\[8.1.\] Correction to last time. In the description of the category \(\mathcal{C}_G \) by generators and relations given last time, we forgot the simplest possible relation:

\[
\begin{array}{ccc}
\mathcal{S}_G & \cong & \mathcal{E}_G \\
\mathcal{S}_G^\text{op} & \longrightarrow & \mathcal{E}_G \\
\end{array}
\]

Here, \(\mathcal{S}_G \) is the category of \(G \)-sets, \(\mathcal{S}_G^\text{op} \) is the category obtained from \(\mathcal{S}_G \) by keeping only isomorphisms (and discarding all the non-invertible arrows). The relation we forgot to add is that the diagram above should commute.

Example. Let \(G = \mathbb{Z}/p\mathbb{Z} \). A \(G \)-modulation is a diagram \(V_1 \xleftarrow{\beta} V_G \), where \(V_1 \) is an abelian group, \(V_G \) is a \(G \)-module, \(\beta \circ x = \beta \), \(0 \circ x = 0 \), \(\forall g \in G \), \(\beta \circ g = \beta \), \(\forall g \in G \).
Morally, \mathbf{a} should be thought of as multiplication by p, and \mathbf{g} should be thought of as the averaging operator $\frac{1}{p} \sum_{g \in G} g$. Note, however, that the result of the averaging lives in a different space.

\[\mathbf{2.2.} \] Example of a "double functor" on the category $\mathcal{S}_G : X \mapsto K_0(\mathcal{S}_G(X))$, where $\mathcal{S}_G(X)$ is the category of G-equivariant sheaves on X. This has a chance of being a modulation, because we have both the pullback and the pushforward functors for equivariant sheaves.

However, the last axiom in the definition of a modulation is not satisfied. In fact, the assignment $X \mapsto K_0(\mathcal{S}_G(X))$ gives what is known as a "Mackey functor" (the notion of a Mackey functor is obtained from our description of a G-modulation by discarding the last relation). The notion of a G-modulation itself was introduced by Neukirch.
Let us return to local CFT. We have two natural modulations:

\[K \mapsto G^a_K = \text{Gal}(K^{ab}/K) \]

and \[K \mapsto \hat{K}^x \]

(To really think of this as a modulation, we should fix a local field \(E \), and consider only finite separable extensions \(K \) of \(E \). Then we get two \(G_E \)-modulations.)

Recall that we have natural quotient maps

\[G^a_K \longrightarrow \text{Gal}(K^{nr}/K) \cong \hat{\mathbb{Z}} \leftarrow \text{val} \hat{K}^x \]

In fact, we can think of the assignment

\[K \mapsto \hat{\mathbb{Z}} \]

as a modulation as well, where for a finite extension \(L \supset K \) of local fields, the corresponding maps are:

\[L \leftarrow \hat{\mathbb{Z}} \quad \text{mult. by } e(L/K) \]

\[\text{mult. by } f(L/K) \downarrow \]

\[K \leftarrow \hat{\mathbb{Z}} \]

Here, \(e(L/K) \) = ramification degree for \(L \) over \(K \)

\(f(L/K) \) = degree of the residue field extension for \(L \) over \(K \).
§2.4. Now we can state a more precise version of Theorem 1.8 from the last lecture.

Theorem. There exists a unique isomorphism of modulations between $K \mapsto G_K^\text{ab}$ and $K \mapsto \hat{K}^\times$ which is compatible with the two natural homomorphisms $G_K^\text{ab} \to \hat{Z} \leftarrow \hat{K}^\times$.

Recall that the uniqueness statement was proved in the previous lecture. One way to construct the desired reciprocity maps is using a method due to Tate and Nakayama.

§2.5. Before describing the Tate–Nakayama story, we need a general digression.

Tate cohomology of finite groups.

Let us fix a finite group G and define

$$\mathcal{H}(G) = \text{the additive category formed by the } \mathbb{Z}[G]\text{-modules that are free as } \mathbb{Z}\text{-modules (i.e., free abelian groups equipped with a } G\text{-action).}$$

The morphisms in this category are defined as follows:

$$\text{Hom}_{\mathcal{H}(G)}(M, N) = \text{Coker} \left(\text{Hom}_{\mathbb{Z}[G]}(M, N) \xrightarrow{\sum_{g \in G} g} \text{Hom}_{\mathbb{Z}[G]}(M, N) \right).$$
The composition is defined unambiguously, because homomorphisms obtained by applying Σg_i form an ideal in the collection of all $g_i \in G$-equivariant homomorphisms.

Exercise. A G-module homomorphism $M \overset{f}{\to} N$ becomes trivial in $T(G)$ if and only if it factors through a free $\mathbb{Z}[G]$-module.

Remark. So $T(G)$ is what some people call the “stable category of $\mathbb{Z}[G]$-modules” (some kind of a quotient of the category of \mathbb{Z}-free $\mathbb{Z}[G]$-modules by the subcategory of all projective $\mathbb{Z}[G]$-modules; of course, this is not a Serre quotient!).

The category $T(G)$ has an obvious monoidal structure.

\[\text{2.6.} \] The category $T(G)$ also has a natural triangulated structure. First, given $M \in T(G)$, let us describe $M[1]$. There exists an embedding $M \hookrightarrow F$ of $\mathbb{Z}[G]$-modules, where F is a free $\mathbb{Z}[G]$-module and F/M is free as an abelian group. For instance, we could take $F = \mathbb{Z}[G] \otimes \mathbb{Z}^\infty M$. We define $M[1] = F/M$, and it is easy to check that this is independent of the choice of F.
Similarly, to define $M[-1]$, we consider a surjection of $\mathbb{Z}[G]$-modules $F' \to M$, where F' is a free $\mathbb{Z}[G]$-module, and define $M[-1] = \text{Ker}(F' \to M)$.

Definition of distinguished triangles.

First we will describe a special collection of triangles by defining the cone of any morphism in $\mathcal{T}(G)$, and then a distinguished triangle will be defined to be a triangle isomorphic to one of the cone diagrams.

Consider a morphism $f : M \to N$. Choose an embedding $M \to F$ as in the definition of $M[1]$. Then we obtain an embedding $M \to F \oplus N$, and we define $C(f) = (F \oplus N)/M$. Moreover, we obviously obtain a diagram

$$M \to N \to C(f) \to M[1] = F/M.$$

This is what we call a "cone diagram", or a "standard distinguished triangle". As explained earlier, we define a distinguished triangle in the category $\mathcal{T}(G)$ to be any triangle which is isomorphic to one of these standard ones.

We omit the verification of the axioms defining a triangulated category.
3.2.7. Another construction of \(T(G) \).

In \(\text{Db}(\mathbb{Z}[G]-\text{mod}) \), we have a full subcategory formed by the perfect complexes, i.e., bounded complexes of arbitrary projective \(\mathbb{Z}[G] \)-modules. One can show that \(T(G) \) is equivalent to the corresponding Verdier quotient.

3.2.8. A third construction of \(T(G) \).

It can also be described as the homotopy category \(K(\text{proj. } \mathbb{Z}[G]-\text{mod}) \) acyclic of arbitrary acyclic complexes of projective \(\mathbb{Z}[G] \)-modules.

3.2.9. Let us describe various functors

\[
\begin{align*}
\mathcal{T}(G) & \quad \xrightarrow{1} \quad \text{Db}(\mathbb{Z}[G]-\text{mod}) \\
& \quad \xrightarrow{2} \quad K^b(\text{proj. } \mathbb{Z}[G]-\text{mod}) \\
& \quad \xrightarrow{3} \quad K(\text{proj. } \mathbb{Z}[G]-\text{mod}) \text{ acyclic}
\end{align*}
\]

The functor 1 is stupid: take any \(\mathbb{Z}[G] \)-module and put it in degree 0.

Let us describe 2. Pick \(M \in \text{Db}(\mathbb{Z}[G]-\text{mod}) \).

We may assume that the terms of \(M \) are free as abelian groups. Now let \(M \xrightarrow{f_\ell} M \) be a quasi-isomorphism, where \(M_\ell \) is a
bounded above complex of free \(\mathbb{Z}[G] \)-modules (there is no problem in constructing it because \(M \) is bounded). In fact, we can also construct a quasi-isomorphism \(M \to M_r \), where \(M_r \) is a bounded below complex of free \(\mathbb{Z}[G] \)-modules.

The composition \(M \to M_r \) is also a quasi-isomorphism, so its cone is an object of \(K(\text{proj. } \mathbb{Z}[G]-\text{mod}) \) acyclic. This is the value of the functor \(\mathbb{2} \) at \(M \).

Finally, the functor \(\mathbb{3} \) is defined by

\[
C \to \ker(d^0 : C^0 \to C^1).
\]

Remark. All of this really only depends on the fact that \(\mathbb{Z}[G] \) is a Frobenius algebra in the symmetric monoidal category of free abelian groups.

82.10. Definition of Tate cohomology.

If \(M \) is a \(\mathbb{Z}[G] \)-module, or a bounded complex of \(\mathbb{Z}[G] \)-modules, we define the Tate cohomology groups of \(M \) by

\[
\hat{H}^i(G, M) := \text{Hom}_{ \mathcal{T}(G) } (\hat{M}, \hat{M}[i]),
\]

where \(\hat{M} \in \mathcal{T}(G) \) is the object corresponding to \(M \).
§2.11. Explicit description of Tate cohomology groups. Let M be a single $\mathbb{Z}[G]$-module, which is not necessarily free as an abelian group.

Lemma. There exists a $\mathbb{Z}[G]$-module \hat{M} and a short exact sequence of $\mathbb{Z}[G]$-modules

$$0 \to K \to \hat{M} \to M \to 0$$

such that:
- \hat{M} is free as an abelian group
- K is free as a $\mathbb{Z}[G]$-module.

The proof is left as a simple exercise.

Note that, by definition, \hat{M} is the object of $\mathcal{F}(G)$ corresponding to M.

Proposition. If M is any $\mathbb{Z}[G]$-module, we have:

- $\widehat{H}^i(G, M) \cong H^i(G, M)$ if $i \geq 1$;
- $\widehat{H}^i(G, M) \cong H_{-i-1}(G, M)$ if $i \leq -2$;
- $\widehat{H}^0(G, M) \cong \ker (M_G \xrightarrow{\Sigma g} M_G)$;
- $\widehat{H}^{-1}(G, M) \cong \ker (M_G \xrightarrow{\Sigma g} M_G)$.

§2.12. **Proof.** The left hand side is obviously a cohomological functor on the category of $\mathbb{Z}[G]$-modules. Let us show that so is the right hand side.
To this end, we will interpret the RHS as the cohomology of some naturally constructed complex. Choose:

\[
\mathbb{Z}_l \xrightarrow{q_{is}} \mathbb{Z} \xrightarrow{q_{is}} \mathbb{Z}_r
\]

bounded above complex of free \(\mathbb{Z}[G] \)-modules

Then \(H^c(G, M) \cong H^{-c}(M \otimes_{\mathbb{Z}[G]} \mathbb{Z}_l) \) and \(H^c(G, M) \cong H^i(M \otimes_{\mathbb{Z}[G]} \mathbb{Z}_r) \).

If \(C = \text{cone}(\mathbb{Z}_l \to \mathbb{Z}_r) \), then the RHS in the formula of Proposition 2.11 amounts to the cohomology of \(M \otimes_{\mathbb{Z}[G]} C \).

This easily implies that the RHS is a cohomological functor. Finally, one checks that if \(M \) is free as an abelian group, then both sides give the same answer for \(c = 0 \).

This is enough.

\[\text{Exercise.} \]

Note that the complex \(C \) above was constructed by applying the functor (2) described in §2.8 to the object \(\mathbb{Z} \) of \(\text{D}^b(\mathbb{Z}[G]-\text{mod}) \).
More generally, let \(M \) and \(N \) be arbitrary \(\mathbb{Z}[G] \)-modules that are free as abelian groups, and apply the same construction:

\[
M \to M' \to M'', \quad N \to N' \to N''.
\]

Is it true that

\[
\text{Hom}_{K(\mathbb{Z}[G]-\text{mod})} \left(\text{Cone}(M \to M''), \text{Cone}(N \to N'') \right)
\]

\[
\cong (\text{Cone}(M \to M''), N) = \text{Hom}_{K(\mathbb{Z}[G]-\text{mod})} (M, \text{Cone}(N \to N'')) ?
\]

If so, explain this.

\[\text{§2.14.}\] Next we will prove a theorem due to Tate which explains why Tate cohomology groups are useful.

Theorem (Tate). Let \(M \in \mathcal{T}(G) \). TFAE:

(i) \(M = 0 \) in \(\mathcal{T}(G) \) (equivalently, \(M \) can be represented by a projective \(\mathbb{Z}[G] \)-module)

(ii) \(M \) is cohomologically trivial, which, by definition, means that

\[
\hat{H}^i(H, M) = 0 \quad \text{for every } i \in \mathbb{Z} \text{ and every subgroup } H \triangleleft G.
\]
(iii) For any prime \(p \), there exists \(i(p) \in \mathbb{Z} \) such that if \(H \leq G \) is a \(p \)-Sylow subgroup, then

\[
\hat{\chi}(p)^{(H, M)} = 0 = \hat{\chi}(p+1)^{(H, M)}.
\]

(Since all \(p \)-Sylow subgroups of \(G \) are conjugate, this condition does not depend on the choice of \(H \).)

§2.15. Proof of Theorem 2.14. Clearly, it suffices to show that \((iii) \Rightarrow (i)\). We think of \(M \) as a \(\mathbb{Z}[G] \)-module which is free as an abelian group and we assume that \(M \) satisfies \((iii)\). We need to show that \(M \) is projective as a \(\mathbb{Z}[G] \)-module.

Step 1. Observe that it suffices to verify that for any \(\mathbb{Z}[G] \)-module \(K \) which is free as an abelian group, the \(G \)-module \(\text{Hom}_\mathbb{Z}(M, K) \) has the property

\[
\hat{H}^1(G, \text{Hom}_\mathbb{Z}(M, K)) = 0.
\]

Indeed:

Exercise. Under our assumptions,

\[
\hat{H}^1(G, \text{Hom}_\mathbb{Z}(M, K)) \cong \text{Ext}^1_{\mathbb{Z}[G]}(M, K).
\]

Of course, the vanishing of \(\text{Ext}^1_{\mathbb{Z}[G]}(M, K) \) for every \(\mathbb{Z}[G] \)-module \(K \) which is free as a \(\mathbb{Z} \)-module is equivalent to the projectivity of \(M \).

Step 2. In fact, we will show that under the above assumptions, the \(G \)-module \(\text{Hom}_\mathbb{Z}(M, K) \) is cohomologically trivial. (maybe skip this?)
In fact, it suffices to show that
\[\hat{H}^i(G, \text{Hom}_\mathbb{Z}(M, K)) = 0 \]
for every \(p\)-Sylow subgroup \(G_p \subset G\) and all \(i\).

[This is a general fact: if \(N\) is any \(G\)-module and \(\hat{H}^i(G, N) = 0\) for every \(p\)-Sylow subgroup \(G_p \subset G\) for all \(p\), then \(\hat{H}^i(G, M) = 0\).]

Thus we are reduced to the case where \(G\) is a finite \(p\)-group.

\[\textbf{Lemma.}\]
Let \(p\) be a fixed prime, and let \(M\) be a \(\mathbb{Z}[G]\)-module which is free as a \(\mathbb{Z}\)-module.
Let \(G\) be a finite \(p\)-group, and let \(M\) be a \(\mathbb{Z}[G]\)-module which is free as a \(\mathbb{Z}\)-module. If \(\hat{H}^{-2}(G, M) = 0 = \hat{H}^{-1}(G, M)\), then \(M/pM\) is free as an \(\mathbb{F}_p[G]\)-module.

\[\text{Proof.}\]
The exact sequence
\[0 \rightarrow M \rightarrow M \rightarrow M/pM \rightarrow 0 \]
implies that \(H_1(G, M/pM) = \hat{H}^{-2}(G, M/pM) = 0\).

We will show that this implies that \(M/pM\) is free as an \(\mathbb{F}_p[G]\)-module.

Choose a surjection \(F \rightarrow M/pM\) of \(\mathbb{F}_p[G]\)-modules, which is an isomorphism on the coinvariants, and is such that \(F\) is free as an \(\mathbb{F}_p[G]\)-module.
Exercise. Using the fact that
\[H_1(G, \mathbb{M}/p\mathbb{M}) = 0, \]
show that the map \(F \rightarrow \mathbb{M}/p\mathbb{M} \) must be an isomorphism. This uses the fact that \(G \) is a \(p \)-group, which implies that the augmentation ideal \(\text{Ker}(\mathbb{F}_p[G] \rightarrow \mathbb{F}_p) \) in the group algebra \(\mathbb{F}_p[G] \) is nilpotent.

\[\text{completion of the proof of Theorem 2.14} \]

We are in the following situation: \(G \) is a finite \(p \)-group and \(\mathbb{M} \) is a \(\mathbb{Z}[G] \)-module, which is free as a \(\mathbb{Z} \)-module and satisfies
\[\hat{H}^i(G, \mathbb{M}) = 0 = \hat{H}^{i+1}(G, \mathbb{M}) \] for some \(i \in \mathbb{Z} \).

This still implies that \(\mathbb{M}/p\mathbb{M} \) is free as an \(\mathbb{F}_p[G] \)-module. Indeed, replacing \(\mathbb{M} \) with \(\mathbb{M}[+i+2] \in \mathbb{F}_p[G] \), we see that
\[\mathbb{M}[+i+2]/p\mathbb{M}[+i+2] \]
\(\Rightarrow \) all of the Tate cohomology groups of \(\mathbb{M}[i+2] \) vanish \(\Rightarrow \) the same is true for \(\mathbb{M} \), and now we can apply Lemma 2.16.

Finally, we take any \(\mathbb{Z}[G] \)-module \(K \) which is free as a \(\mathbb{Z} \)-module. Then
\[\text{Hom}_\mathbb{Z}(\mathbb{M}, K)/p \cong \text{Hom}_\mathbb{Z}(\mathbb{M}/p\mathbb{M}, K/pK) \]
is free as an \(\mathbb{F}_p[G] \)-module, by the argument above.
This implies that all the Tate cohomology groups of \(\text{Hom}_\mathbb{Z}(M, K)/\mathfrak{p} \) vanish. However, in view of the short exact sequence

\[
0 \rightarrow \text{Hom}_\mathbb{Z}(M, K) \rightarrow \text{Hom}_\mathbb{Z}(M, K) / \mathfrak{p} \rightarrow 0,
\]

and the fact that all the Tate cohomology groups of any \(G \)-module are annihilated by a power of \(\mathfrak{p} \), this implies that all the Tate cohomology groups of \(\text{Hom}_\mathbb{Z}(M, K) \) vanish as well. This completes the proof.

§2.18. We now return to our study of local fields.

Key fact about Galois cohomology. Let \(K \) be a local field, let \(K^{nr} \) be a maximal unramified extension of \(K \), and consider finite extensions \(K^{nr} \subset S \subset T \), such that \(T \) is Galois over \(S \). Put \(G = \text{Gal}(T/S) \).

Proposition. We have \(\hat{H}^0(G, T^x) = 0 \), or, equivalently, \(T^x \) vanishes in the category \(T(G) \).

Proof. We have \(\hat{H}^1(G, T^x) = 0 \) for free from Hilbert's Theorem 90. By Tate's
theorem, it is enough to do either of the following things:

(i) check that \(H^2(G, T^x) = 0 \), i.e., that \(S \) has trivial Brauer group;

(ii) to check that the norm homomorphism

\[
N_{T/S} : T^x \longrightarrow S^x
\]

is surjective.

Neither of these is very difficult. For instance, for (i), one can prove that every central division algebra over \(S \) splits over some finite unramified extension of \(S \). However, since \(S \) is a finite extension of \(K_{nr} \), it has no nontrivial unramified extensions (its residue field is separably closed).

I will skip this part (the fact I just stated was proved in my Summer 2007 lectures). In a later lecture we will explain a purely cohomological proof of this statement.

§2.19. Now we will apply the key fact proved above. We just remarked that

\[
H^2(K_{nr}/K, (K_{nr})^x) = Br(K)
\]

iff

\[
H^2(Gal(K_{nr}/K), (K_{nr})^x).
\]
This allows us to compute the Brauer group, $\text{Br}(K)$, of K. Namely, we have a split exact sequence of $\text{Gal}(K^{nr}/K)$-modules

$$0 \rightarrow \mathcal{O}^{x}_{K^{nr}} \rightarrow (K^{nr})^{x} \xrightarrow{\text{val}} \mathbb{Z} \rightarrow 0$$

Moreover, $H^i(\text{Gal}(K^{nr}/K), \mathcal{O}^{x}_{K^{nr}}) = 0$ for all $i \geq 1$, because it is already true "at the finite level", i.e., for finite unramified extensions of K (again, see my summer 2007 lectures).

Thus we only need to compute $H^i(\hat{\mathbb{Z}}, \mathbb{Z})$ (recall that $\text{Gal}(K^{nr}/K) \cong \hat{\mathbb{Z}}$).

The short exact sequence

$$0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Q} \rightarrow \mathbb{Q}/\mathbb{Z} \rightarrow 0$$

gives $H^2(\hat{\mathbb{Z}}, \mathbb{Z}) \cong H^1(\hat{\mathbb{Z}}, \mathbb{Q}/\mathbb{Z}) \cong \text{Hom}(\hat{\mathbb{Z}}, \mathbb{Q}/\mathbb{Z}) = \mathbb{Q}/\mathbb{Z}$.

So $\text{Br}^{-}(K) \rightarrow \mathbb{Q}/\mathbb{Z}$ canonically.

§2.20. Now the assignment $K \mapsto \text{Br}(K)$ is a modulation. Let us compute the corresponding maps

$$\begin{align*}
\text{Br}(L) & \xrightarrow{\text{inv}_L} \mathbb{Q}/\mathbb{Z} \\
\text{Br}(K) & \xrightarrow{\text{inv}_K} \mathbb{Q}/\mathbb{Z}
\end{align*}$$
Note that the composition of the up and down arrows is multiplication by \(n = [L:K] \). Moreover, it is easy to check that the up arrow is multiplication by \(n \). Therefore, the down arrow has to be the identity map \(\mathbb{Q}/\mathbb{Z} \to \mathbb{Q}/\mathbb{Z} \), because
\[
\mathbb{Z} \xrightarrow{\cong} \text{End}_{\mathbb{Z}-\text{mod}}(\mathbb{Q}/\mathbb{Z}).
\]

In this situation, if \(L/K \) is Galois, we obtain
\[
H^2(\text{Gal}(L/K), L^\times) = \ker(\text{Br}(K) \to \text{Br}(L)) \cong \left(\frac{1}{n} \mathbb{Z} \right)/\mathbb{Z}
\]

Let \(\delta_{L/K} \in H^2(\text{Gal}(L/K), L^\times) \) be the element corresponding to \(\frac{1}{n} \) under this identification. Now \(H^2(G, L^\times) = \hat{H}^2(G, L^\times) \) (\(G = \text{Gal}(L/K) \)), so we can think of \(\delta_{L/K} \) as a morphism \(\mathbb{Z} \to L^\times[2] \) in the category \(T(G) \).

\[\text{Lemma.} \quad \text{Let } L \supseteq K \text{ be a finite Galois extension of local fields, with } n = [L:K] \text{ and } G = \text{Gal}(L/K). \text{ The morphism } \mathbb{Z} \to L^\times[2] \text{ constructed above is an isomorphism in } T(G).\]

\[\text{Proof.} \quad \text{We need to show that the cone of } \delta_{L/K} : \mathbb{Z} \to L^\times[2] \text{ is cohomologically trivial (by Tate's theorem). This means that we need to find } \iota \in \mathbb{Z} \text{ with the}\]

Following properties:

1. \(\hat{H}^{i+1}(\mathbb{Z}) \to \hat{H}^{i+3}(L^x) \)

2. \(\hat{H}^{i}(\mathbb{Z}) \to \hat{H}^{i+2}(L^x) \)

3. \(\hat{H}^{i-1}(\mathbb{Z}) \to \hat{H}^{i+1}(L^x) \)

We will take \(i = 0 \). This is an easy exercise.

Namely, (1) holds because \(\hat{H}^{2}(\mathbb{Z}) = 0 \),

(3) holds because \(\hat{H}^{1}(L^x) = 0 \) (by Hilbert's Theorem 90), and (2) holds because we can identify both sides with \(\mathbb{Z}/n\mathbb{Z} \) and compute the map in question explicitly.

32.22. It follows that \(\delta_{L/K} \) induces an isomorphism on every Tate cohomology group:

\[\hat{H}^i(G, \mathbb{Z}) \to \hat{H}^{i+2}(G, L^x) \quad \forall i \in \mathbb{Z}. \]

Let us now take \(i = -2 \). This produces a canonical isomorphism

\[\hat{H}^{-2}(G, \mathbb{Z}) \to \hat{H}^0(G, L^x) \]

\[\ker \to \mathbb{K}^x/N_{L/K}(L^x) \]

This is the desired reciprocity map.

We have described the Tate-Nakayama construction of the local reciprocity maps.