, we consider the case where c = Nr is a free monoid. In this case T =Gr

m

and X =Ar . We derive from the A1-case that

M = (CN)r (3.10)

Now we consider the general case of a toric variety (X ,T ) corresponding to
a pair (c,Λ) formed by a saturated strictly convex monoid c inside a finitely gen-
erated free abelian group Λ. There is a canonical way to embed X the moduli
space M for (X ,T ) into the moduli space M for a free monoid.

13



We consider the dual monoid c∗ ⊂ Λ∗ consisting of elements α in the dual
abelian group Λ∗ which take nonnegative values on c. Let P ⊂ c∗ be a set of
elements that generate c∗ as a monoid. We denote c∗P = NP and Λ∗

P = ZP re-
spectively the free monoid and the free abelian group generated by P . There is
a canonical surjective map of monoids c∗P → c∗ and of abelian groups Λ∗

P →Λ∗.
By duality we have a monoid cP ⊂ ΛP with injective maps c → cP and Λ→ ΛP ,
and closed embeddings T ,→ TP , X ,→ XP .

The pair (cP ,ΛP ) corresponds to a toric variety (XP ,TP ) with TP ' Gr
m and

XP 'Ar where r is the cardinality of P . Let us denote MP the moduli space M
corresponding to the pair (XP ,TP ) which is representable and can be described
by (3.10).

Let Λ′′ = ΛP /Λ, and choose a free monoid c′′ ⊂ Λ′′ that contains the image
of cX . (Notice that the image of cX is necessarily strictly convex.) Thus, the pair
(c′′,Λ′′) also corresponds to a toric variety X ′′ and its moduli space M ′′ which
is representable, and it follows from the definitions that we have cartesian dia-
grams

X XP

{1} X ′′

(3.11)

and

MX MP

{m′′
0 } M ′′

(3.12)

where m′′
0 is the k-point of M ′′ corresponding to the trivial T ′′-bundle equipped

with a trivialization. Since M ′′ is a separated algebraic space locally of finite
type over k, the map {m′′

0 } →M′′ is a closed embedding, and so is the map MX →
MP .

The argument in the previous proof used the closed embedding X → XP to
deduce that MX → MP is also a closed embedding, but in fact we can have an
embedding MX ,→ MY even if X → Y is not closed or is injective, as the following
proposition shows.
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Proposition 3.3. Consider a morphism (X ,T ) → (Y , A) of toric varieties in T ,
represented by a morphism of their cocharacter monoids and groups: (cX ,ΛX ) →
(cY ,ΛY ).

If the map cX → cY is an isomorphism, the induced morphism MX → MY is
an equivalence.

If the map cX → cY is injective, the induced morphism of schemes: MX → MY

is a closed embedding.

Proof. For the first statement, we have ΛY =ΛX ×Zr as groups (for some r ) and
hence

A = T ×Gr
m

and
Y = X ×Gr

m

(compatibly).
For a test scheme S and a pair (E ,φ) consisting of an A-bundle E over CS and

a section φ : CS → Y ∧A E , the projection of φ to E ∧A Gr
m defines a trivialization

of the reduction of E to a Gr
m-bundle, therefore the map which takes any pair

(E ′,φ′) for MX to the pair (E ,φ) = (E ′×Gr
m ,φ′× 1) for MY is an equivalence of

functors.
For the second statement, it is now enough to assume that ΛX is generated

by cX and in particular that it also injects intoΛY . Then we use the last argument
of the proof of the previous proposition to further reduce the statement to the
case that ΛX ⊗Z Q =ΛY ⊗Z Q. For, in general, we may replace ΛY by ΛZ =ΛY ∩
ΛX ⊗Q and cY by cZ via a base change diagram as (3.12).

Hence, from now on we assume that ΛX ⊗Z Q =ΛY ⊗Z Q. We will show that
the morphism MX → MY is injective at the level of S-points for every test scheme
S, and then that it is proper. This will prove that it is a closed embedding.

To show injectivity, assume that (E ,φ) and (E ′,φ′) in MX (S) with the same
image in MY (S). Notice that the injection ΛX → ΛY corresponds to a map of
tori: T → A with finite kernel F . Thus, there is an F -torsor D over C ×Y such
that E ′ = E ∧F D , and an open U ⊂C ×S which surjects to S, such that the quo-
tient between φ′ and φ defines a trivialization of D over U . Since F is finite, this
extends to a trivialization of D over C ×S, which shows that (E ,φ) ' (E ′,φ′).

Finally, we use the valuative criterion to prove properness: If (R,m) is a dis-
crete valuation ring with fraction field K , and (E ,φ) ∈ MY (R)∩ MX (K ) (notice
that by injectivity this last statement makes sense), then we claim that (E ,φ) ∈
MX (R). Indeed, let U ⊂ C × SpecR denote the open subset over which φ has
image in A∧A E ⊂ Y ∧A E and let Ũ =U ∪C ×SpecK – its complement has codi-
mension greater or equal than 2 in C ×SpecR.
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The section φ defines a trivialization of E over U . Moreover, by assumption,
this trivialization extends to a reduction of E to a T -bundle Ẽ over C ×SpecK .
Thus, altogether, we have a T -bundle Ẽ over Ũ , and because T is normal and
the complement of Ũ has codimension at least 2, this extends uniquely to a T -
bundle Ẽ over C ×SpecR. Similarly, the sectionφ lifts by assumption to a section
into X ∧T Ẽ over C ×SpecK , and hence to a section of X ∧T Ẽ over Ũ . By Hartogs’
principle, since X is normal, this extends to a section of X ∧T Ẽ over the whole
C ×SpecR. This proves properness.

Because of the proposition, one can think of the moduli space M as being
attached not to the toric variety X itself, but to its associated monoid of cochar-
acters c. In fact, since this moduli space specializes to the scheme of effective
divisors (when c = N), it is natural to think of M as the scheme of “c-valued divi-
sors”, a notion that we now introduce.

A c-valued divisor on C is a formal sum D =∑
x λx x where x runs over the set

of closed points of C and λx ∈ c with λx = 0 for all but finitely many x.
One can attach to each k-point of M a c-valued divisor on C . Each k-point

of M corresponds to a map φ : C → [X /T ] such that the preimage U =φ−1[T /T ]
is a nonempty subset of C . Over U , the underlying T -bundle E of φ is trivialized
by φ. At each point x ∈C −U , φ defines a coset in X (Oc )/T (Oc ) thus an element
λx ∈ c according to (3.6) (with O replaced by Oc ). We define

∑
x∈C−U λx x to be

the c-valued divisor associated to φ.

Lemma 3.4. The above construction induces a canonical bijection between M(k)
and the set of c-valued divisors on C .

Proof. The converse construction is based on a variant of Beauville-Laszlo’s for-
mal patching theorem proved in [13]. One can construct a k-point of M attached
to each c-valued divisors on C . Let D =∑

λx x be a c-valued divisor on C . The as-
sociated point φ : C → [X /T ] can be represented as T -torsor E over C equipped
with a section φ : C → X ∧T E . The pair (E ,φ) can be obtained via formal patch-
ing from the following collection of data:

• over the open subset C ′ complement of the finite set of points x ∈ |C |
where λx 6= 0, we set E ′ = T to be the trivial T -torsor and φ′ : C ′ → X the
constant section φ′ = 1;

• over each formal disc Cx with uniformizing parameter tx , we set Ex to be
the trivial T -torsor and φx = tλx

x ∈ X (Ox );

• there is a unique way to glue (E ′,φ′) with (Ex ,φx ) over the punctured for-
mal disc C∗

x .
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One can check that the above constructions give rise to reciprocal bijections be-
tween the set of k-points of M and the set of c-valued divisors on C .

A multiset in c is an element µ of the free monoid generated by c− {0}. A
multiset in c will be written as a sum

µ= ∑
λ∈c

µ(λ)eλ ∈ ⊕
λ∈c−{0}

Neλ. (3.13)

with the convention that µ(0) = 0. One can attach to each c-valued divisor D =∑
x∈Z

λx x a multiset

µD (λ) = ∑
λx=λ

deg(x)eλ. (3.14)

There is a natural order on the set of multisets: we will say that µ refines µ′

and write µ`µ′ if the difference µ−µ′ viewed as element of
⊕

λ∈c−{0} Zeλ can be
written as a sum of elements of the form eλ

′ +eλ
′′ −eλ with λ′+λ′′ =λ in c.

We define the degree of a multiset µ as in (3.13) to be

deg(µ) = ∑
λ∈c

µ(λ)λ ∈ c. (3.15)

The degree map defines a homomorphism of monoids
⊕

λ∈c−{0} Neλ→Λ whose
fibers are finite sets. We define the degree of a c-valued divisor D =∑

x λx x by

deg(D) =∑
x
λx deg(x).

It is easy to see that the degree of a c-valued divisor coincides with the degree of
its multiset.

Proposition 3.5. There exists a unique stratification of M

M =⊔
µ

Mµ (3.16)

in strata indexed by multisets µ ∈⊕
λ∈c Neλ such that:

1. Mµ(k) is the set of k-points of M whose associated c-valued divisors have
multiset µ.

2. Mµ is isomorphic with an open subset Uµ ⊂ ∏
Cµ(λ), where λ runs over the

finite subset of c where µ takes positive values, Cµ(λ) is the µ(λ)-th symmet-
ric power of C classifying effective divisors Dλ of degree µ(λ), and the open
subset Uµ is defined by the condition that

∑
λDλ is a multiplicity free divi-

sor.
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3. Mµ′ lies in the closure of Mµ if and only if µ`µ′.

Proof. First we describe one-dimensional strata Mµ indexed by a simple multi-
set µ= eλ with λ ∈ c. We will prove that Mµ 'C .

• In the case X =A1 and λ= 1, this stratum classifies pairs (E ,φ) where E is
a line bundle of degree 1 over C and φ is a nonzero global section. In this
case there is an isomorphism C ' Mµ defined by x 7→ (OC (x),1).

• In general, each element λ of c defines a map (A1,Gm) → (X ,T ) and in-
duces a morphism C → M . This morphism is a closed embedding by
Proposition 3.3. It defines an isomorphism from C to a closed subscheme
of M which will be denoted by Meλ . For later use, we will denote this iso-
morphism

x 7→φλx ∈ Meλ . (3.17)

We have thus constructed minimal strata Meλ which satisfy the first and
second assertions of the Proposition.

We now observe that, as X is a normal affine scheme, the action of T on
X extending the action of T on itself can be extended to an algebraic monoid
structure on X . It follows there exists a monoidal structure on M : for any points
φ,φ′ ∈ M one can construct a third point φ⊗φ′ ∈ M such that the underlying
T -bundles satisfy E = E ′∧T E ′′.

For λ• = (λ1, . . . ,λn) an element of cn for some n ∈ N, one can define a map

ιλ• : C n → M (3.18)

by
(x1, . . . , xn) 7→φλ1x1 ⊗·· ·⊗φλn xn . (3.19)

The map (3.18) is proper since C n is proper and M is representable by a scheme.
Let µ = ∑n

i=1 eλi denote the multiset associated with λ•. We denote Mµ the
image of ιλ• which is a closed subscheme of M as ιλ• is a proper morphism. We
also observe that µ determines λ• up to reordering. Nevertheless the reordering
has no effect on the image by (3.19), and therefore the image of ιλ• depends only
on µ. We denote by Mµ the image of C n◦ – the disjoint locus of C n – in Mµ. It is
easy to check that Mµ is an open subset of Mµ and C n◦ is its preimage.

With these geometric ingredients now set up, we can go on and prove the
three assertions of Proposition 3.5:

1. The first assertion is clear from the formula (3.19).
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3. Since C n is proper and irreducible, its image by ιλ• is an irreducible closed
subset of M . Thus Mµ is the closure of Mµ. It now follows from (3.19) that
Mµ′ ⊂ Mµ if and only if µ`µ′.

2. After reordering, we can suppose that

λ• = (λ1, . . . ,λ1,λ2, . . . ,λ2, . . . ,λr ) (3.20)

whereλ1,λ2 . . . ,λr are distinct elements of c withλi appearingµ(λi ) times.
The morphism ῑλ• : C n◦ → Mµ is a finite surjective morphism invariant un-
der the action ofSµ(λ1)×·· ·Sµ(λr ) whereSd denotes the symmetric group
of rank d . It follows that ῑλ• : C n◦ → Mµ factors through a finite morphism
Uµ → Mµ, Uµ being defined in the statement of Proposition 3.5. We also
know that the morphism Uµ→ Mµ induces bijection on geometric points.
We need to prove that it is an isomorphism.

We would be done if we knew either that Mµ is normal or that ῑλ• : C n◦ →
Mµ is flat. However we just know that Mµ is integral for it is defined as
the image of a finite morphism from an integral scheme. Nevertheless, in
the case of the free monoid cP , we know that the morphism Uµ → MP,µ is
an isomorphism by direct calculation. The map c → cP , induces by func-
toriality a map Mµ → MP,µ. We then derive a section of the morphism
Uµ→ Mµ. It follows that Uµ ' Mµ as Uµ is normal.

Finally we prove that M(k̄) =⊔
µMµ(k̄) for a separable closure k̄ of k. Accord-

ing to Lemma 3.4, k̄-points on M correspond bijectively with c-valued divisors
of C⊗k k̄. Its remains to check that k̄-points on Mµ correspond bijectively with c-
valued divisors of C ⊗k k̄ of type µ. This follows easily from the very construction
of Mµ.

Corollary 3.6. 1. Each connected component of M contains a unique closed
stratum of the form Mµ where µ= eλ for some λ ∈ c. In particular, there is
a canonical bijection π0(M) = c, and each stratum Mµ lies in the connected
component Mλ indexed by λ= deg(µ).

2. Irreducible components of M are the closures of strata Mµ whereµ are prim-
itive multisets i.e. multisets of the form µ=∑

µ(ν)eν with µ(ν) = 0 unless ν
is a primitive element of the cone c.

Proof. 1. Minimal elements for the partial order ` are multisets of the form
µ = eλ for some λ ∈ c. Thus each stratum Mµ contains a unique closed
stratum in its closure that is Medeg(µ) . Thus two strata Mµ and Mµ′ belong
to the same connected components of M if and only if deg(µ) = deg(µ′).
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2. Maximal multisets are those that cannot be further refined i.e. multisets
of the form µ = ∑

µ(ν)eν with µ(ν) = 0 unless ν is a primitive element of
c. Indeed if µ = ∑

µ(ν)eν with µ(ν) > 0 for some nonprimitive element ν,
then µ can be refined by replacing the term eν with eν

′ + eν
′′

where ν′,ν′′

are elements of c adding up to ν.

Corollary 3.7. For each primitive multiset µ=∑
µ(ν)eν, we set

µ• = (ν1, . . . ,ν1,ν2, . . . ,ν2, . . . ,νr )

where ν1,ν2, . . . ,νr are distinct primitive elements of c, νi appearing µ(νi ) times.
The map ιµ• defined in (3.19) gives rise to the normalization of Mµ of the form

ιµ : Cµ =Cµ(ν1) ×·· ·×Cµ(νr ) → Mµ. (3.21)

Moreover, the disjoint sum of ιµ ranging over all primitive multisets µ defines
a normalization of M. This normalization turns out to be a resolution of singu-
larities.

Proof. The morphism
ῑµ• : C n → Mµ

defined in (3.19) is invariant under Sµ(ν1) × ·· · ×Sµ(νr ) and therefore factors
through a finite morphism

ιµ : Cµ(ν1) ×·· ·×Cµ(νr ) → Mµ. (3.22)

During the proof of assertion 2 of Proposition 3.5, we have seen that this mor-
phism is an isomorphism over the dense open subset Mµ. It is thus the normal-
ization of Mµ.

Since Cµ is smooth, the disjoint sum of ιµ : Cµ→ Mµ is a resolution of singu-
larities of M .

Proposition 3.8. Let k be a finite field. The IC-function M(k) → Q` can be ex-
pressed as a formal series

ICM = ∑
D=∑

x λx x
aD

∏
x

eλx
x (3.23)

where D runs over the monoid of c-valued divisors on C , aD is the trace of Frobe-
nius on the stalk of IC over the k-point of M corresponding to D. Moreover, there
is an equality of formal series:

ICM = ∏
x∈|C |

∏
ν∈Prim(c)

(1−eνx )−1. (3.24)
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Proof. We have constructed the normalization of M which is at the same time a
normalization of singularity ⊔

ιµ :
⊔

Cµ→ M (3.25)

where µ ranges over the set of primitive multisets. It follows that the coefficient
aD in the series (3.23) is just the number of k-points in the fiber of

⊔
ιµ over the

point φD ∈ M(k) corresponding to the c-valued divisor D .
It is easy to check that if D =∑

x λx x, we have

aD = ∏
x∈X

m(λx ) (3.26)

where m(λx ) is the number of ways of writing λx as a sum of primitive elements
of c. We thus derive (3.24).

Theorem (3.1) follows from the above proposition, according to formula (2.5)
and Proposition 2.2.

Remark 3.9. It is neither true, in general, that the closure of Mµ is isomorphic
to the product

∏
Cµ(λ) of Proposition 3.5, nor that the irreducible components

of M intersect transversely.
For example, let us (for simplicity) assume that the curve C = P1, and let

us consider the connected component Mλ of M of c-valued divisors of degree
equal to a fixed λ ∈ c.

Consider the dense open subvariety M ′ ⊂ Mλ of those c-valued divisors whose
support is contained in A1 ⊂ P1. Symmetric powers of A1 are also affine spaces
with coordinates given, when the characteristic is large compared to the power,
by elementary symmetric polynomials. Thus, assuming that the characteristic
of the field is large enough, we can embed M ′ in an affine space with coordi-
nates:

Z j
χ(D) = ∑

x∈A1

〈λx ,χ〉 · x j .

Here, D is the c-valued divisor D = ∑
λx x (with x ∈A1), χ varies in a set of gen-

erators of the dual monoid c∗, as before, and j varies over a large enough set of
positive integers.

The numbers Z j
χ are obviously determined by the “coordinates”

Z j (D) = ∑
x∈A1

x j ·λx

which are valued in an affine space whose R-valued points are Λ⊗R. Thus, we
have embedded M ′ into a product of such affine spaces.
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It is now easy to construct examples where the maps (3.21) are not embed-
dings. For instance, for c the monoid generated by (3,0), (2,1), (1,2) and (0,3)
in Z2 and λ = the sum of those generators, the restriction of the map (3.21) to
(A1)4:

(A1)4 → M ′

does not have an 1-1 differential at (0,0,0,0) (or, for that matter, any point on the
diagonal). Indeed, the differential of Z j is zero for j ≥ 2, and the differential of
Z 1 is non-injective.

Similarly, in the same example, considering the partitions (3,3) = (3,0) +
(0,3) = (2,1)+ (1,2), it is easy to see that the corresponding irreducible compo-
nents (which are now isomorphic to C 2) share the same tangent space over the
diagonal, and therefore do not intersect transversely.

4 L-monoid

In [17], a special class of affine embeddings has been emphasized for their con-
nection with the test functions defining unramified local L-factors. These em-
beddings are constructed in the following situation: G is a reductive group equipped
with a "determinant" whose kernel G ′ is simply connected

0 →G ′ →G
det−−→Gm → 0 (4.1)

The center of its complex dual group Ĝ is then Gm :

0 →Gm → Ĝ → Ĝ ′ → 0. (4.2)

Let ρ : Ĝ → GL(Vρ) be an irreducible representation of its complex dual group.
We assume that the diagram

Gm Ĝ

Gm GL(Vρ)

id (4.3)

is commutative. In other words, the central Gm of Ĝ acts on the vector space Vρ
as scalar.
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In this setting, one can construct a normal affine embedding X of G fitting
into a commutative diagram:

G X

Gm A1

det (4.4)

Since X is normal and affine, the left and right actions of G on X merge into a
monoidal structure of X . The construction of the monoid X is based on Vin-
berg’s theory of the universal monoid [22] that we now recall.

The universal flat monoid X + is an affine embedding of G+, where G+ is an
entension of a torus T + by G ′, r being the rank of G ′

0 →G ′ →G+ → T + → 0.

Let T ′ be a maximal torus of G ′. Following Vinberg, we set G+ = (G ′ ×T ′)/Z ′

where Z ′ is the center of G ′ acting antidiagonally on G ′ and T ′. It follows that
T + = T ′/Z ′ is the maximal torus of the adjoint group that can be identified with
Gr

m with aid of the set of simple roots {α1, . . . ,αr } associated with the choice of a
Borel subgroup of G ′ containing T ′.

Let ω1, . . . ,ωr denote the fundamental weights dual to the simple coroots
α∨

1 , . . . ,α∨
r and let ρ′

i : G ′ → GL(Vi ) denote the irreducible representation of high-
est weight ωi . This can be extended to G+

ρ+
i : G+ → GL(Vi ) (4.5)

by the formula ρ+
i (t , g ) = ωi (t )ρ′

i (g ) where w0 is the long element in the Weyl
group W of G . The root αi : T →Gm will also be extended to G+

α+
i : G+ →Gm

by α+
i (t , g ) =αi (t ). All together, these maps define a homomorphism

(α+,ρ+) : G+ →Gr
m ×

r∏
i=1

GL(Vi ). (4.6)

If the characteristic is large enough, Vinberg’s universal monoid X + is defined as
the closure of G+ inAr ×∏r

i=1 End(Vi ). In small characteristic, it is defined to be
the normalization of this closure, see [22] and [18].
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The universal monoid X + fits into a commutative diagram

G+ X +

Gr
m Ar

det

(4.7)

The diagram (4.4) is to be obtained from (4.7) by base change. The highest
weight of the irreducible representation ρ : Ĝ → GL(Vρ) defines a cocharacter
λ : Gm → T where T is the maximal torus of G and induces a homomorphism
λad : Gm → Gr

m . For λ is dominant, λad can be extended to a morphism of
monoids

Gm A1

Gr
m Ar

λad λad (4.8)

By base change with respect to λad :A→Ar , we obtain the affine embedding X
of G .

Let L X denote the formal arc space of X , L ◦X denote the open subset of
non-degenerate arcs with respect to the open subset X ◦ =G defined as in (1.3).
We have

L ◦X (k) = X (O )∩G(F ) (4.9)

where O = k[[t ]] and F = k((t )). If k is a finite field, the IC-function of L ◦X is a
left and right G(O )-invariant function on X (O )∩G(F ). There is a unique way to
decompose the function ICL ◦X by support

ICL ◦X =
∞∑

n=0
ψn (4.10)

where ψn is a function supported on the compact set

{g ∈ X (O )∩G(F ) | val(det(g )) = n}. (4.11)

Each ψn is a compactly supported, left and right G(O )-function on G(F ), thus
is an element of the spherical Hecke algebra of G(F ). The value that ψn takes
on different double cosets may be rather complicated, see [15] but its Satake
transform can be described simply.

Theorem 4.1. We have ICL ◦X =∑∞
n=0ψn where ψn is the function in the spheri-

cal Hecke algebra of G(F ) whose Satake transform is the function

ψ̂n(σ) = tr(σ,Symnρ)
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for all σ ∈ Ĝ.

As in the toric case, in order to prove this local identity, we need to con-
sider its global analogue. Let C be a smooth projective curve over a field k. We
consider the algebraic stack Map(C , [X /G]) and the open substack M of maps
φ : C → [X /G] such that restricted to a nonempty open subset U of C , φ|U : U →
[X /G] factors through [G/G].

The determinant map (4.4) gives rise to a morphism

f : M →CN =
∞⊔

n=0
Cn (4.12)

where CN classifies pairs (L,α) where L is a line bundle and α is a global section
of L which generically induces a trivialization of L. Let Mn denote the preimage
of Cn and

fn : Mn →Cn (4.13)

the restriction of f to Mn .

Proposition 4.2. Let D ∈Cn be an effective divisor of degree n of C ⊗k k̄

D =
m∑

i=1
ni ci (4.14)

where c1, . . . ,cm are distinct points of C , and n1, . . . ,nm are natural numbers. Then
there is a canonical closed embedding

zD : f −1
n (D) →

m∏
i=1

Grci (4.15)

where Grci is the affine Grassmannian of G relative to the formal disc around ci .
Moreover, the image of zD is isomorphic to the product of closed Schubert varieties

zD ( f −1
n (D)) '

m∏
i=1

Grci ,niλ (4.16)

according to the indexation of Schubert varieties in Gr by dominant coweight as
in Definition 2.10 of [21].

Proof. Let S be an arbitrary test k-scheme. Let (E ,φ) be a S-point of M whose
image by the determinant map is (LD , zD ) where LD =O (D) and zD is the canon-
ical global section of O (D) whose zero divisor is D . Since the restriction of (LD , zD )
to C ′

S is just the trivialized line bundle, the restriction ofφ to C ′
S determine a triv-

ialization φ′ of E over C ′
S .
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According to Beauville-Laszlo’s uniformization theorem, see [13], giving a
principal bundle E on CS = C ×S, with a trivialization C ′

S = C ′×S is equivalent
to giving for each i = 1, . . . ,n a principal G-bundle Ei on Cci ,S =Cci ×̂S equipped
with a trivialization on C∗

ci ,S ; in other words, an S-point on the affine Grassman-
nian Grci . This defines the map zD of (4.15).

The requirement that the trivialization φ′ of E over C ′
S comes from a X -map

φ : E0 → E in the sense of Section 2, can be expressed in terms of associated
vector bundles. Recall that we have the representations ρi : G → GL(Vi ) deduced
from the representations ρ+

i : G+ → GL(Vi ) defined in (4.5). By the construction
of the universal monoid M+, the trivializationφ′ of E extends to X -mapφ : E0 →
E if and only if for all i = 1, . . . ,r , the trivialization of the vector bundle ρi (E) over
C ′

S , deduced from E via the representation ρi , can be extended to a OCS -linear
map

OCS → ρi (E)

(
m∑

i=1
〈ωi ,niλ〉ci

)
. (4.17)

Now, this is equivalent to saying that Ei is a S-point in the Schubert cell Grci ,niλ

in the definition of [21].

A remark of caution is in order about different definitions of Schubert cells
in the affine Grassmannian. In [16], Mirkovic and Vilonen define the Schubert

cell Gr
MV
ci ,niλ

to be the closure of the orbit Grci ,niλ of L G on Gr. The Schubert cell

Grci ,niλ, constructed as a functor as in [21], defines a closed subscheme of Gr

which may or may not coincide with Gr
MV
ci ,niλ

, but they have the same underly-
ing topological space. Since we are interested in `-adic sheaves, this difference
doesn’t matter, though of course it would be nice to prove that the two defini-
tions give rise to the same closed subscheme of Gr. We won’t prove this in the
present paper.

Another remark of caution is the following. We infer from the proposition
that there is a canonical isomorphism between the set M(k) of k-points of M
and the restricted product

′∏
x∈X

(M(Ox )∩G(Fx ))/G(Ox ) (4.18)

consisting in a collection of cosets (gG(Ox ), x ∈ |X |) with g ∈ M(Ox )∩G(Fx ) for
all x, and g ∈G(Ox ) for almost all x. In particular, there is a canonical map

prx : M(k) → Grx (k) (4.19)

from M(k) to the set of k-points of the affine Grassmannian Grx at all x ∈ |C |.
However, this map doesn’t derive from a well-defined morphism M → Grx .
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Theorem 4.3. The restriction of the intersection complex ICMn of Mn to every ge-
ometric fiber of fn is still a perverse sheaf. This perverse sheaf can be described as
follows. If D = ∑m

i=1 ni ci is an effective divisor of degree n of C , where c1, . . . ,cm

are distinct points of C , and n1, . . . ,nm are natural numbers, then

zD,∗(ICMn | f −1
n (D)) =�m

i=1Ki (4.20)

where Ki is an equivariant perverse sheaf over Grci whose Satake transform is
Symni (ρ).

Corollary 4.4. If k is a finite field, the IC-function on M(k), can be expressed as

ICM = ∏
x∈|X |

∞∑
n=0

ψx,n (4.21)

where ψx,n is an element of the spherical Hecke algebra of G(Fx ) characterized by
the property ψ̂x,n(σ) = tr(σ,Symnρ). The infinite product in equality (4.21) makes
sense as a function on the restricted product (4.18).

We consider the moduli space M n of chains

E0 E1 · · · En
φ1 φ2 φn (4.22)

where E0 is the trivial G-bundle, and φi : Ei−1 → Ei is a X -morphism from Ei−1

to Ei , as defined in Section 2, whose determinant is

det(φi ) =OC (xi )

with xi ∈ C . Thus we have a morphism M n → C n fitting in a commutative dia-
gram

M n C n

Mn Cn

πM πC

fn

(4.23)

where the left vertical map consist in forgetting all members of the chain (4.22)
but the last component E = En , and replacing (φ1 . . . ,φn) by their composition.

Proposition 4.5. 1. The diagram (4.23) is cartesian over the open subset C ◦
n of

Cn classifying multiplicity free divisors of degree n on C .

2. The morphism πM : M n → Mn is small in the stratified sense of Mirkovic
and Vilonen [16].
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3. Over each divisor D ∈ Cn , the morphism πM : ( fn ◦πM )−1(C ) → f −1
n (D) is

semismall in the stratified sense of Mirkovic and Vilonen [16].

Proof. The first assertion amounts to the same to say that over the open subset
C n◦, we can reconstruct the the whole chain (4.22) from E0 → En . This is a con-
sequence of Beauville-Laszlo’s formal patching theorem, as proved in [13]. The
last two assertions are proved by the same argument as in [16].

Corollary 4.6. 1. The direct image (πM )∗IC(M n) is a perverse sheaf which is
isomorphic to the intermediate extension of its restriction to the open subset
M•

n = Mn×Cn C ◦
n . In particular, it is equipped with an action of the symmet-

ric group Sn .

2. There exists an isomorphism of perverse sheaves

((πM )∗ICM n )Sn = ICMn .

In particular, the restriction of ICMn to every fiber f −1
n (D) is a perverse sheaf.

Proof of 4.3. We have shown that the restriction of ICMn to the fiber f −1
n (D) is a

perverse sheaf, as the Sn-invariant part of the push-forward of the restriction of
ICM n to ( fn ◦πM )−1(D). In order to have a more precise description, we ought
analyze the action of Sn on this push-forward. Fortunately, this is well known
thanks to the geometric Satake theory [16].

From direct investigation, one sees that the push-forward of the restriction
of ICM n to ( fn ◦πM )−1(D) can be identified with

IndSn

Sn1×···×Snr
(�r

i=1A
∗ni
ρ ) (4.24)

via the embedding zD of the fiber f −1
n (D) into a product of affine Grassmanni-

ans. Here Aρ denote the IC-complex of the Schubert variety indexed by ρ, and
A

∗ni
ρ is its ni -fold convolution power. Moreover the action of Sn1 ×·· ·×Snr is

given by the commutativity constraint, by essentially the very definition of the
commutativity constraint provided by Mirkovic and Vilonen.

The Sn-invariant factor of (4.24) can be identified with the Sn1 ×·· ·×Snr -
invariant factor in �r

i=1A
∗ni
ρ . This direct factor has the form �r

i=1Ki where Ki

corresponds to the representation Symni
(Vρ) of Ĝ via the geometric Satake equiv-

alence.

We now derive Theorem 4.1 from Corollary 4.4 by using formula (2.5) and
Proposition 2.2.
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[16] Ivan Mirković and Kari Vilonen. Perverse sheaves on affine Grassmannians
and Langlands duality. Math. Res. Lett., 7(1):13–24, 2000. URL: http://
dx.doi.org/10.4310/MRL.2000.v7.n1.a2, doi:10.4310/MRL.2000.
v7.n1.a2.

[17] Bao Châu Ngô. On a certain sum of automorphic L-functions. In Auto-
morphic forms and related geometry: assessing the legacy of I. I. Piatetski-
Shapiro, volume 614 of Contemp. Math., pages 337–343. Amer. Math. Soc.,
Providence, RI, 2014. URL: http://dx.doi.org/10.1090/conm/614/
12270, doi:10.1090/conm/614/12270.

[18] A. Rittatore. Algebraic monoids and group embeddings. Trans-
form. Groups, 3(4):375–396, 1998. URL: http://dx.doi.org/10.1007/
BF01234534, doi:10.1007/BF01234534.

[19] Yiannis Sakellaridis. Spherical varieties and integral representations of L-
functions. Algebra Number Theory, 6(4):611–667, 2012. URL: http://dx.
doi.org/10.2140/ant.2012.6.611, doi:10.2140/ant.2012.6.611.

[20] Michael Schlessinger. Functors of Artin rings. Trans. Amer. Math. Soc.,
130:208–222, 1968.

30

http://dx.doi.org/10.1007/PL00001628
http://dx.doi.org/10.1007/PL00001628
http://dx.doi.org/10.1007/PL00001628
http://dx.doi.org/10.1007/s00208-009-0443-4
http://dx.doi.org/10.1007/s00208-009-0443-4
http://arxiv.org/abs/1311.2434
http://dx.doi.org/10.4310/MRL.2000.v7.n1.a2
http://dx.doi.org/10.4310/MRL.2000.v7.n1.a2
http://dx.doi.org/10.4310/MRL.2000.v7.n1.a2
http://dx.doi.org/10.4310/MRL.2000.v7.n1.a2
http://dx.doi.org/10.1090/conm/614/12270
http://dx.doi.org/10.1090/conm/614/12270
http://dx.doi.org/10.1090/conm/614/12270
http://dx.doi.org/10.1007/BF01234534
http://dx.doi.org/10.1007/BF01234534
http://dx.doi.org/10.1007/BF01234534
http://dx.doi.org/10.2140/ant.2012.6.611
http://dx.doi.org/10.2140/ant.2012.6.611
http://dx.doi.org/10.2140/ant.2012.6.611


[21] Yakov Varshavsky. Moduli spaces of principal F -bundles. Selecta
Math. (N.S.), 10(1):131–166, 2004. URL: http://dx.doi.org/10.1007/
s00029-004-0343-0, doi:10.1007/s00029-004-0343-0.

[22] E. B. Vinberg. On reductive algebraic semigroups. In Lie groups and Lie
algebras: E. B. Dynkin’s Seminar, volume 169 of Amer. Math. Soc. Transl.
Ser. 2, pages 145–182. Amer. Math. Soc., Providence, RI, 1995.

(A. Bouthier) EINSTEIN INSTITUTE OF MATHEMATICS, HEBREW UNIVERSITY, GIVAT RAM, JERUSALEM,
91904, ISRAEL

E-mail address: bouthier@math.huji.ac.il

(B.C. Ngô) UNIVERSITY OF CHICAGO, ECKHART HALL, 5734 UNIVERSITY AVENUE, CHICAGO,
IL 60637,USA

E-mail address: ngo@uchicago.edu

(Y. Sakellaridis) RUTGERS UNIVERSITY - NEWARK, 101 WARREN STREET, SMITH HALL 216,
NEWARK, NJ 07102, USA, AND DEPARTMENT OF MATHEMATICS, NATIONAL TECHNICAL UNIVER-
SITY OF ATHENS, ZOGRAFOU 15780, GREECE.

E-mail address: sakellar@rutgers.edu

31

http://dx.doi.org/10.1007/s00029-004-0343-0
http://dx.doi.org/10.1007/s00029-004-0343-0
http://dx.doi.org/10.1007/s00029-004-0343-0

	IC-function on the formal arc space
	Global model for the formal arc space of a group embedding
	Toric case
	L-monoid

