Today: Initial theory of local fields

Notation:
- $R = \text{complete DVR}$
- $K = \text{fraction field of } R$
- $\pi = \text{a chosen generator of the maximal ideal of } R$
 ($\pi = \text{"the uniformizer"}$)
- $k = R/\pi R$, the residue field

Hensel's lemma: $0 \neq f \in R[x]$
- $\deg(f) = d$;
- $\overline{f}(x) = \text{image of } f \text{ in } k[x]$.
Assume that $\overline{f}(x) \neq 0$, and suppose we have a factorization
$\overline{f}(x) = u(x)v(x)$, $u,v \in k[x]$
$u \neq 0$, $\deg(u) = e \leq d$
$\gcd(u,v) = 1$
Then $\exists g,h \in R[x]$ with $f = gh$
$\deg g = e$, $\overline{g} = u$

This was proved last time. We also proved a corollary which we are not going to state again.
Theorem. Let D be a finite dimensional division algebra over K. Let

$$A = \{ x \in D \mid \text{Norm}_{D/K}(x) \in \mathbb{R}^2 \}.$$

Then:

1. $x \in A \Rightarrow x$ is integral over R
2. A is a subring of D (and hence an R-subalgebra)
3. $\exists \pi_D \in A$ so that $\forall 0 \neq x \in A$ can be expressed uniquely as $x = \pi_D^{-m} u$ (can also interchange) ($m \geq 0$, $u \in A^*$$)$
4. Assume that the center of D is a separable extension of K. Then A is an R-order in D, and is therefore the unique maximal R-order in D.

We proved (0), (1) last time.

Proof of (2): Consider the composition

$$D^\times \xrightarrow{\text{Norm}} K^\times \xrightarrow{\text{val}} \mathbb{Z}$$

Its image is a nonzero subgroup of \mathbb{Z}.

Proof of (3):

We proved (0), (1) last time.

Proof of (2): Consider the composition

$$D^\times \xrightarrow{\text{Norm}} K^\times \xrightarrow{\text{val}} \mathbb{Z}$$

Its image is a nonzero subgroup of \mathbb{Z}.
hence is of the form eZ for some $e \in \mathbb{N}$. Choose $\pi_D \in D^*$ with $\text{val} (\text{Norm} (\pi_D)) = e$. It is easy to check that it works.

Proof of (3): Let w_1, \ldots, w_n be a K-basis for D. We may assume that $w_1, \ldots, w_n \in A$. Because A is a subring of D, we have $A \subseteq Rw_1 + \ldots + Rw_n$, where $\{w_i\}$ is the dual basis of $\{w_i\}$ with respect to the "reduced trace form" $B(x, y) = L(x, y)$, where

$$
\begin{align*}
D & \xrightarrow{\text{tr}_{red}} \mathbb{Z} \\
\mathbb{Z} & \xrightarrow{\text{tr}_{z/K}} K \\
\mathbb{L} & \quad \quad \\
\text{and } \mathbb{Z} & \text{ is the center of } D.
\end{align*}
$$

[What is the reduced trace, tr_{red}?]

Fact: If D is a finite dimensional central division algebra over a field E, there exists a unique linear functional $\text{tr}_{red} : D \rightarrow E$ with the property that tr_{red} extends scalars to E and identifying $D \otimes E = \text{Mat}_n(E)$ turns tr_{red} into the usual trace of matrices, $\text{Mat}_n(E) \rightarrow E$.]
Proof of (4): There exists \(e \in \mathbb{N} \) (the same as the one we used in (2)) such that \(P^e = A \pi \), where \(\pi \in R \) is the uniformizer. Now use the fact that \(A \) is a free \(R \)-module of finite rank, and \(A \) is \(p \)-adically complete \(\iff \) \(A \) is \(p^e \)-adically complete.

\[5.3 \] Notation: Let \(D, A, R, \) etc. be as above. Let \(e \in \mathbb{N} \) be as in the proof of part (2). Write \(k_D = A/p \), and \(f = \dim_k(k_D) \), which equals \([k_D:k]\) in case \(k_D \) is a field.

In order to avoid confusion, one sometimes writes \(e = e(D/K) \), \(f = f(D/K) \).

\[5.4 \] Proposition. Assume that the center of \(D \) is separable over \(K \). Then \(e(D/K) \cdot f(D/K) = \dim_K(D) \).

Proof: Let us write \(n = \dim_K(D) \).
Then \(A / \pi A \cong (R / \pi R)^n \) as \(R \)-modules. We have \(A \supset \pi A \supset \pi^2 A \supset \ldots \supset \pi^e A = \pi A \).

We have \(A / \pi_D A \cong \pi_D^r A / \pi_D^{r+1} A \) \(\forall r \in \mathbb{Z} \) as \(R \)-modules.

\[\Rightarrow \quad \text{length}_R (A / \pi A) = e \cdot \text{length}_R (A / \pi_D A) = e \cdot t. \]

\[\textbf{5.5.5. ASSUMPTION} \]

The residue field \(k = R / \pi R \) is always assumed to be perfect from now on.

Also, from now on, we consider the commutative case only; in other words, we work with \(L = \text{finite separable} \) extension of \(K \).

We write \(R_L = \text{integral closure of} \ R \text{ in} \ L \).

\(\pi_L = \text{a uniformizer in} \ R_L \)

\(k_L = R_L / \pi_L R_L \).
Def.: We say that the extension L/K is unramified if $e(L/K) = 1$, equivalently, if $\pi = \pi_K$ already generates the maximal ideal of R_L.

Def.: We say L/K is totally ramified if $f(L/K) = 1$, i.e., if $e(L/K) = [L:K]$.

Example 5.6. Let f be a monic irreducible polynomial in $k[X]$ of degree d, and lift f to a monic polynomial $f(x) \in R[X]$ (hence also of degree d). Then

(i) $f(x)$ is irreducible in $K[X]$;

(ii) $R[X]/(f(x)) \subset K[X]/(f(x))$ is the integral closure of R in $K[X]/(f(x))$;

(iii) $E := K[X]/(f(x))$ is an unramified extension of K, and $k_E \cong k[X]/(f(x))$.

In fact, we will soon see that every finite unramified extension of K can be obtained by a procedure of this type.

Proof of (i). This is standard.
Proof of (ii). Clearly, it suffices to show that $R[X]/(\xi(x))$ is a PID. Let us write $B = R[X]/(\xi(x)), \ E = K[X]/(\xi(x))$.

Then $B/\pi B = R[X]/(\xi, \pi) \cong K[X]/(\bar{\xi})$ is a field. So πB is a maximal ideal of B.

We want to deduce that B is a DVR.

If $m \subset B$ is any maximal ideal, then, as B is integral over R, $m \cap R$ is a maximal ideal of $R \Rightarrow m \cap R = \pi R \Rightarrow \pi \in m \Rightarrow \pi B \subset m \Rightarrow m = \pi B$.

So πB is the unique maximal ideal of B, and this is clearly enough. \hfill\Box

Proof of (iii). We already proved this in the course of proving (ii), because we have shown that πB is the unique maximal ideal of B ($\Rightarrow E/K$ is unramified), and we have also shown $k_E \cong K[X]/(\bar{\xi})$.

Q.E.D.
§5.8. We have a natural functor

\[
\begin{align*}
\{ \text{finite separable extensions of } K \} & \rightarrow \{ \text{finite extensions of } k \} \\
L & \rightarrow k_L
\end{align*}
\]

mappings are the \(K\)-algebra homomorphisms

Proposition 1: Let \(E\) be an unramified (finite) extension of \(K\), and \(L\) any finite separable extension of \(K\). Then the natural map (of finite sets)

\[
\text{Hom}_{K\text{-alg}} (E, L) \rightarrow \text{Hom}_{k\text{-alg}} (k_E, k_L)
\]

is a bijection.

Proof: Consider first the special case as before: \(E = k[X] / (f(x))\), where \(f(x)\) is amonic polynomial in \(R[X]\), and \(f(x)\) is irreducible in \(k[X]\). Then

\[
\text{Hom}_{K\text{-alg}} (E, L) = \{ x \in L \mid f(x) = 0 \} = \{ x \in R_L \mid f(x) = 0 \}
\]

We want to show that the obvious map

\[
\{ x \in R_L \mid f(x) = 0 \} \rightarrow \{ \beta \in k_L \mid f(\beta) = 0 \}
\]

is bijective. This is an easy exercise in using Hensel's lemma.
Next: let \(L/K \) be any unramified (finite separable) extension. Then \(k_L \) is a finite separable extension of \(k \), so we can write \(k_L = k[X]/(F(X)) \), where \(F(X) \in k[X] \) is monic and irreducible.

Construct \(E \) as before using this \(F(X) \). Then, by the previous part of the proof, we get a bijection \(\text{Hom}_{K-\text{alg}}(E, L) \cong \text{Hom}_{K-\text{alg}}(k_E, k_L) \).

But \(k_E \cong k_L \) over \(k \) by construction. This implies that there exists a \(K \)-algebra isomorphic to one of the "standard" ones, constructed in Example 5.6.

In turn, this implies the proposition in full generality.

\[\text{Corollary (of the proof): Every finite unramified extension of } K \text{ is isomorphic to one of the "standard" ones, constructed in Example 5.6.} \]

\[\text{Lemma: If } L \text{ is any finite separable extension of } K, \text{ then there} \]

\[\text{is unique.} \]
exists an intermediate field \(K \subset E \subset L\), with \(E/K\) unramified and \(L/E\) totally \(K\) ramified. (Later we'll see \(E\) is unique.)

Proof: This is easy to prove using the same idea as the one used in the proof of Proposition 1 in §5.8.

\[\begin{array}{c}
\text{Corollary of Proposition 1. The functor} \\
\begin{cases}
\text{unramified} \\
\text{extensions of } K
\end{cases}
\rightarrow
\begin{cases}
\text{finite} \\
\text{extensions of } K
\end{cases} \\
L
\rightarrow k_L
\end{array}\]

is an equivalence of categories.

\[\begin{array}{c}
\text{Properties of unramified extensions} \\
\text{in §§5.12.}
\end{array}\]

(1) Given a tower of finite separable extensions \(K \subset E \subset L\), we have \(L/K\) is unramified \(\Leftrightarrow\) \(E/K\) and \(L/E\) are unramified.

(2) Base change:
If E/K, L/K are finite separable extensions and E/K is unramified, then LE/L is unramified.

(3) If E_1/K, E_2/K are both unramified, then E_1E_2/K is unramified.

Proof: (1) is straightforward.

(3) follows from (1) and (3).

For (2), we may assume $E = K[x]/(f(x))$, where $f(x) \in R[x]$ is monic and $\overline{f(x)} \in k[x]$ is irreducible. Clearly, $\overline{f(x)} \in k[x]$ is irreducible.

For (2), we may assume $E = L[x]/(g(x))$, where $g(x) \in R_L[x]$ is monic and irreducible.

Now $g(x)$ divides $f(x)$ implies $\overline{g(x)}$ divides $\overline{f(x)}$. Since $\overline{f(x)}$ divides $\overline{f(x)}$, $\overline{g(x)}$ has no repeated roots in k_L. Then $\overline{g(x)}$ is irreducible by Hensel's Lemma (otherwise we could factor $g(x)$).

So by Example 5.6, we are done.