Note. I am giving the second lecture; Meg Doucette is giving the first.

1. Functions

Holomorphic functions have a very idiosyncratic geometry. I will explain how some major theorems illustrate this. Henceforth, let $\Omega \subseteq \mathbb{C}$ be an open domain, $D \subseteq \Omega$ an open disk, and ∂D the positively-oriented loop formed by the boundary of D.

Let $f : \Omega \rightarrow \mathbb{C}$ be holomorphic. The residue formula shows that if f' has no zeros/poles on ∂D, then

$$
\frac{1}{2\pi i} \int_{\partial D} \frac{f'}{f} \, dz = \sum_{\text{poles } z \text{ of } f'} \text{res}_z(f') = \sum_{\text{zeros } z \text{ of } f} \text{ord}_z(f).
$$

(Above, we used the fact that any zero of f of order n corresponds to a simple pole of f'/f of residue n.) At the same time, the substitution $w = f(z)$ shows that

$$
\frac{1}{2\pi i} \int_{\partial D} \frac{f'(z)}{f(z)} \, dz = \frac{1}{2\pi i} \int_{f(\partial D)} \frac{dw}{w} = \text{winding number of } f(\partial D) \text{ around } 0.
$$

In short, the number of zeros of f in D, counting multiplicities, is given by a winding number! This result is known as Cauchy’s argument principle.

The following result says that if you perturb a function by a very small amount in a fixed neighborhood, then its zeros can move around, but their total multiplicity is conserved.

Theorem 1.1 (Rouché). If $h : \Omega \rightarrow \mathbb{C}$ is holomorphic and $|h| < |f|$ on ∂D, then $f + h$ has the same number of zeros as f in D.

Proof. Let $f_t(z) = f(z) + t h(z)$. The winding number of f_t can’t change discontinuously as t runs through the interval $[0, 1]$.

Let’s use Rouché to prove the fundamental theorem of algebra. We claim that if

$$
f = z^n + a_{n-1}z^{n-1} + \cdots + a_1 z + a_0,
$$

then f has n zeros in \mathbb{C}. Indeed, in the statement of Rouché, let $h(z) = \sum_{0 \leq i \leq n-1} a_i z^i$ and pick a disk D so big that $|z^n| > |h(z)|$ on the boundary ∂D.

Corollary 1.2 (Open Mapping). Any nonconstant holomorphic function is an open map.

Proof. Using Rouché, show that if $f(z) = 0$, then $D_\delta(0) \subseteq f(D_{\delta}(z))$ for some $\delta > 0$ and $\epsilon > 0$.

Corollary 1.3 (Maximum Modulus). If $f : \Omega \rightarrow \mathbb{C}$ is nonconstant, then $|f|$ cannot attain a maximum on Ω.

Proof. By the open mapping theorem, any $z \in \Omega$ can be perturbed to a nearby value $w \in \Omega$ such that $|f(w)| > |f(z)|$.

2. Spaces

Let’s use the open mapping theorem to give a second proof of the fundamental theorem of algebra. This proof will involve a new space, namely, the Riemann sphere

\[\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}. \]

Let \(f(z) \) be a polynomial. As a map \(\mathbb{C} \to \mathbb{C} \), it extends to a map \(\hat{\mathbb{C}} \to \hat{\mathbb{C}} \) that fixes \(\infty \). Since \(\hat{\mathbb{C}} \) is compact and Hausdorff, the image of \(\hat{f} \) is a closed set. But by the open mapping theorem, it is also open. Since \(\hat{\mathbb{C}} \) is connected, we deduce that \(\hat{f}(\hat{\mathbb{C}}) = \hat{\mathbb{C}} \), whence \(f(\mathbb{C}) = \mathbb{C} \).

Theorem 2.1. Every connected, simply-connected Riemann surface is conformally equivalent to one of the following:

1. The plane \(\mathbb{C} \).
2. The Riemann sphere \(\hat{\mathbb{C}} \).
3. The open unit disk \(\mathbb{D} \).

These options are conformally distinct.

We can learn a lot of mathematics simply by computing the conformal automorphism groups of \(\mathbb{C}, \hat{\mathbb{C}}, \mathbb{D} \). Let’s do them in that order.

Theorem 2.2. \(\text{Aut}(\mathbb{C}) \) is the group of affine transformations \(z \mapsto az + b \).

Proof. Conformal automorphisms are isometries, so for \(\mathbb{C} \), decompose into the composition of a translation and a homothety (i.e., rotation + dilation).

Theorem 2.3. \(\text{Aut}(\hat{\mathbb{C}}) \simeq \text{PGL}_2(\mathbb{C}) \), where the projective equivalence class of \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}_2(\mathbb{C}) \) acts by the fractional linear transformation

\[\gamma \cdot z = \frac{az + b}{cz + d} \]

on \(\hat{\mathbb{C}} \).

Proof. A map \(\hat{\mathbb{C}} \to \hat{\mathbb{C}} \) is the same thing as a meromorphic function on \(\hat{\mathbb{C}} \). The latter is determined by its restriction to \(\mathbb{C} \). But we know that meromorphic functions on \(\mathbb{C} \) are rational functions, so take the form \(f(z)/g(z) \) for some polynomials \(f, g \). Invertibility forces \(\deg f = \deg g = 1 \).

Example 2.4. The Cayley transform is the fractional linear transformation given by

\[\begin{pmatrix} -1 & i \\ 1 & i \end{pmatrix} \cdot z = \frac{i - z}{i + z} \]

It restricts to a conformal equivalence from the open upper half-plane \(\mathbb{H} \) to the disk \(\mathbb{D} \) that sends \(i \mapsto 0 \). What’s the inverse?

Before we compute \(\text{Aut}(\mathbb{D}) \), we prepare some notation. For all \(\alpha \in \mathbb{D} \), the Blaschke factor of \(\alpha \) is the fractional linear transformation

\[\psi_{\alpha}(z) = \begin{pmatrix} -1 & \alpha \\ -\bar{\alpha} & 1 \end{pmatrix} \cdot z = \frac{\alpha - z}{1 - \bar{\alpha} z}. \]

One can check directly that \(\psi_{\alpha} \) restricts to an involution of \(\mathbb{D} \) that swaps 0 and \(\alpha \).
Theorem 2.5. Every automorphism \(f \in \text{Aut}(D) \) takes the form

\[
f(z) = u \psi_u(z) = \begin{pmatrix} u & \alpha \\ 1 & -\bar{\alpha} \end{pmatrix} \cdot z
\]

for some \(u \in S^1 = \partial D \) and \(\alpha \in D \).

Lemma 2.6 (Schwarz). If holomorphic \(f : D \to D \) satisfies \(f(0) = 0 \), then \(|f(z)| \leq |z| \) for all \(z \). If moreover equality holds for some nonzero value of \(z \), then \(f \) is a rotation.

Proof of the theorem. Let \(\alpha = f^{-1}(0) \) and \(g = f \circ \psi_{\alpha} \). Then Schwarz’s lemma applies to both \(g \) and \(g^{-1} \), giving

\[
|g(z)| \leq |z| \quad \text{and} \quad |g^{-1}(z)| \leq |z|
\]

for all \(z \in D \). We deduce that \(|g(z)| \leq |z| \leq |g(z)| \), whence \(|g(z)| = |z| \), for all \(z \). Now the second part of the lemma says that \(g \) is a rotation.

Corollary 2.7. \(\text{Aut}(H) \simeq \text{PSL}_2(\mathbb{R}) \), where the action is by fractional linear transformations.

Proof. Since the Cayley transform is an equivalence \(H \to D \), it induces an isomorphism \(\text{Aut}(H) \simeq \text{Aut}(D) \). Now check what it does at the level of fractional linear transformations.

Corollary 2.8. There is a diffeomorphism \(H \simeq \text{PSL}_2(\mathbb{R})/\text{PSO}(2) \).

Proof. The stabilizer of \(i \in \text{SL}_2(\mathbb{R}) \) consists of the matrices of the form \(\begin{pmatrix} a & b \\ b & \bar{a} \end{pmatrix} \). This is precisely \(\text{SO}(2) \subseteq \text{SL}_2(\mathbb{R}) \).

Another Proof. Under the Cayley transform, the stabilizer of \(i \in H \) corresponds to the stabilizer of \(0 \in D \). The latter is the rotation group \(S^1 \subseteq \text{Aut}(D) \), which corresponds to \(\text{SO}(2) \subseteq \text{Aut}(H) \).

Corollary 2.9. \(\pi_1(\text{SL}_2(\mathbb{R})) \simeq \mathbb{Z} \).

3. Metrics

There is a stronger version of Schwarz’s lemma due to Georg Pick. To state it, define the hyperbolic metric on \(D \) by

\[
d(z, w) = \tanh^{-1} \left(\frac{|z - w|}{1 - \bar{z}w} \right).
\]

(Recall that \(\tanh^{-1}(x) = \frac{1}{2} \log \frac{1+x}{1-x} \), a monotonic function.) To give you some intuition for \(d \), I’ll draw the geodesics and horocycles in \(D \). It is similarly easy to draw the pictures for \(H \).

Lemma 3.1 (Schwarz–Pick). Any holomorphic \(f : D \to D \) is a contraction in the hyperbolic metric: \(d(f(z), f(w)) \leq d(z, w) \). Equivalently,

\[
\left| \frac{f(z) - f(w)}{1 - f(z)f(w)} \right| \leq \left| \frac{z - w}{1 - \bar{z}w} \right|.
\]

Moreover, \(f \) is an isometry for \(d \) if and only if \(f \) is an automorphism.

The elements of \(\text{PSL}_2(\mathbb{R}) \) can be classified according to what they do to the hyperbolic geometry of \(H \). For convenience, I’ll work with \(\text{SL}_2(\mathbb{R}) \) instead in what follows. If \(\gamma \in \text{SL}_2(\mathbb{R}) \), then we say that:
(1) Elliptic when \(|\text{tr } \gamma| < 2\). Equivalently, \(\gamma\) is of finite order and its eigenvalues are distinct complex conjugates.

(2) Parabolic when \(|\text{tr } \gamma| = 2\). Equivalently, \(\gamma\) is unipotent.

(3) Hyperbolic when \(|\text{tr } \gamma| > 2\). Equivalently, \(\pm \gamma\) can be conjugated into the diagonal torus \(T\) of \(\text{SL}_2(\mathbb{R})\).

To be more precise about (3): If \(\gamma\) is hyperbolic with positive eigenvalues, then we can write

\[
(3.3) \quad \beta \gamma \beta^{-1} = \begin{pmatrix} a \\ 1/a \end{pmatrix} \in T
\]

for some \(\beta \in \text{SL}_2(\mathbb{R})\) and \(a > 0\).

Let \(\tilde{T}\) be the image of \(T\) in \(\text{PSL}_2(\mathbb{R})\). The torus \(\tilde{T}\) acts on \(\text{PSL}_2(\mathbb{R})/\text{PSO}(2)\) by left multiplication. Since \(\tilde{T} \simeq \mathbb{R}\) and \(\text{PSL}_2(\mathbb{R})/\text{PSO}(2) \simeq \mathbb{H}\), this defines a flow on \(\mathbb{H}\). It turns out to be precisely the geodesic flow.