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Abstract

Persistence and Regularity in Unstable Model Theory

by

Maryanthe Elizabeth Malliaris

Doctor of Philosophy in Logic and the Methodology of Science

University of California, Berkeley

Professor Thomas Scanlon, Chair

The starting point is a question about the structure of Keisler’s order, a preorder

on theories which compares the difficulty of producing saturated regular ultrapow-

ers. In Chapter 1 we show that Keisler’s order reduces to the analysis of types in

a finite language, i.e. that the combinatorial barriers to saturation are contained in

the parameter spaces of the formulas of T . In Chapter 2 we define the character-

istic sequence of hypergraphs 〈Pn : n < ω〉 associated to a formula which describe

the relevant incidence relations, and develop a general framework for analyzing the

complexity of a formula in terms of the complexity of its characteristic sequence.

Specifically, we are interested in analyzing consistent partial types, which corre-

spond to sets A such that An ⊂ Pn for all n. The key issues studied in Chapter

2 are localization and persistence, which describe the difficulty of separating some
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fixed complex configuration from a complete graph under analysis by progressive re-

strictions of the base set. We characterize stability and simplicity of ϕ in terms of

persistence in the characteristic sequence.

Chapter 3 restricts attention to the behavior of the graph P2 in the character-

istic sequence of a given formula. We ask how subsets of the parameter space can

generically interrelate by asking what densities can occur between sufficiently large

ε-regular pairs A,B ⊂ P1, in the sense of Szemerédi. When the formula is stable,

after localization the density must always be 1. In a class including simple theories,

after localization the density must approach either 0 or 1. In the absence of strict

order, we characterize the property that P1 contains large disjoint ε-regular sets of

any reasonable density δ in terms of instability of P2.

Chapter 4 observes and explicates a discrepancy between the model-theoretic no-

tion of an infinite random k-partite graph and the finitary version given by Szemerédi

regularity, showing that a class of infinite k-partite random graphs which do not admit

reasonable finite approximations must have the strong order property SOP3.

Chapters 2-4 take place in a general setting. Chapter 5 describes how the formal-

ism of characteristic sequences may be applied to the analysis of types in ultrapowers.

Professor Thomas Scanlon
Dissertation Committee Chair
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Chapter 0

Introduction

0.1 Thesis work

Historically one of the great successes of model theory has been Shelah’s stabil-

ity theory: a program, described in [26], of showing that the arrangement of first-

order theories into complexity classes according to a priori set-theoretic criteria (e.g.

counting types over sets) in fact pushes down to reveal a very rich and entirely model-

theoretic structure theory for the classes involved: what we now call stability, super-

stability, and ω-stability, as well as the dichotomy between independence and strict

order in unstable theories. The success of the program may be measured by the

fact that the original set-theoretic criteria are now largely passed over in favor of

definitions which mention ranks or combinatorial properties of a particular formula.

Because of this shift, Keisler’s 1967 order (defined below) may strike the modern
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reader as an anachronism. It too seeks to coarsely classify first-order theories in

terms of a more set-theoretic criterion, the difficulty of producing saturated regular

ultrapowers, but its structure has remained largely open. Partial results from the

70s suggest a mine of perhaps comparable richness, one which has remained largely

inaccessible to current tools.

Keisler’s criterion of choice, saturation of regular ultrapowers, is natural for two

reasons. First, when the ultrapower is regular, the degree of its saturation depends

only on the theory and not on the saturation of the index models. Second, ultrapowers

are a natural context for studying compactness, and Keisler’s order can be thought of

as studying the fine structure of compactness by asking: what families of consistent

types are realized or omitted together in regular ultrapowers? Thus the relative

difficulty of realizing the types of T1 versus those of some T2 in regular ultrapowers

gives a measure of the combinatorial complexity of the types each Ti is able to describe.

Definition 0.1. (Keisler’s order [12]) T1 ≤ T2 if for all infinite λ, D regular on

λ, M1 |= T1,M2 |= T2, we have: if (M2)
λ/D is λ+-saturated then (M1)

λ/D is λ+-

saturated.

Shelah in the 1970s gave a beautiful and surprising series of results showing deep

links between Keisler’s order and the underlying structure of first-order theories. His

dividing lines will be familiar to model theorists who have not worked on ultrapowers:

Theorem A. (Shelah [26]; see Chapter 1, Theorem H below for the full statement)

In the Keisler order we have: T1 < T2 < ...?... ≤ Ts, where:
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1. T1 is the set of countable theories without the finite cover property, which form

the minimum Keisler equivalence class.

2. T2 is the set of countable theories which are stable but have fcp, which form the

second Keisler equivalence class.

3. Ts is the maximum class, which is known to exist and to include theories with

the strict order property.

4. and the intermediate structure of the unstable ...?..., as well as the question of

determining the boundary of the maximum class, remains open.

Notice the coarseness of the order. Stability is a classic model-theoretic frontier,

but the finite cover property crosscuts all of its usual refinements. Recent work of

Shelah [27] and Shelah and Usvyatsov [28] has shown that SOP3, a weakening of

strict order, is sufficient for maximality; however, the identity of the maximal class,

as well as the structure of the order on unstable theories without SOP3, has remained

open.

Notice also that stability, fcp and strict order are all properties of formulas. In

the first chapter of this thesis we show that this is paradigmatic: the Keisler order

reduces to the study of types in a single formula (Theorem 1.33 below). In other

words, the combinatorial barriers to saturation are contained in the parameter spaces

of the formulas of T . This mirrors the crucial move of stability theory in reducing

questions of a priori infinitary combinatorics to properties of formulas. But proof
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itself suggests the importance of a new kind of combinatorial structure.

Thus in Chapter 2 we associate to each formula ϕ a countable sequence of hyper-

graphs, called the “characteristic sequence,” which describe incidence relations on the

parameter space of ϕ. We then begin the investigation of the model-theoretic com-

plexity of ϕ in terms of the graph-theoretic complexity of its characteristic sequence,

that is, the distribution and recurrence of complex configurations around the base set

of a ϕ-type under analysis.

Definition 0.2. The characteristic sequence 〈Pn : n < ω〉 associated to a formula ϕ

of T is given by: for n < ω, Pn(z1, . . . zn) := ∃x
∧
i≤n ϕ(x; zi). Write (T, ϕ) 7→ 〈Pn〉.

This move is a natural consequence of the proof of Theorem 1.33. Classification

theory typically isolates particular configurations which signal complexity (the or-

der property, the independence property...); an interest in saturation of ultrapowers

shifts the emphasis onto understanding how the many fragments of configurations are

distributed in the parameter space of the formula and how they cluster into larger

constellations, into constellations of constellations, etc. Once observed and made pre-

cise, this relation of questions of “presence” as seen in the formula ϕ to questions of

“persistence” as seen in the hypergraphs is an interesting structural issue beyond the

context of ultrapowers.

Chapter 2 applies the characteristic sequence to the analysis of consistent par-

tial ϕ-types, which correspond to complete P∞-graphs, i.e. sets A ⊆ M such that

An ⊆ Pn for all n. A first goal is to definably restrict the predicate P1 around A
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so that the localized graph is as uncomplicated as possible, Definition 2.27 below.

A combinatorial configuration will be called persistent around A if it appears in ev-

ery finite localization around the complete graph A under analysis, Definition 2.36.

The main results of the chapter are characterizations of stability (Theorem 2.55) and

simplicity (Theorem 2.60) in terms of persistence.

Chapter 3 restricts attention to some fixed localization and considers what the

complexity of configurations there imply for T . This provides a second motivation

for characteristic sequences: linking classification theory for ϕ to structural issues

of distributions of edges in the characteristic sequence of hypergraphs is potentially

quite powerful, because as properties like edge density, randomness, and regularity of

the graphs are shown to give meaningful model-theoretic information about ϕ, this

opens up the possibility of using a deep collection of structure theorems for graphs, for

instance Szemerédi-type regularity lemmas [29], to give model-theoretic information.

In the notation of Chapter 3, Section 3.3,

Definition 0.3. ([29], [15]) Fix 0 < ε < 1, and write δ(X,Y ) for the edge density

e(X, Y )/|X||Y |. The finite bipartite graph (X,Y ) is ε-regular if for every X ′ ⊆ X,

Y ′ ⊆ Y with |X ′| ≥ ε|X|, |Y ′| ≥ ε|Y |, we have: |δ(X, Y )− δ(X ′, Y ′)| < ε.

Theorem B. (Szemerédi [29]) For every 0 < ε < 1,m0 ∈ N there exist N = N(ε,m0),

m = m(ε,m0) such that: for any graph X, |X| ≥ N , for some m0 ≤ k ≤ m there

exists a partition X = X1 ∪ · · · ∪Xk satisfying:

• ||Xi| − |Xj|| ≤ 1 for i, j ≤ k
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• All but at most εk2 of the pairs (Xi, Xj) are ε-regular.

Analogous lemmas for hypergraphs exist, e.g. [10], though the issue of how to

extend regularity to hypergraphs is a subtle one [11].

The organizing principle of Chapter 3 is the question of how subsets of the parame-

ter space can generically interrelate, i.e., what densities can occur between sufficiently

large ε-regular pairs A,B ⊆ P1, in the sense of Szemerédi. We obtain an interesting

picture. When the formula is stable, after localization the density must always be

1. In a class including simple theories, after localization the density must approach

either 0 or 1. We may assume NSOP as strict order is already Keisler-maximal; with

this hypothesis, we characterize the property that P1 contains large disjoint ε-regular

sets of any reasonable density δ in terms of instability of P2, in the sense of model

theory, and obtain several corollaries.

Chapter 4, a slightly more technical interlude, takes as its starting point the

observation of a gap between the kind of bipartite randomness given by model theory

(i.e. the independence property) and that given by Szemerédi regularity. This gap

has to do with the way in which the finite subgraphs approximate the infinite. We

formalize this gap and use it to describe a general principle: what might be called

“the depth of independence” of an infinite k-partite graph. We show that graphs

which are partially, but not fully, independent in this sense give rise to SOP3. This

gives a new motivation for the property, which is known to imply maximality in the

Keisler order.
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Chapter 1 began with the Keisler order, showing that an analysis of its structure

depends on an analysis of ϕ-types, that is, types in a finite language. Chapters 2-4

developed a framework for analyzing the combinatorial complexity of ϕ-types in a

general context. Chapter 5 gives arguments necessary to apply the constructions of

Chapters 2-4 to the analysis of types in ultrapowers.

0.2 Notational conventions

This section records some conventions which will be in place throughout this

thesis. Further conventions which require preliminary definitions are given in §0.4.

Local conventions are laid out at the beginning of the chapters.

The letter λ will denote an infinite cardinal, typically identified with the base

set of some regular ultrafilter. The letters ϕ, ψ, θ will be formulas of some ambient

theory T . Unless otherwise specified, other lower-case Greek letters will be cardinals

or ordinals (as indicated by context), usually infinite.

Typically, lower-case Roman letters satisfy: a, b, c, d, e are elements of a model,

f, g, h are functions, i, j, k, l,m, n, s, t are integers or indices, p, q, r types, u, v, w, x, y, z

are variables ranging over elements, and the remaining letter is omitted for clarity.

D is a regular ultrafilter on the index set λ, Definition 1.1.

T is a first-order theory, almost always countable, and M,N are models of T . In

the sections on regular ultrapowers, by convention N := Mλ/D.

Pℵ0(λ) = {σ ⊆ λ : |σ| < ℵ0}.
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The proof in Chapter 1 of the reduction to ϕ-types (Chapter 1, Theorem 1.33)

makes use of predicates Pi and Qj defined in the course of that proof.

However, beginning with Chapter 2, 〈Pn〉 is always the characteristic sequence of

some formula ϕ ∈ T , and subscripted predicates Pn refer to elements of the char-

acteristic sequence. Superscripted P f
n are localized Pn (Definition 2.27, page 71).

Superscripted ϕf are the analogously localized formulas (Definition 2.27).

In Chapter 2, α, αn, βn refer to specific counting functions defined on the charac-

teristic sequence.

In Chapters 2-5, ϕn = ϕn(x; y1, . . . yn) refers to the conjunction
∧
i≤n ϕ(x; yi).

In Chapter 5, m∗, k∗ are distinguished nonstandard integers which record the size

of specified profinite sets.

Throughout the thesis, if a variable or a tuple is written x or a rather than x, a,

this does not necessarily imply that `(x), `(a) = 1.

0.3 Background from classification theory

This section is intended to organize the definitions given in Section 0.4; the key

terms appear in italics below.

The project of model-theoretic classification theory, as articulated and largely

developed by Shelah, is to find “good dividing lines” among first-order theories. The

test of a good dividing line, as opposed to simply an interesting property, is whether

its presence and absence both have strong structural implications. Let us review some
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of the major discoveries.

The key dividing line of stability arose from the question of counting types (see

[22], [21]). Say that T is unstable if for every cardinal λ there exists a model M |= T

and A ⊆ M , such that |S(A)| > |A| = λ; otherwise T is stable. Shelah gave a

deep series of characterizations of this dividing line, relating this count to very strong

structural properties of the theory and its models. For instance, T is stable just in

case all types are definable; just in case no formula has the order property ; just in

case all indiscernible sequences are indiscernible sets (see [26].II.2). In the 40 years

since [22], stable theories have served as the crucible in which most of the techniques

of contemporary model theory have been developed.

On the other side of this dividing line, some paths have been marked through

the large territory of unstable theories, though much wilderness remains. A theory is

unstable just in case it contains a formula with the order property. [26].II.4 reveals

a polarization of the order property: T unstable implies that either T contains a

definable linear order (SOP ), or a bipartite random graph (IP ), or both. (The

definitions in the next section will explain the “polarization” remark.)

Stable = (not IP ) ∩ (not SOP ) (0.1)

Our main focus in this thesis will be unstable theories and, in particular, theories

which have the independence property (IP ) but not the strict order property (SOP ).

Shelah developed, and Kim characterized, a generalization of stability known as

simplicity [23], [13], [14]. Simple theories are the largest class of theories on which
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nonforking satisfies a series of desirable properties (symmetry, transitivity...). The

boundary between simple/non-simple marks a point where, for at least one formula

ϕ, dividing becomes pervasive. Indeed the local characterization of simplicity, T is

simple iff no formula ϕ of T has the tree property, says precisely that, for each ϕ

and each k < ω, there is a uniform finite bound on the number of times ϕ can

sequentially k-divide. When T is not simple, arbitrarily long ϕ-dividing chains called

trees abound, and another surprising polarization appears:

Stable ( Simple = ((not TP1) ∩ (not TP2)) ( not SOP (0.2)

These two possible kinds of tree property, TP1 and TP2, are clearly combinatorially

interesting but it is not yet clear what their strength is as dividing lines. Let us close

by mentioning a proposed stratification of theories with the tree property but without

SOP : the hierarchy of n-stronger order properties SOPn (n ≥ 3) [27]. SOPn says that

T contains a binary relation with infinite chains and no loops of length n (Definition

4.7, 130). SOP2 is defined to be TP1.

Tree property⇐ SOP2 ⇐ SOP3 ⇐ · · · ⇐ SOPn ⇐ SOPn+1 ⇐ . . . ...⇐ SOP

(0.3)

Little is known about the strength or structure theory of this very interesting

sequence of properties (for SOP3, see Chapter 4). The implications are known to be

strict with one exception: it remains open whether SOP2 =⇒ SOP3.



11

0.4 Background properties

This section collects a series of model-theoretic properties referred to throughout

the thesis. See the previous section for context. References are interspersed. For

basic properties of first-order theories, formulas, models, and types, see [7].

Convention 0.4. (Throughout the thesis)

• T is a first-order theory, usually countable.

• L is the language of T .

• ϕ(x; y) will be an L-formula consistent with T . Write “ϕ is a formula of T .”

• Lower-case variables and tuples x, y, a . . . written without an overline need not

be singletons, though they are always finite. We will generally omit overlines,

except to emphasize the construction of some z from given tuples z1, . . . .

Definition 0.5. (Consistency) For any formula ϕ(x; y) of T , M |= T and A ⊆M ,

1. A set of instances of ϕ, Σ = {ϕ(x; a) : a ∈ A} is consistent if for every finite

A0 ⊆ A, M |= ∃x(
∧
a∈A0

ϕ(x; a)). Equivalently, Σ is consistent if there is an

elementary extension M ′ of M and an element c ∈ M ′ such that, for each

a ∈ A, M ′ |= ϕ(c; a).

2. A set of instances of ϕ is inconsistent if it is not consistent, i.e. if some finite

subset is inconsistent.
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3. A set of instances of ϕ is k-consistent if every subset of size k is consistent.

4. A set of instances of ϕ is k-inconsistent if every subset of size k is inconsistent.

Definition 0.6. (Types) Let T be a theory in the language L, M |= T .

1. A type p(x) over A ⊆ M (A = ∅ possible) is a consistent set of instances of

formulas of T , in the free variable(s) x and with parameters from A. A complete

type over A is a maximal consistent such set. We will follow these notational

conventions:

• S(A) is the set of all types with parameters in A.

• Sn(A) is the set of all types in S(A) in n free variables.

• Write Sϕ(A) to indicate that the formulas in the type are restricted to

positive and negative instances of some fixed formula ϕ of T .

• The type of an element c in M over A ⊆ M is {ϕ(x; a) : ϕ(x; y) ∈ L, a ∈

A`(y),M |= ϕ(c; a)}.

• p is called a partial type if it is not necessarily complete.

2. A ϕ-type is a type generated by positive and negative instances of a single for-

mula.

Definition 0.7. (Indiscernibles, dividing, forking) Fix M |= T .

1. Let A,B ⊆M , with B possibly ∅, and fix an enumeration 〈ai : i < ω〉 of A.

The sequence A is a B-indiscernible sequence (or is indiscernible over B) if for
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any n < ω and any n-tuple ai1 , . . . ain from A, the type of ai1 , . . . ain over B

depends only on the order-type of i1, . . . in.

If the enumeration of A does not matter (i.e., for any σ : n→ n, tp(ai1 , . . . ain)

= tp(aσ(i1), . . . aσ(in)), A is an B-indiscernible set.

Indiscernible means ∅-indiscernible.

2. The formula ϕ(x; a) k-divides (over B) if there is an infinite (B-)indiscernible

sequence A = 〈ai : i < ω〉, with a = a0, such that {ϕ(x; ai) : i < ω} is 1-

consistent but k-inconsistent. The formula ϕ(x; a) divides if it k-divides for

some finite k.

Definition 0.8. (Saturation) Let λ be an infinite cardinal.

1. The model M realizes the type p(x) ∈ S(A), A ⊆ M , if there exists c ∈ M `(x)

such that for all formulas ψ(x; a) ∈ p, M |= ψ(c; a). If no such c exists, then

M omits p.

2. The model M is λ-saturated if for every A ⊆ M , |A| < λ, and every type

p ∈ S(A), there exists an element a ∈M realizing p(x).

Below, we focus on λ+-saturation, that is, on whether a given model realizes all

types over sets of size ≤ λ.

Below, the finite cover property is due to Keisler [12]; the remainder of the prop-

erties below are due to Shelah [26].
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Definition 0.9. (FCP, OP, IP, SOP) [26].II.4 Let ϕ be a formula of T and M |= T

be any sufficiently saturated model. The formula ϕ(x; y) has:

1. not the finite cover property, written nfcp, if there exists k < ω such that: for

any A ⊆M and any set X = {ϕ(x; a) : a ∈ A} of instances of ϕ, k-consistency

implies consistency. (This does not depend on the model chosen.)

2. the finite cover property, written fcp, if it does not have nfcp: i.e. if for cofinally

many k < ω there is a set Xk of instances of ϕ which is k-consistent but (k+1)-

inconsistent.

3. the order property if there exist elements ai, bi (i < ω) such that ϕ(bj; ai) iff

j ≤ i.

Formulas with the order property are called unstable.

4. the independence property if there exist elements ai (i < ω) such that:

∧
σ,τ∈ω<ω , σ∩τ=∅

∃x ((i ∈ σ =⇒ ϕ(x; ai)) ∧ (j ∈ τ =⇒ ¬ϕ(x; aj)))

5. the strict order property if there exist elements ai (i < ω) such that:

∀i, j (∃x(ϕ(x; ai) ∧ ¬ϕ(x; aj)) ⇐⇒ j < i)

Convention 0.10. Say that a theory T has one of the properties of Definition 0.9 iff

one of its formulas does.

The next set of tree properties appeared in various forms in different papers, thus

the multiplicity of names. See also [26].III.7.
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Definition 0.11. (Tree properties) Let ⊆ indicate initial segment. To simplify nota-

tion, say that the nodes ρ1, ρ2 ∈ ω<ω are ∗incomparable if

¬(ρ1 ⊆ ρ2) ∧ ¬(ρ2 ⊆ ρ1) ∧ ¬(∃ν ∈ ω<ω, i, j ∈ ω)(ρ1 = νai, ρ2 = νaj)

i.e., if they do not lie along the same branch and are not immediate successors of the

same node.

Then the formula ϕ has:

• the k-tree property, where k < ω, if there is an ω<ω-tree of instances of ϕ

where paths are consistent and the immediate successors of any given node are

k-inconsistent, i.e. X = {ϕ(x; aη) : η ∈ ω<ω}, and:

1. for all ν ∈ ωω, {ϕ(x; aη) : η ⊆ ν} is a consistent partial type;

2. for all ρ ∈ ω<ω, {ϕ(x; aρai) : i < ω} is k-inconsistent.

Call any such X a ϕ-tree, or if necessary a ϕ-k-tree.

• the tree property if it has the k-tree property for some 2 ≤ k < ω.

• the non-strict tree property TP2 if there exists a ϕ-tree with k = 2 and for

which, moreover:

(3)2 for any two ∗incomparable ρ1, ρ2 ∈ ω<ω, ∃x(ϕ(x; aρ1) ∧ ϕ(x; aρ2)).

• the strict tree property, also known as TP1 or SOP2, if there exists a ϕ-tree

with k = 2 and for which, moreover:
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(3)1 for any two ∗incomparable ρ1, ρ2 ∈ ω<ω, ¬∃x(ϕ(x; aρ1) ∧ ϕ(x; aρ2)).

Definition 0.12. (Stable and simple theories) We will say that the theory T is:

1. unstable if it satisfies either of the equivalent conditions:

(a) T contains an unstable formula, i.e. a formula having the order property.

(b) For every λ ≥ ℵ0 there is M |= T , A ⊆ M , |A| = λ with |S(A)| > λ,

where S(A) is the set of types with parameters in A.

Otherwise T is stable ([26].II.2).

2. not simple if it satisfies either of the equivalent conditions:

(a) There is a formula ϕ ∈ T with the tree property.

(b) For each formula ϕ ∈ T and each k < ω, there is a uniform finite bound

nk on the length of a k-ϕ-dividing chain.

Otherwise T is simple ([13]). Stable implies simple.

Theorem C. (Implications among these properties (Shelah))

• [26].II.4. T nfcp, meaning that no formula in T has fcp, =⇒ T stable. That

is, every unstable theory will contain a formula with the finite cover property.

• In particular, if ϕ is unstable then the formula

(ϕ(x; y1) ⇐⇒ ¬ϕ(x; y2)) ∧ (ϕ(x; y3) ⇐⇒ ϕ(x; y4))

will have the finite cover property, though ϕ need not have fcp.
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• [26].II.4. Refinement of instability: ϕ has the order property iff ϕ has the

independence property or some boolean combination of instances of ϕ has the

strict order property.

• If T is simple unstable, then T has the independence property but not the strict

order property.

• [26].III.7. Refinement of non-simplicity: ϕ has the tree property iff ϕ has TP1

(a tree which is as inconsistent as possible) or TP2 (a tree which is as consistent

as possible).

• [27] SOP implies TP1 but the reverse is not true.

To conclude this chapter, we mention a possible source of confusion: there will be

three distinct uses of the word regular, which nonetheless will be clear from context

and scope. Namely, there will be regular cardinals in the sense of set theory, regular

ultrafilters used in Keisler’s order, and regular graphs in the sense of Szemerédi.
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Chapter 1

Regular ultrapowers

The Keisler order is a preorder on countable first order theories which compares

the relative difficulty of producing saturated regular ultrapowers. That is, T1 ≤ T2

if for any infinite cardinal λ, any M1 |= T1,M2 |= T2 and any regular ultrafilter D

on λ, we have Mλ
2 /D is λ+-saturated implies Mλ

1 /D is λ+-saturated (Definition 1.22

below). This order exposes certain basic, though often surprising, tensions between

finite combinatorial problems posed by fragments of a theory in each index model

and infinitary combinatorial problems posed by the aggregate in the ultrapower. The

dividing lines which work on the order has exhibited are of deep, and independent,

model-theoretic interest.

It is known (Shelah 1978, [26].VI.5) that countable stable theories fall into pre-

cisely two equivalence classes, those with and those without the finite cover property,

and that theories with SOP3 (and thus with the strict order property) are maximal
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[27], though the identity of the maximal equivalence class is not known. The classi-

fication for unstable theories, in particular unstable theories with the independence

property but without SOP3, has remained open.

Section 1.1 is an extended introduction to the kinds of combinatorial issues visible

in this context. Section 1.2 gives a summary of the known results. Section 1.3 contains

the main result of the chapter, Theorem 1.33, which says that any failure of saturation

in an unstable theory must come from the omission of a type in a finite language.

1.1 Introduction to regular ultrapowers

This section defines regular ultrapowers and reviews some of their basic properties.

Most of the material is not new. An ultrapower is a reduced product where equivalence

is computed modulo an ultrafilter F and the index models are taken to be the same,

see for instance [26].VI, [8].

Definition 1.1. (Regular ultrapowers) Let λ ≥ κ be infinite cardinals.

1. A κ-regularizing set is any X ⊂ P(λ), X = 〈Xi : i < κ〉, satisfying:

• X has the finite intersection property, i.e. for any σ ∈ Pℵ0(κ),
⋂
i∈σXi 6= ∅

• for any t ∈ λ, |{i < κ : t ∈ Xi}| < ℵ0.

2. An ultrafilter D on λ is κ-regular if it contains a κ-regularizing set. D is regular

if it is λ-regular.
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3. A set A ⊂ N := Mλ/D is called small if |A| ≤ λ. Any p ∈ S(A) is a small

type if A is small.

For the remainder of this chapter D will denote a regular ultrafilter on λ ≥ ℵ0.

Regular ultrapowers are “flat” in the sense that any small set in the ultrapower is

contained in a product of finite subsets of the index models (see Definition 1.4). As

a consequence, the amount of saturation in the ultrapower does not depend on the

level of saturation of the index model, but only on its theory T . We omit the proof

of Theorem D, which relies on a back-and-forth game of length λ:

Theorem D. ([26].VI.1) Suppose that M0 ≡M1, the ambient language is countable,

and D is a regular ultrafilter on λ. Then M0
λ/D is λ+-saturated iff M1

λ/D is λ+-

saturated.

This ensures that the Keisler order, which will be the focus of this chapter, is well

defined (Definition 1.22).

Fact 1.2. Let λ ≥ ℵ0 be an infinite cardinal. Regular ultrafilters on λ always exist.

Proof. Uniquely in this proof, let us write I for the index set of the filter to avoid

confusion. Let f : Pℵ0(λ) → I be a bijection. For η ∈ λ, define Xη = {i ∈ I : η ∈

f−1(i)}. Then {Xη : η ∈ λ} is a regularizing set of size λ. X has the finite intersection

property and does not contain ∅, so it can be extended to a nonprincipal ultrafilter

by Zorn’s lemma.
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1.1.1 Distributions

Let us spell out the “distribution” of a type p ∈ S(A), A ⊂ N small, across the

index models M as a way of illustrating how types are realized or omitted in regular

ultrapowers.

Convention 1.3. For the purposes of this chapter,

• D is a regular ultrafilter on λ, and t ∈ λ is an element of the index set.

• T is a countable theory, M is a model of T and N := Mλ/D.

• “Small” means of cardinality ≤ λ.

• Write M [t] for the model M considered as the index model at index t.

• For each ultrapower Mλ/D, fix a lifting: [a]D ∈ Mλ/D 7→ a ∈ Mλ. The

parameter a ∈ N is thus identified with (
∏

t<λ a[t])/D, and the projections of

elements and sets a[t] ∈M [t], X[t] ⊂M [t] are well defined.

Definition 1.4. (Distributions) Fix T,M |= T, λ ≥ ℵ0, D regular on λ, N := Mλ/D,

and a small type p ∈ S(A), A ⊂ N . A distribution d : Pℵ0(p) → D of the type p

is a monotonic assignment of each finite subset of p to an element of D, such that d

refines the  Loś map and the image of d is a regularizing set. More precisely:

1. For each u ∈ Pℵ0(p), d(u) ∈ D.

2. d is monotonic, that is, for all ϕi, ϕj ∈ p, d({ϕi, ϕj}) ⊂ d({ϕi}).
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3. For each u ∈ Pℵ0(p), d is a refinement of the  Loś map. That is,

d(u) ⊂

t < λ : M [t] |= ∃x

 ∧
ϕ(x;a)∈u

ϕ(x; a[t])


4. For each t ∈ λ, |{u : t ∈ d(u)}| < ℵ0.

Observation 1.5. For any small type p in a regular ultrapower, a distribution exists.

Proof. Let us sketch a possible construction:

• Write p as {ϕi(x; ai) : i < λ}, where each ϕi is a formula of L and the parameters

ai are from A.

• Let d0 : p→ D be the  Loś map, i.e. ϕi(x; ai) 7→ {t < λ : M [t] |= ∃x(ϕi(x; ai[t]))}.

• Let X = 〈Xi : i < λ〉 be a regularizing set in D. Define d1 : p → D by

d1({ϕi}) = d0({ϕi}) ∩Xi.

• To finish, we extend the definition to d : Pℵ0(p)→ D by:

d({ϕi1 , . . . ϕin}) :=

{
t :
∧
k≤n

t ∈ d1 ({ϕik})

}
∩

{
t : M [t] |= ∃x

∧
k≤n

ϕik(x; aik [t])

}

The first set is equal to
⋂
k≤n d1({ϕik}), which is large because D has the finite

intersection property; the second is large by  Loś’ theorem.

Remark 1.6. Paired with Observation 1.10 below, this basic construction shows the

combinatorial issues at stake in realizing, or omitting, a small type in a regular ul-

trapower. Namely, let {ϕi1}, . . . {ϕin} be singleton elements of Pℵ0(p) whose images
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under d all contain t. Then for all k ∈ {1, . . . n},

M [t] |= ∃x
(
ϕik(x; aik [t])

)
(1.1)

But unless t ∈ d({ϕj1 , . . . ϕjr}), for {j1, . . . jr} ⊂ {i1, . . . in}, it need not be the case

that:

M [t] |= ∃x

(∧
`≤r

ϕj`(x; aj` [t])

)
(1.2)

The important class of distributions which satisfy d(u) ∩ d(v) = d(u ∪ v) are called

multiplicative, Definition 1.7. A multiplicative distribution of p exists just in case p

is realized; see Observation 1.10.

1.1.2 Some examples

Remarks on some typical cases:

Example 1: Algebraically closed fields. Let M be an algebraically closed (hence

infinite) field, N := Mλ/D. For some small A ⊂ N small let p(x) ∈ S(A) be the

type describing an element which does not satisfy any nontrivial polynomial with

coefficients in A. So we can write p(x) = {¬fi(x; ai) : i < λ}, where each f is a

finite conjunction of polynomial equations with coefficients in the finite set ai. A

distribution d assigns finitely many of the fi to each index model M [t]. We look in

M [t] for an element c[t] satisfying the finitely many relevant ¬fi(x; ai[t]), which will

always exist. Then c :=
∏

t<λ c[t]/D will satisfy the type p, because it avoids each fi

on the large set d(fi), by construction. This gives an easy proof that in any regular
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ultrapower of M , the transcendence degree over the prime field will be at least λ+.

Indeed, Mλ/D will always be λ+-saturated for any infinite λ and regular ultrafilter

D on λ.

Example 2: The random graph. The language contains equality and a binary edge

relation R. The axioms say that the graph is infinite, and for each set of 2n distinct

elements y1, . . . yn, z1, . . . zn,

∃x

(∧
i≤n

xRyi ∧
∧
j≤n

¬xRzj

)

Again, let M |= T and N := Mλ/D. By quantifier elimination, a small type p in

N can be written as p = {xRai ∧ ¬xRbi : i < λ}. Let d be a distribution, so:

t ∈ d({xRai ∧ ¬xRbi}) =⇒ M [t] |= ∃x (xRai[t] ∧ ¬xRbi[t])

The distribution may fail to be multiplicative because of “collisions” between

parameters in the index models. That is:

M [t] |= ∃x
(∧

i≤n xRai[t] ∧ ¬xRbi[t]
)

⇐⇒ M [t] |=
{⋃

i≤n ai[t]
}
∩
{⋃

j≤n bj[t]
}

= ∅

Let us write A[t] for the set {ai[t] : t ∈ d(u), u ∈ Pℵ0(p), xRai∧¬xRbi ∈ u} ⊂M [t],

and likewise for B[t]. The type p will be realized just in case there exists a distribution

d in which, for almost every index model M [t], A[t] ∩B[t] = ∅.
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Equivalently, an ultrafilter will be able to realize all small types in models of the

random graph iff for any pair of disjoint small sets A,B ⊂ N it is possible to expand

each index model by a new monadic predicate X[t] so that X :=
∏

tX[t]/D separates

A and B.

We will see that there are ultrafilters which fail to have this property; in fact

there is a Keisler equivalence class strictly between algebraically closed fields and the

random graph.

Example 3: The finite cover property. Let M be the standard model of the finite

cover property (see Definition 0.9): the language contains equality and a binary

equivalence relation E, and the theory says that E has a single class of size n for each

n < ω. Let N = Mλ/D.

Let A ⊂ N be an infinite set contained in a single E-equivalence class, and

p(x,A) := {xEa ∧ x 6= a : a ∈ A}. Let B ⊂ N be a set of representatives of distinct

E-equivalence classes, and q(x,B) := {¬xEb : b ∈ B}. Then it is easy to see that the

type q is always realized, as any finite fragment assigned to M [t] by a distribution

is satisfiable. For d a distribution, write A[t] for the set {ai[t] : (∃u ∈ Pℵ0(p))(t ∈

d(u) ∧ xEai ∧ x 6= ai ∈ u)}. For p (see first line of paragraph) the following are

equivalent:

1. There exists c ∈ N such that c |= p.

2. Fixing some a0 ∈ A, {x ∈ N : xEa0 ∧ x 6= a0} ) A.
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3. For any a ∈ A, there exists a distribution d′ : p → D whose associated A[t]

satisfy, almost everywhere,

|A[t]| < |{x ∈M [t] : xEa[t] ∧ x 6= a[t]}|.

In fact, extrapolating from condition (2) one can see that N realizes all such types

over small sets A′ iff the size of every nonstandard equivalence class is large, i.e.

≥ λ+. We shall see that the size of pseudofinite sets is sensitive to the ultrafilter D in

Theorem E below. Thus regular ultrapowers of theories with the finite cover property

will not always be λ+-saturated.

1.1.3 Multiplicative refinements

Let us describe a class of ultrafilters, the good ultrafilters, which are subtle enough

to untangle any type in a countable language. Because there exists a first order theory

whose D-ultrapowers are λ+-saturated iff D is good (Observation 1.12), we see that

there must be a maximum, rather than simply maximal, class in the Keisler order.

Definition 1.7. (Multiplicativity)

1. A function f : Pℵ0(λ) → D is multiplicative if f(u) ∩ f(v) = f(u ∪ v), and

monotonic if f(u ∪ v) ⊂ f(u).

2. If every monotonic f : Pℵ0(λ) → D has a multiplicative refinement, then D is

called λ+-good.
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The existence of λ+-good ultrafilters on λ is a theorem of Kunen [16].

Fact 1.8. Every ultrafilter is ℵ1-good. When T is countable, this means that every

ultrapower of M |= T is ℵ1-saturated.

See for instance [26].VI.2.

Definition 1.9. A distribution d : p → D is accurate if for each index t < λ

and each finite subset {ϕi1 , . . . ϕin} ⊂ D(t) := {ϕj : t ∈ d(ϕj)}, we have that t ∈

d({ϕi1 , . . . ϕin}) iff M [t] |= ∃x
∧
k≤n ϕik .

Observation 1.10. Choose T,M, λ,D, N := Mλ/D, A ⊂ N small, p ∈ S(A). Then

the following are equivalent.

1. Some distribution d of p has a multiplicative refinement.

2. Every accurate distribution d of p has a multiplicative refinement.

3. The type p is realized in N .

Proof. (2) =⇒ (1) The construction of Observation 1.5 above shows that accurate

distributions always exist.

(1) =⇒ (3) Let d′ be the multiplicative refinement. Then the formulas ϕ1, . . . ϕn

assigned to index model M [t] have a common realization in that model, because

multiplicativity implies that if
∧
i≤n (t ∈ d′({ϕi})) then t ∈ d′({ϕ1, . . . ϕn}). Let α[t]

be some such common realization in M [t], and set α :=
∏

t<λ α[t]/D. Now for each

formula ϕ(x; c) ∈ p, we have that ϕ(α; c) by  Loś’ theorem, so α |= p.
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(3) =⇒ (2) Let d be some accurate distribution. Suppose that p is realized by

the element α. For v ∈ Pℵ0(p), v = {ϕi1 , . . . ϕik} set

d′(v) :=

{
t : M [t] |=

∧
`≤k

ϕi`(α[t]; ai` [t])

}
∩ d(v)

Now d′ refines d by construction. Suppose u, v ∈ Pℵ0(p). Then t ∈ d′(u) ∩ d′(v)

implies α[t] is a common witness, in M [t], to both sets of formulas. A fortiori t ∈

d(u)∩ d(v), and because there is a common witness and we assumed d was accurate,

t ∈ d(u ∪ v). Thus t ∈ d′(u ∪ v) so d′ is multiplicative.

Corollary 1.11. If D is λ+-good and Th(M) is countable then Mλ/D is λ+-saturated.

That is to say, we have a way of assigning finitely many of the formulas of a small

type to each index model in such a way that the finitely many formulas assigned to

M [t] have a common realization in M [t].

Observation 1.12. Let M be the model whose elements are the finite subsets of

ω. The language is {=,⊆}, interpreted in the natural way. Let T = T (Pℵ0 ,⊆) :=

Th(M). Let ϕ(x; y) = x ⊂ y. Suppose that the ultrafilter D on λ is not λ+-good.

Then there is a small ϕ-type omitted in N = Mλ/D.

Proof. Let f : Pℵ0(λ)→ D be a monotonic function with no multiplicative refinement.

We would like to find elements {ai : i ∈ λ} ⊂ N such that f is an accurate distribution

of a consistent partial ϕ-type p = {x ⊆ ai : i < λ}. It would be enough to define

ai[t] ∈ M [t] when {i} ∈ f−1(t) so that M [t] |= ∃x(
⋂
j≤k x ⊂ aij [t]) just in case
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t ∈ f({i1, . . . ik}). In other words, in the index model M [t], we choose finitely many

sets ai[t] so that the pattern of incidence is precisely that described by f , and set

all other aj[t] = ∅. The existence of such ai is clearly consistent with the theory,

by monotonicity of f . Set ai :=
∏

i<λ ai[t] to finish; the distribution is accurate by

construction, so we are done.

Corollary 1.13. A necessary and sufficient condition for maximality in the Keisler

order is: for all λ, M |= T , Mλ/D is λ+-saturated iff D is λ+-good.

Proof. Sufficiency is Corollary 1.11. Necessity follows from Observation 1.12: if the

ultrafilter is not λ+-good, then there is a theory whose D-ultrapowers are not λ+-

saturated.

1.1.4 Filters and theories

The interaction between ultrafilters and theories, in both directions, is both coarse

and subtle. This section discusses the sorts of dimensions in first-order theories to

which regular ultrafilters are sensitive, by way of mapping the large territory between

the minimum and maximum Keisler class, i.e. between ω+- and λ+-goodness. We

describe three major properties: (1) the size of pseudofinite sets, (2) the size of the

cut above ω in an ultrapower of (ω,<), (3) whether or not D has regularizing sets

below every nonstandard integer. (1)-(2) are due to Shelah; (3) is new, and will be

discussed further in Chapter 5.



30

1.1.5 Cardinalities of sets

Fact 1.14. Let M be a model of signature L, L0 ⊂ L and D an ultrafilter on λ. Then

(
Mλ/D

)
|L0 = (M |L0)

λ /D

Corollary 1.15. Let D be any ultrafilter on λ, not necessarily regular, with M count-

able and N := Mλ/D. Let X[t] ⊂ M [t] be infinite, and set X :=
∏

t<λX[t]/D ⊂ N .

Then |X| = |N |.

Proof. Let L be the expansion of the language to include a new function symbol {f},

interpreted almost everywhere as a bijection f [t] : X[t]→M [t]. Then f =
∏

t f [t]/D

will remain a bijection in N by  Loś’ theorem.

For pseudofinite subsets of N , the story is different.

Definition 1.16. ([26] Definition III.3.5) Let D be a regular ultrapower on λ.

µ(D) := min

{∏
t<λ

n[t]/D : n[t] < ω,
∏
t<λ

n[t]/D ≥ ℵ0

}

be the minimum value of the product of an unbounded sequence of cardinals modulo

D.

Theorem E. (Shelah, [26].VI.3.12) Let µ(D) be as in Definition 1.16. Then for any

infinite λ and ν = νℵ0 ≤ 2λ there exists a regular ultrafilter D on λ with µ(D) = ν.

See Theorem G below. This leads to obvious failures of saturation in theories

which contain a parametrized family of sets of size n for all n (the finite cover property,
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Definition 0.9), because an ultrapower modulo D will contain nonstandard elements

of the family whose size is precisely µ(D):

Corollary 1.17. Let M be the standard model of the finite cover property (Example

1.2.3 above), i.e. an equivalence relation E with an equivalence class of size n for

each n < ω, and let D be a regular ultrafilter on λ. Then Mλ/D is λ+-saturated iff

µ(D) ≥ λ+.

A deep and surprising theorem of Shelah shows that all failures of saturation in

ultrapowers of stable theories come from pseudofinite sets which are too small. This

will establish the identities of the only two known equivalence classes in the Keisler

order: T without the finite cover property, and T stable with the finite cover property

(Theorem H). We sketch the proof of this result:

Theorem F. (Shelah, [26]:VI.5) If T is a countable stable theory, M |= T , D regular

on λ and µ(D) ≥ λ+, then Mλ/D is λ+-saturated.

Proof. (Sketch) The proof rests on the following characterization of saturated models

in stable theories: when T is stable, N |= T is λ+-saturated iff N is κ(T )-saturated

and every maximal indiscernible set has size at least λ+ (see [26]: Theorem III.3.10).

Essentially, this is because any type p ∈ S(C), |C| ≤ λ does not fork over a set C0,

|C0| < κ(T ): so by κ(T )-saturation we can find a countable indiscernible set I of

realizations of p|C0 . Let J ⊃ I be any indiscernible set extending I. Any element

a ∈ J which is free from C over C0 will realize the unique nonforking extension of
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p|C0 to C, which is p. Such an a will exist if |J | > |C|.

In our case, T is countable so κ(T ) = ℵ1; nonprincipal ultrapowers are auto-

matically ℵ1-saturated (Fact 1.8). So it would suffice to show that every countable

indiscernible set in a regular ultrapower N of a countable stable theory can be ex-

tended to an indiscernible set of size λ+. Expanding the language slightly to code ∈,

Shelah shows that this is the same as the problem of showing that every pseudofinite

set in the ultrapower has cardinality ≥ λ+.

1.1.6 Cuts above ω

A natural way of characterizing ultrafilters is to “sound out” the depth of their

multiplicativity, using sufficiently complex theories. Let M = (ω,<) be a discrete

linear order. Define the lower cofinality of ω modulo D, written lcf(ω,D), to be the

reverse cofinality of the set of elements above the image of the diagonal embedding

of ω in (ω,<)λ/D (Definition 1.23 below), i.e. the coinitiality of ω in the ultrapower.

If lcf(ω,D) ≤ λ, then any formula with the order property will omit a type

(Theorem 6 below; for the order property, see Definition 0.9). The following theorem

shows that filters with large µ(D) in the sense of Definition 1.16 can still have small

lcf(ω), which will establish a dividing line between stable and unstable theories.

Theorem G. (Shelah, [26].VI.3.12) For any infinite λ, ν = νℵ0 ≤ 2λ and ℵ0 < κ ≤ ν

there exists a regular ultrafilter D on λ such that lcf(ω,D) = κ and µ(D) = ν.

Proof. (Sketch) Here is a brief sketch of the proof (given in full in [26]:Theorem
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VI.3.12, pps. 357-367). The construction uses Kunen’s method of families of inde-

pendent functions. A family F = {fj : j < κ} ⊂ ωλ is said to be independent modulo

some filter D on the index set λ if, for each finite set of elements a1, . . . at ∈ ω and

k1, . . . kt ∈ κ, {i ∈ I : (fk1 [i] = a1) ∧ · · · ∧ (fkt [i] = at)} 6= ∅ modulo D. The func-

tions fj keep track of the possible remaining partitions of I which the filter has not

yet decided will be large or small. They can also be thought of as elements which

have not yet decided to be nonstandard (since adding {i : ft[i] = n} to the filter is

consistent). Thus at stage η of the construction, if α is an element which is nonstan-

dard (i.e. {i : α[i] ≥ n} ∈ D for all n < ω), then {i : α[i] > ft[i]} ∈ D for any

ft which remains in the independent family. Thus the construction of the filter can

be visualized as working downwards towards the standard copy of ω, progressively

reducing the independent family by adding sets to D saying that certain elements

of F are nonstandard; meanwhile, the remaining elements of F remain in the gap

between all known nonstandard elements and ω. Finish each stage η by ensuring Dη

is a maximal filter modulo which the remaining family Fη is independent. Because of

this maximality, the construction ensures that once F is used up the original D will

have been extended to an ultrafilter.

If at some point in the construction the maximal independent family remaining

is of size µ, then one can show that the cardinality of the set of elements below some

nonstandard integer in (ω,<)λ/D is no more than µ. On the other hand, suppose

these µ-many elements are partitioned into κ-many blocks, for κ < µ, and added a



34

block at a time. Then an artifact of the construction will be a descending κ-sequence

of nonstandard integers approaching the cut above ω, giving lcf(ω,D) = κ. Certain

restrictions on the values of κ, µ appear in the construction: κ > ℵ0, µ = µℵ0 .

1.1.7 Flexibility

Finally, we discuss a new property of regular ultrafilters which will become im-

portant in Chapter 5.

Definition 1.18. (Flexibility) Let D be a regular ultrafilter.

1. A D-nonstandard integer is any product modulo D of a D-unbounded sequence

of finite cardinals, i.e. n∗ =
∏

t n[t]/D where each n[t] < ℵ0 and n∗ ≥ ℵ0.

2. Let X = {Xi : i < λ} be a regularizing set. For each index t < λ, we define

σ[t] := |{i : t ∈ Xi}|. Define the shell size σ(X) :=
∏

t σ[t]/D.

3. Say that D is flexible if for every D-nonstandard integer n∗, D contains a

regularizing set X such that {t : σ[t] ≤ n[t]} ∈ D, where σ = σ(X).

As in the case of goodness, in order to establish flexibility as a useful property

for saturation of ultrapowers, we show that it is captured by types in some countable

first-order theory. The following class of theories was first studied by Buechler [5]:

Definition 1.19. The theory T is low if for every formula ϕ there exists k < ω

such that for every instance ϕ(x; a) of ϕ, ϕ(x; a) divides iff it ≤ k-divides. The
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theory is simple if for every formula ϕ and every k < ω there exists nk such that

D(x = x, ϕ, k) < nk, that is, ϕ cannot sequentially k-divide more than nk times.

Remark 1.20. Stability implies lowness; see Observation 5.8. Many simple theories

are low, but not all [6].

Lemma 1.21. Let ϕ be a formula of T which is not low, M |= T ℵ1-saturated, D

regular on λ. If Mλ/D is λ+-saturated, then D must be flexible.

Proof. Suppose we are given some nonstandard integer n∗ =
∏

t n[t]/D. Let us iden-

tify a small set A ⊂ N and a consistent type p ∈ Sϕ(A) which is realized iff D has a

regularizing set with shell size σ ≤ n∗ modulo D.

By choosing the index model M to be sufficiently saturated, we may assume by

the hypothesis of non-lowness that M contains indiscernible sequences Ik, for each

k < ω, such that {ϕ(x; c) : c ∈ Ik} is k-consistent but (k+1)-inconsistent. Write Ik[t]

for this sequence in the tth copy of the index model, M [t].

Fix a regularizing set X = {Xi : i < λ}. To build our desired set A, it suf-

fices to define each element ai on Xi. Indeed, we will think of the element ai as a

representative of the set Xi, in a sense that will be clear from the construction: we

would like a realization of the type p ∈ S(A) to give the desired refinement of X.

Let Y [t] = {t : t ∈ Xi} be the indices of elements to be defined in M [t], and let

m[t] = |Y [t]|. We shall define the aj[t] (for j ∈ Y [t]) to be distinct elements of In[t][t],

where recall that n[t] is the shell size we are aiming for at index t. More precisely, we

choose the aj such that:
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1. j, k ∈ Y [t] =⇒ aj[t] 6= ak[t]

2. for all ρ ⊆ Y [t], because the elements are chosen along the indiscernible sequence

In[t],

M [t] |= ∃x

(∧
j∈ρ

ϕ(x; aj[t])

)
⇐⇒ |ρ| ≤ n[t]

i.e., we have chosen our m[t]-many elements of M [t] so that precisely the subsets

of size ≤ n[t] are consistent. To finish, for each i < λ, set ai :=
∏

t ai[t]/D,

and p := {ϕ(x; ai) : i < λ}. To see that this is a consistent type, let p0 =

{ϕ(x; ai1), . . . ϕ(x; aik)} be any finite subset. Then Xi1∩· · ·∩Xik ∩{t : n[t] > k} ∈ D,

and at every index in this large set the formula ϕ(x; ai1 [t]), . . . ϕ(x; aik [t]) have a com-

mon realization in M [t], by condition (2).

On the other hand, suppose that α |= p for some α ∈ N . Now the distinctness of

the elements of A allows us to push down the shell size of the original regularizing set

X. Namely, let Z = {Zi : i < λ} be given by Zi = {t : t ∈ Xi, M [t] |= ϕ(α[t]; ai[t])}.

By  Loś’ theorem, Zi ∈ D. Because it refines X, Z remains a regularizing set. Because

the ai were chosen to be distinct,∣∣∣{i : t ∈ Xi, M [t] |= ϕ(α[t]; ai[t])}
∣∣∣ ≤ n[t]

so σ(Z) ≤ n∗ modulo D.

1.2 Keisler’s order

We now define Keisler’s order and state the known results.
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Definition 1.22. Keisler’s order on countable theories is given by: T1 ≤λ T2 if for

any M1 |= T1,M2 |= T2, and D a regular ultrafilter on λ, if Mλ
2 /D is λ+-saturated

then so is Mλ
1 /D. Say that T1 ≤ T2 if for all infinite λ, T1 ≤λ T2.

That is, any regular ultrafilter on λ which produces λ+-saturated ultrapowers of

models of T2 will produce λ+-saturated ultrapowers of models of T1. The condition

of regularity ensures that the Keisler order is well-defined: any two elementarily

equivalent λ-regular ultrapowers are back-and-forth equivalent in a game of length λ

(Theorem D above), so the quantification over all models of T is justified. Weaker

preorderings on theories have been investigated by Shelah and Džamonja [9] and

Shelah and Usvyatsov [28].

The Keisler order is understood when T is stable and when T has the strict order

property or SOP3. Prior to this thesis, almost nothing was known about the Keisler

order for T unstable with the independence property but without SOP3 (a weakening

of strict order).

1.2.1 Previous work

H. J. Keisler was responsible for the definition of, and the initial work on, the

order in the 1960s [12]. He isolated several important elements of the smallest and

largest class of theories (this is the origin of the finite cover property). Almost all

subsequent work is due to Shelah; see [26] Chapter VI, sections 3-5, as well as [24],

[27], and related work of Shelah and Džamonja [9] and Shelah and Usvyatsov [28].
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See Section 1.1 above for a discussion of these results. This work may be summarized

as follows:

Theorem H. (Shelah) Let T be a countable first order theory, D a regular ultrafilter

on λ, and the Keisler order as in Definition 1.22. Then:

1. (Results on equivalence classes) (for (a)-(b), see Theorem F, page 31)

(a) The theories which do not have the finite cover property are minimal in

the Keisler order, and form an equivalence class.

(b) The theories which are stable and have the finite cover property form an

equivalence class.

(c) Theories which have the strict order property are maximal. SOP3, a weak-

ening of strict order, is also maximal ([27], and Theorem 3.32 below). A

necessary model-theoretic condition for maximality is not known.

2. (Results on dividing lines) (for (a)-(b), see Theorem G, page 32)

(a) For any cardinal µ = µℵ0, ℵ0 < µ ≤ λ+, there exists a regular ultrafilter D

on λ such that for some unbounded sequence of finite cardinals 〈n[t] : t <

λ〉, we have
∏

t n[t]/D = µ. This shows that stable theories break into two

distinct classes ( nfcp and fcp) when the ultrafilter is taken on λ > ℵ0.

(b) For any cardinal ν = νℵ0, ℵ0 < ν ≤ λ+, there exists a regular ultrafilter

D on λ with the property that lcf(ω,D) = ν. This gives a dividing line

between stable and unstable theories.
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(c) Assuming MA+ 2ℵ0 > ℵ1, there exists an ultrafilter on ω which saturates

certain models of the random graph, but not those of any theory with the

tree property. Thus, it is consistent that there is a dividing line between the

random graph and theories with the tree property ([26]:Theorem VI.3.10).

(d) The ultrafilters which saturate maximal theories are precisely the “good”

ultrafilters (Corollaries 1.11, 1.13 above). λ+-good filters on λ exist by

Kunen [16].

Proofs can be found in [26]:VI.5, as well as in the previous section. As discussed in

Chapter 0, notice first that the classification is quite coarse; second, that the known

dividing lines are of independent model-theoretic interest; third, that the proof of

clause 1(b), which is Theorem F above, in fact shows that if a stable theory is not

saturated then a ϕ-type is omitted for any ϕ with the finite cover property. Theorem

1.33 below shows that this is paradigmatic: the Keisler order depends on an analysis

of ϕ-types.

1.2.2 Some definitions

These are prolegomena for the next section.

Definition 1.23. (Traces of order)

1. Let X ⊂Mλ/D be a small set. X is true if there exists an assignment f : X →

D such that for any t ∈ λ, t ∈ f(x) ∩ f(y) implies M [t] |= x[t] 6= y[t].
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2. Let X ⊂ (κ,<)λ/D be a small set. X is order-true if there exists an assignment

f : X → D such that for any x, y in X and any t ∈ λ, with t ∈ f(x)∩ f(y), we

have M [t] |= x[t] < y[t] iff N |= x < y.

3. Write N = (γ,<)λ/D for the ultrapower of a discrete linear order of order-

type γ, and identify γ with its image under the diagonal embedding. The set of

γ-nonstandard elements is {y ∈ N : g ∈ γ → y > g}.

4. As in [26]:VI.4, let lcf(γ,D) be the cofinality of the set of γ-nonstandard ele-

ments considered with the reverse ordering, i.e. the coinitiality of γ.

We can extend this definition to γ-indexed sequences of the ultrapower (for our

purposes, |γ| = ℵ0). Let lcf∗(γ,D) be the minimal cardinality κY , where Y ⊂

(ω,<)λ/D is of order-type γ and κY is the reverse cofinality of the set of Y -

nonstandard elements. See clause (3) of the next remark.

Remark 1.24. (on the previous definition)

1. Note that all countable sets are true: refine any distribution so that the nth

element is distinct from its finitely many predecessors. This need not be possible

for uncountable sets.

2. In general, for any relation R one could define R-true; true is =-true.

3. As each κY is a cardinal, the minimum is well defined. As D is regular, whether

or not lcf∗(ω,D) ≥ λ+ depends on D and not on the choice of M = (ω,<)

(Theorem D above).
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The importance of lcf(ω,D) for the Keisler order is given by:

Theorem I. (Shelah, [26]:Theorem VI.4.8) If M is a model of an unstable theory T

and D is a regular ultrafilter on λ with lcf(ω,D) = κ, then Mλ/D is not κ+-compact.

When T is countable, one can replace “compact” with “saturated.” The proof

shows that any formula with the order property can code a “cut” which is not realized.

(As the order is not on a definable set, the fact that one side of the cut is ω is crucial.)

Thus any ultrafilter on λ which produces λ+-saturated ultrapowers of some unstable

theory can be assumed to have lcf(ω,D) ≥ λ+. The construction of the next section

uses this fact to extract “limit definitions” which make types principal in an expanded

language.

1.3 Reduction to ϕ-types

The main result of this section is that the problem of realizing types in regular

ultrapowers of countable theories reduces to that of realizing types in finite restrictions

of the language (Theorem 1.33), i.e. ϕ-types for all formulas ϕ of L.

The first lemma says that if lcf(ω,D) is large, so is the reverse cofinality of the

set above any ω-indexed sequence in the ultrapower: i.e., the minimum of Definition

1.23 is attained above the standard copy of ω.

Lemma 1.25. For any regular ultrafilter D on λ, lcf∗(ω,D) = lcf(ω,D).
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Proof. Set N := (ω,<)λ/D. Let W = 〈wn : n < ω〉 be an increasing ω-indexed

sequence in N . Let C0 = 〈c0j : j < κ〉 be any reverse cofinal subset of {b ∈ N : N |=

b > wn for each wn ∈ W}, with κ = cof(κ). Fix an assignment f : W ∪ C0 → D

whose image is a regularizing set and which is <-true on W . (The second clause is

possible by countability of W : Remark 1.24). Write W [t] for {wn[t] : t ∈ f(wn)}, i.e.

the trace of W in the model M [t].

Let us define a second sequence of elements, C1 ⊂ N such that:

• |C1| = κ, and C1 is cofinal in C0.

• C1 remains W -nonstandard, that is, for all w ∈ W and all c1 ∈ C1, N |= c1 > w.

• for each i < κ, N |= c0i ≥ c1i .

• there is an assignment g : C1 → D such that for each c1 ∈ C1 and each t ∈ λ,

we have t ∈ g(c1)→ c1[t] ∈ W [t].

Construct C1 by defining c1i [t] to be 0 if t /∈ f(c0i ), and otherwise:

c1i [t] = max{k : k ∈ W [t], M [t] |= c0i [t] ≥ k}

That is, in each index model, certain elements of C0 fall into the gaps between

elements of W ; we move these down slightly until they enter W [t]. By  Loś’ theorem,

the desired conditions are satisfied.

To finish, we collapse W onto ω, which induces a map from C1 onto a sequence

of the same cardinality which is reverse-cofinal above the standard copy of ω. More
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precisely, in each index model M [t], define h[t] : W [t] → |W [t]| to be an order-

preserving bijection and set h =
∏

t h[t]/D. Set ci = h(c1i ) and C = 〈ci : i < κ〉. Then

h also gives an order-preserving bijection from C1 → C. Now:

1. For each n, {t ∈ λ : M [t] |= ci[t] > n} ⊇ {t ∈ λ : M [t] |= c1i [t] > wn[t]}, and

2. Suppose for some β, for all c ∈ C and all n ∈ ω, N |= c > β > ω. Then

N |= h−1(c) > h−1(β) > h−1(wn). But h is an order-preserving bijection, so

this schema of conditions would imply that C1 was not reverse-cofinal above

W , contradiction.

Thus lcf(ω) ≤ |C1| = |C0| = cof(κ) = κ = lcf∗(W ), as desired.

Definition 1.26. (Induced predicates) Let N = Mλ/D. A set C ⊂ N is induced if

it is equivalent modulo D to the product of its projections to the index models, i.e. if[∏
t

C[t]

]
D

= C

The predicate P is an induced predicate if its interpretation in N is an induced

set. “There exists an induced predicate P such that...” means: we can, assuming this

is not redundant, expand L by adding a new predicate symbol P whose interpretation

in N is an induced set with the desired property.

Remark 1.27. (On induced sets) The induced sets play a key role in the analysis

of types in ultrapowers. Because they come from the index models in a concrete way,

these sets are typically very large (the dimensional invariants of D-pseudofinite sets,
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such as µ(D), apply), compared to the “small” base sets of types under analysis. At

the same time, because induced sets are definable in an expanded language, they are

very important carriers of structural information, by Fact 1.14. For instance, if one

can establish that some first-order property holds on an induced subset of N , then

 Loś’ theorem applies.

Note that any L-definable set is induced.

The second lemma shows that a strictly descending countable sequence of induced

predicates in a regular ultrapower can be regarded as describing intervals in some

induced discrete linear order, so that the existence of an infinite induced predicate

contained in the intersection (and itself containing some fixed small set X) will follow

from realization of the analogous “X,ω” cut.

Lemma 1.28. Let D be a regular ultrafilter on λ such that lcf(ω,D) ≥ λ+.

Fix M w.l.o.g. countable, N := Mλ/D, and X ⊂ N small. Let 〈Pn : n < ω〉 be a

sequence of induced predicates such that Pn ) Pn+1 ⊃ X for all n < ω. Then there

exists an induced predicate P∞ such that for all n < ω, Pn ) P∞ ⊇ A.

Proof. First, “distribute the predicates” : choose an assignment f : 〈Pn〉 → D of

the countably many predicates to index models such that for each t < λ, and all

m,n < ω,

(t ∈ f(Pm) ∩ f(Pn)) ∧ (m < n)→ Pm[t] ) Pn[t]

As the number of predicates is countable, we can refine any assignment to have this

property.
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Next, define a total discrete linear order on each index model M [t], using a new

binary relation symbol ≤t, in such a way that if m < n < ω and t ∈ f(m)∩ f(n), we

have

∀x, y (x ∈ Pm[t] ∧ x /∈ Pn[t] ∧ y ∈ Pn[t])→ x ≤t y

Without loss of generality, elements not in any predicate are placed below those in

P0. Let ≤ on N be the order induced by
∏

t ≤t /D.

Choose a countable sequence of elements α := 〈αn : n < ω〉 ⊂ N such that Pn(αn)

and ¬Pn+1(αn). Then α is an increasing sequence of ≤-order-type ω. Furthermore, for

every n, X ⊂ Pn+1 implies that for each x ∈ X, x ≥ αn. That is, in N , the elements

of X, considered with the reverse induced order, form a descending sequence above

α of cofinality at most |X| = λ. By the previous Lemma and the hypothesis on D,

there exists c in the ultrapower which is above α and below X in the induced order.

Given a distribution d of X, define P∞ by expanding each index model M [t] with a

predicate which contains precisely the elements of X above c[t]. P∞ contains X by

construction. On the other hand, every element y in P∞ is α-nonstandard, so it will

be contained in Pn almost everywhere, for each n.

In order to apply these lemmas, we isolate an important class of induced predi-

cates: those which give definitions for types.

Definition 1.29. (Almost principal types)

1. Let A,B ⊂ (Mλ/D)n be disjoint small sets and ψ(x; y), l(y) = n a formula.
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Then (A,B) is a small ψ-partition of N if the type

p(x) = {ψ(x; a) : a ∈ A} ∪ {¬ψ(x; b) : b ∈ B}

is consistent. From now on, we will again suppress mention of the arity of y.

The type p is called the type associated to the partition (A,B), or its associated

ψ-type.

2. In the other direction, every small ψ-type p ∈ Sψ(C), C ⊂ N has an associated

small ψ-partition of N .

3. Let A,B be a small ψ-partition of N , and p its associated ψ-type. Say that p is

almost principal if there exist induced predicates P,Q such that P ⊃ A, Q ⊃ B

and in the expanded language L ∪ {P,Q}, we have that

N |= ∃x
(
∀y
(
P (y)→ ψ(x; y)

)
∧ ∀z

(
Q(z)→ ¬ψ(x; z)

))
(1.3)

A type which is almost principal has a consistent definition in an expanded lan-

guage. Because it relies on induced sets, this is a property of the ultrafilter as well as

the theory.

Remark 1.30. The existential statement in Equation 1.3 is important. It may hap-

pen that for a small ϕ-partition (A,B) there are induced sets P,Q containing A,B

respectively, but these leave no room for the resulting “definable” ϕ-type to be realized.

For instance, take ϕ(x; y) = xEy ∧ x 6= y where E is an equivalence relation with a

class of size n for each n < ω, choose D so that µ = µ(D) ≤ λ, and take A ⊂ N to be
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the elements in some equivalence class of size µ, and B = ∅. Then, clearly, we can

take P to name the equivalence class of A, but the associated type is omitted as there

does not exist x such that x ∈ P but x /∈ A.

Lemma 1.31. Let D be a regular ultrafilter, M |= T a countable model, ϕ = ϕ(x; y)

a formula of T , A ⊂ N small, p ∈ Sϕ(A). Then p is realized iff it is almost principal.

Proof. (⇐) Suppose p is almost principal, witnessed by the induced predicates P,Q.

Let (A,B) be the associated small ϕ-partition of N . Write P [t], Q[t] for the predicates

in the index model M [t]. By  Loś’ theorem,

{t < λ : M [t] |= ∃x
(
∀y
(
P (y)→ ϕ(x; y)

)
∧ ∀z

(
Q(z)⇒ ¬ϕ(x; z)

))
} ∈ D (1.4)

Let c[t] ∈ M [t] be the witness x given by (1.4) and set c =
∏

t c[t]/D. For any

a ∈ A, a almost everywhere in P implies that ϕ(c; a), and likewise for b ∈ B, b almost

everywhere in Q implies that ¬ϕ(c; b), so c |= p.

(→) Let c ∈ N be an element realizing p, and d be a distribution of the sentences

obtained when c is substituted into the formulas of p. Expand each index model M [t]

using P to name the parameters of positive instances of ϕ assigned to M [t] by d, and

Q the parameters of negative instances. By  Loś’ theorem P ⊃ A and Q ⊃ B, and by

consistency of the full theory of each index model, the predicates are disjoint in each

M [t], thus also in the ultrapower. Furthermore, in the expanded language L∪{P,Q},

each index model M [t] satisfies ∃x((a ∈ P → ϕ(x; a)) ∧ (b ∈ Q → ¬ϕ(x; b))), as

witnessed by c.
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Corollary 1.32. In general, if p is a small type in positive and negative instances

of ϕ1, . . . ϕn with parameters from C, then p is realized in N iff there exist induced

predicates P1, . . . , Pn, Q1, . . . Qn such that:

N |= ∃x
∧
i≤n

(
∀y
(
Pi(y)→ ϕi(x; y)

)
∧ ∀z

(
Qi(z)→ ¬ϕi(x; z)

))
and such that, for each i ≤ n, Pi ⊇ Ai and Qi ⊇ Bi where (Ai, Bi) is the ϕi-partition

of C implied by p.

We can now reduce the problem of realizing small types in regular ultrapowers of

a countable theory to the problem of realizing types in finite subsets of the language

L.

Theorem 1.33. Let D be a regular ultrafilter on λ, T a countable theory in the

language L, M |= T , N = Mλ/D. Suppose that for all formulas ϕ ∈ L, N realizes

all small consistent ϕ-types. Then N is λ+-saturated.

Proof. It suffices to consider unstable T , as by Shelah’s classification of stable theories

(see the proof of Theorem F above) saturation in stable theories depends on realizing

ϕ-types for ϕ any formula with the finite cover property. So let T be unstable. By

Theorem I, we may assume lcf(ω,D) ≥ λ+, as otherwise some ψ-type would be

omitted for a formula ψ with the order property.

Let p ∈ S(C) be any small (partial) type in the ultrapower N and fix an enu-

meration 〈ϕi : i < ω〉 of the formulas of L. For any σ ⊂ ω, |σ| < ℵ0, write pσ for p

restricted to positive and negative instances of formulas {ϕi : i ∈ σ}.
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In the spirit of the previous lemma, to realize p it would be enough to find induced

predicates P∞
i , Q

∞
i (i < ω) such that the type

q(x) := {∀y
(
P∞
i (y)→ ϕi(x; y)

)
∧ ∀z

(
Q∞
i (z)→ ¬ϕi(x; z)

)
: i < ω}

is consistent in N in the expanded language L ∪ {P∞
i , Q

∞
i : i < ω} and extends p,

because any consistent such q will be realized in N by ℵ1-saturation. The appropriate

predicates P∞
i , Q

∞
i will be found as limits of countably many approximations below

by applying Lemma 1.28.

That is, we define a countable sequence of induced predicates 〈P n
i , Q

n
i : n < ω〉

for each ϕi ∈ L, such that:

1. for each n < ω, P n
i , Q

n
i witness that p{i} is almost principal.

2. for all j < ω, for all but finitely many n < ω,

{ϕi(x; a) : a ∈ P n
i } ∪ {¬ϕi(x; b) : b ∈ Qn

i } ∪

{ϕj(x; c) : c ∈ P n
j } ∪ {¬ϕj(x; d) : d ∈ Qn

j }

is consistent.

Fix an enumeration f : Pℵ0(ω) → ω. By hypothesis, for each i < ω, p{i} is

realized. At stage n = 0, applying Lemma 1.31 to p{i} gives induced predicates

P 0
i , Q

0
i witnessing that p{i} is almost principal. At stage n + 1, following Corollary
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1.32, let Xn+1
i1

, . . . Xn+1
ik

, Y n+1
i1

, . . . Y n+1
ik

be induced predicates witnessing the almost-

principality of pσ, where σ = {i1, . . . ik} = f−1(n+ 1). Define

P n+1
i =


P n
i ∩Xn+1

i if i ∈ σ

P n
i o.w.

and analogously for Qn+1
i , where Y n+1

i replaces Xn+1
i .

Now for each ϕi ∈ L we have defined two descending sequences of induced pred-

icates P 0
i · · · ⊃ P n

i · · · ⊃ Ai and Q0
i · · · ⊃ Qn

i · · · ⊃ Bi, where (Ai, Bi) is the small

ϕi-partition of N associated to p{i}. By construction, these sequences satisfy (1)-(2).

Apply Lemma 1.28 to obtain the induced predicates P∞
i , Q

∞
i such that for all n < ω

P n
i ⊃ P∞

i ⊃ Ai and Qn
i ⊃ Q∞

i ⊃ Bi.

The type q mentioned above is now well defined, and by Condition (2) must be

consistent. This completes the proof.
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Chapter 2

Persistence

This chapter develops a framework for analyzing the combinatorial complexity of

formulas ϕ. To each formula we associate a countable sequence of hypergraphs, the

characteristic sequence, which describe incidence relations on the parameter space of

ϕ, Definition 2.2. The goal is to give an analysis of ϕ-types by describing the way that

certain distinguished sets A (the complete P∞-graphs, avatars of consistent partial

ϕ-types) sit inside the ambient hypergraphs Pn. Motivated in part by applications

to ultrapowers, we try to understand the distribution of “complex” graph-theoretic

structure and whether it persists under progressive localizations as we close in on the

distinguished set A. Localization is defined in 2.27, and persistence in 2.36. In Section

2.5 we show these methods can be used to characterize stability and simplicity.
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2.1 The characteristic sequence

Definition 2.1. (Notation and conventions)

1. Throughout this chapter, if a variable or a tuple is written x or a rather than

x, a, this does not necessarily imply that `(x), `(a) = 1.

2. Unless otherwise stated, T is a complete theory in the language L.

3. A graph in which no two elements are connected is called an empty graph. A

pair of elements which are not connected is an empty pair. When R is an n-ary

edge relation, to say that some X is an R-empty graph means that R does not

hold on any n-tuple of elements of X. X is an R-complete graph if R holds on

every n-tuple from X.

4. Write ϕn(x; y1, . . . yn) for the formula
∧
i≤n ϕ(x; yi).

5. P∞ will be shorthand for the collection of predicates Pn when the context (of a

given condition, not necessarily definable, which holds of Pn for all n) is clear,

e.g. A is a P∞-complete graph meaning A is a Pn-complete graph for all n.

6. The complete P∞-graph A will be called a positive base set when the empha-

sis is on its identification with some consistent partial ϕ-type under analysis,

Observation 2.4(5).

7. The sequence 〈Pn〉 has support k if: Pn(y1, . . . yn) iff Pk holds on every k-element

subset of {y1, . . . yn}. See Remark 5.4.
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8. In discussing graphs we will typically write concatenation for union, i.e. Ac for

A ∪ {c}.

9. The element a ∈ P1 is a one-point extension of the Pn-complete graph A just

in case Aa is also a Pn-complete graph. In most cases, n will be ∞.

10. A formula ψ(x; y) of L will be called dividable if there exists an infinite set

C ⊂ P1 and k < ω such that {ψ(x; c) : c ∈ C} is 1-consistent but k-inconsistent.

(Thus, by compactness, some instance of ψ divides.) When it is important to

specify the arity k, write k-dividable.

11. For consistent, inconsistent, k-consistent, k-inconsistent see Chapter 0, §4.

Definition 2.2. (Characteristic sequences) Let T be a first-order theory and ϕ a

formula of the language of T .

• For n < ω, Pn(z1, . . . zn) := ∃x
∧
i≤n ϕ(x; zi).

• The characteristic sequence of ϕ in T is 〈Pn : n < ω〉.

• Write (T, ϕ) 7→ 〈Pn〉 for this association.

• Convention: We assume that T ` ∀y∃z∀x(ϕ(x; z)↔ ¬ϕ(x; y)). If this does not

already hold for some given ϕ, replace ϕ with θ(x; y, z) = ϕ(x; y) ∧ ¬ϕ(x; z).

Convention 2.3. Below, we will ask a series of questions about whether certain, pos-

sibly infinite, configurations appear as subgraphs of the Pn, or of the P f
n in some finite
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localization (Definition 2.27). For our purposes, the existence of these configurations

is a property of T . That is, we may, as a way of speaking, ask if some configuration

X appears, or is persistent, inside of some Pn; however, we will always mean whether

or not it is consistent with T that there are witnesses to X inside of Pn interpreted

in some sufficiently saturated model. Certainly, one could ask the question of whether

some given model of T , expanded to model of the Pn, must include witnesses to X;

we will not do so here. Thus, the formulas Pn will often w.l.o.g. be identified with

their interpretations in some monster model.

Observation 2.4. (Basic properties) Let 〈Pn : n < ω〉 be the characteristic sequence

of (T, ϕ). Then, regardless of the choice of T and ϕ, we will have:

1. (Reflexivity) ∀x(P1(x)→ Pn(x, . . . x)). In general, for each ` ≤ m < ω,

∀z1, . . . z`, y1, . . . ym

(
({z1, . . . z`} = {y1, . . . ym})

=⇒ (P`(z1, . . . z`) ⇐⇒ Pm(y1, . . . ym))
)

2. (Symmetry) For any n < ω and any bijection g : n→ n,

∀y1, . . . yn

(
Pn(y1, . . . yn) ⇐⇒ Pn(yg(1), . . . yg(n))

)



55

3. (Monotonicity) For each ` ≤ m < ω,

∀z1, . . . z`, y1, . . . ym

(
({z1, . . . z`} ⊆ {y1, . . . ym})

=⇒ (Pm(y1, . . . ym) =⇒ P`(z1, . . . z`))
)

So in particular, if |= Pm(y1, . . . ym) and ` < m then P` holds on all `-element

subsets of {y1, . . . ym}. The converse is usually not true; see Remark 5.4 .

4. (Dividing) Suppose that for some n < ω, it is consistent with T that there exists

an infinite subset Y ⊂ Pn such that Y k∩Pnk = ∅. Then in any sufficiently satu-

rated model of T , some instance of the formula ϕn(x; y1, . . . yn) =
∧
i<n ϕ(x; yi)

k-divides.

5. (Consistent types) Let A ⊂ P1 be a set of parameters in some M |= T . Then

{ϕ(x; a) : a ∈ A} is a consistent partial ϕ-type iff An ⊂ Pn for all n < ω.

Proof. (4) By compactness, there exists an infinite indiscernible sequence of n-tuples

C = 〈ci1, . . . cin : i < ω〉 such that Ck ∩ Pnk = ∅. The set {ϕn(x; ci1, . . . c
i
n) : i < ω}

is therefore k-inconsistent. However, it is 1-consistent: for each ci1, . . . c
i
n ∈ C, M |=

Pn(ci1, . . . c
i
n), so M |= ∃xϕn(x; ci1, . . . c

i
n).

Convention 2.5. (T0-configurations) Throughout this chapter, let T0 denote the in-

complete theory in the language L0 := {Pn : n < ω} ∪ {=} which describes (1)-(3) of

Observation 2.4. Blueprints for hypergraphs in the language L0 which are consistent
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with T0 will be called T0-configurations. That is: a finite T0-configuration is a pair

X = (VX , EX) where VX = n < ω, EX ⊆ P(n) and the following is consistent with

T0:

(∃x1, . . . xn) (∀σ ⊆ n, |σ| = i, σ = {`1, . . . `i})
(
Pi(x`1 , . . . x`i) ⇐⇒ σ ∈ EX

)
(2.1)

In general, the domain of a T0-configuration may be infinite; we simply require that

its restriction to every finite subdomain satisfy (2.1). These are the graphs which can

consistenly occur as finite subgraphs of some characteristic sequence. That every such

graph appears in some sequence follows from Example 2.14 below.

Convention 2.6. (T1-configurations) Fix T, ϕ, and the associated sequence 〈Pn : n <

ω〉. Let M |= T ; there is a unique expansion of M to L0 = {Pn : n < ω} ∪ {=}.

Throughout this chapter, whenever T, ϕ, 〈Pn〉 are thus fixed, let T1 denote the complete

theory of M in the language L0. As the characteristic sequence is definable in T , when

T is complete this will not depend on the model chosen.

Hypergraphs in the language L0 which are consistent with T1 will be called T1-

configurations.

2.2 Some examples

This section works out several key examples. Localization and persistence will be

defined in Definitions 71 and 77; the general definitions of (η, ν)-arrays and trees will

be given in Definition 2.18.
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Example 2.7. (The random graph)

T is the theory of the random graph, and R its binary edge relation (see also

Chapter 1, §2.2, Example 2). Let ϕ(x; y, z) = xRy ∧ ¬xRz, with (T, ϕ) 7→ 〈Pn〉.

Then:

• P1((y, z)) ⇐⇒ y 6= z.

• Pn((y1, z1), . . . (yn, zn)) ⇐⇒ {y1, . . . yn} ∩ {z1, . . . zn} = ∅.

Notice:

1. The sequence has support 2.

2. There is a uniform finite bound on the size of an empty graph C ⊂ P1, C
2∩P2 =

∅: an analysis of the theory shows that ϕ is not dividable, and inspection reveals

this bound to be 3.

3. Pn does not have the order property for any n and any partition of the y1, . . . yn

into object and parameter variables. (Proof: The order property in Pn implies

dividability of ϕ2n by Observation 2.32. But none of the ϕ` are dividable, as

inconsistency only comes from equality.)

4. Of course, the formula ϕ has the independence property in T . We can indeed

find a configuration in P2 which witnesses this: any C which models the T0-

configuration having VX = ω and {i, j} /∈ EX ⇐⇒ ∃n(i = 2n ∧ j = 2n + 1).
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Note that ϕ will have the independence property on any infinite P2-complete

subgraph of the so-called (ω, 2)-array C (see Observation 2.47 below).

5. As ϕ is unstable, ϕ-types are not necessarily definable in the sense of stability

theory. However, we can obtain a kind of definability “modulo” the indepen-

dence property, or more precisely, definability over the name for a maximal

consistent subset of an (ω, 2)-array as follows:

Definable types modulo independence. Let p ∈ S(M) be a consistent partial ϕ-type

presented as a positive base set A ⊂ P1. Let us suppose p ` {xRc : c ∈ C}∪ {¬xRd :

d ∈ D} ` p, so that A ⊂M2 is a collection of pairs of the form (c, d) which generate

the type.

There is no definable (in T with or without parameters, so in particular not from

P2) extension of the type A, so we cannot expect to find a localization of P1 around

A which is a P2-complete graph. However:

Claim 2.8. In the theory of the random graph, with ϕ(x; y, z) = xRy ∧ ¬xRz as

above, for any positive base set A ⊂ P1 there exist a definable (ω, 2)-array W ⊂ P1,

a solution S of W and an S-definable P∞-graph containing A.

Proof. Work in P1. Fix any element (a, b) with a, b /∈ C,D and set W0 := {(y, z) ∈

P1 : ¬P2((y, z), (a, b))}. Thus W0 = {(b, z) : z 6= b} ∪ {(y, a) : y 6= a}. So the only

P2-inconsistency among elements of W0 comes from pairs of the form (b, c), (c, a);
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thus, writing Greek letters for the elements of P1,

(∀η ∈ W0)(∃ν ∈ W0)(∀ζ ∈ W0) (¬P2(η, ζ)→ ζ = ν)

In other words, W := W0 \ {(b, a)} is an (ω, 2)-array (Definition 2.18). Moreover:

1. (y, z), (w, v) ∈ W and ¬P2((y, z), (w, v)) implies y = v or z = w, and

2. for any c 6= a, b, there are d, e ∈M such that (d, c), (c, e) ∈ W . Thus:

3. we may choose a maximal complete P2-subgraph C of W such that CA is a

complete P∞-graph. For instance, let C be any maximal complete extension of

{(b, d) : d ∈ D} ∪ {(c, a) : c ∈ C}. Call any such C a solution of the array W .

Let S be a new predicate which names this solution C of W . Then {y ∈ P1 : z ∈ S →

P2(y, z)} ⊃ A is a P2-complete graph, definable in L ∪ {S}. Support 2 implies that

it is a P∞-graph. Notice that by (2), we have in fact chosen a maximal consistent

extension of A (i.e. a complete global type).

Remark 2.9. The idiosyncracies of this proof, e.g. the choice of a definable (ω, 2)-

array, reflect an interest in structure which will be preserved in ultrapowers.

Example 2.10. (Coding complexity into the sequence)

It is often possible to choose a formula ϕ so that some particular configuration

appears in its characteristic sequence. For instance, by applying the template below
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when ϕ has the independence property, we may choose a simple unstable θ whose P2

is universal for finite bipartite graphs (X, Y ), provided we do not specify whether or

not edges hold between x, x′ ∈ X or between y, y′ ∈ Y . Nonetheless, Conclusion 2.33

below will show this is “inessential” structure in the case of simple theories: whatever

complexity was added through coding can be removed through localization.

The construction. Fix a formula ϕ of T . Let θ(x; y, z, w) := (z = w∧x = y)∨(z 6=

w∧ϕ(x; y)). Write (y, ∗) for (y, z, w) when z = w, and (y,−) for (y, z, w) when z 6= w.

Let 〈Pn〉 be the characteristic sequence of θ, 〈Pϕ
n 〉 be the characteristic sequence of

ϕ, and 〈P=
n 〉 be the characteristic sequence of x = y. Then Pn can be described as

follows:

• Pn((y1,−), . . . (yn,−))↔ Pϕ
n (y1, . . . yn).

• Pn((y1, ∗), . . . (yn, ∗))↔ P=
n (y1, . . . yn).

• Otherwise, the n-tuple y := ((y1, z1), . . . (yn, zn)) can contain (up to repetition)

at most one ∗-pair, so zi = zj = ∗ → yi = yj. In this case the unique y∗ in the

∗-pair is the realization of some ϕ-type in the original model M of T , and

Pn+1((y∗, ∗), (y1,−), . . . (yn,−)) holds iff M |=
∧
j≤n ϕ(y∗; yj).

Remark 2.11. Of course, not all structure can be coded in; see Remark 3.24. Con-

clusion 2.33, §5.1, says that we can localize to avoid the order property, and thus the

random bipartite graph, in P2 when ϕ is simple. In fact, we can do this by localizing

with parameters from the instance of the order property. Notice that, by contrast,
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if one or many of the Pn contain infinite random n-ary hypergraphs (not n-partite),

we cannot localize to avoid this using parameters from the random hypergraph. See

§3.3.5.

Example 2.12. (A theory with TP2)

For TP2, see Definition 0.11. Let T be the model completion of the following theory

[28]. There are two infinite sorts X, Y and a single parametrized equivalence relation

Ex(y, z), where x ∈ X, and y, z ∈ Y . Let ϕeq := ϕ(y;xzw) = Ex(y, z) ∧ ¬Ex(z, w).

Then:

• P1((xzw)) ⇐⇒ z 6= w.

• P2((x1z1w1), (x2z2w2)) ⇐⇒ each triple is in P1 and furthermore:

(x1 = x2)→ ( Ex(z1, z2) ∧
∧
i6=j≤2

¬Ex(wi, zj))

The sequence has support 2. There are many empty graphs; these persist under

localization (Theorem 2.60). Fixing α, choose ai (i < ω) to be a set of represen-

tatives of equivalence classes in Eα, and choose b such that ¬Eα(ai, b) (i < ω).

Then {(α, ai, b) : i < ω} ⊂ P1 is a P2-empty graph. We in fact have arrays

{(αt, ati, bt) : i < ω, t < ω} whose “columns” (fixing t) are P2-empty graphs and where

every path which chooses exactly one element from each column is a P2-complete

graph, thus a P∞-complete graph. The parameters in this so-called (ω, ω)-array de-

scribe TP2 for ϕeq (Claim 2.22).
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Claim 2.13. P2 does not have the order property.

Proof. This is essentially because inconsistency requires the parameters x to coincide.

Suppose that 〈ai, bi : i < ω〉 were a witness to the order property for P2. Fix any

ai = (αs, as, ds). Now ¬P2(bj, ai) for j < i, where bj = (βt, bt, ct). P2-inconsistency

requires αs = βt. As this is uniformly true, αs = αt = βs = βt for all s, t < ω in

the sequence. But now that we are in a single equivalence relation Eα, transitivity

effectively blocks order: ¬P2(bj, ai) ↔ ¬Eα(as, bt). Depending on whether at least

one of the a- or b-sequences is an empty graph, we can find a contradiction to the

order property with either three or four elements.

Example 2.14. (A maximally complicated theory)

In this example the sequence is universal for finite T0-configurations (Convention

2.5).

Let the elements of M be all finite subsets of ω; the language has two binary

relations, ⊆ and =, with the natural interpretation. Set T = Th(M).

Choose ϕ⊆ := ϕ(x; y, z) = x ⊆ y ∧ x 6⊆ z. Then:

• P1((y, z)) ⇐⇒ ∅ ( y 6⊆ z.

• Pn((y1, z1), . . . (yn, zn)) ⇐⇒ ∅ (
⋂
i≤n yi 6⊆

⋃
i≤n zi.

The sequence does not have finite support. Moreover:

Claim 2.15. Let 〈Pn〉 be the characteristic sequence of ϕ⊆, k < ω, and let X be a

finite T0-configuration. Then there exists a finite A ⊆ P1 witnessing X.
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Proof. This is just the proof of sensistivity to goodness, Observation 1.12. Write the

elements of P1 as wi = (yi, zi); it suffices to choose the positive pieces yi first, and

afterwards take the zi to be completely disjoint. More precisely, suppose X is given

by VX = m and EX ⊂ P(m). We need simply to choose y1, . . . ym such that for all

σ ⊆ m, (⋂
j∈σ

yj 6= ∅

)
⇐⇒ σ ∈ EX

which again, is possible by the downward closure of EX .

Corollary 2.16. This characteristic sequence is universal for finite T0-configurations.

Remark 2.17. That the sequence is universal for finite T0-configurations is sufficient,

though not necessary, for maximal complexity in the Keisler order. By [26].VI.3,

ϕ(x; y, z) = y < x < z in Th(Q, <) is maximal. Its characteristic sequence has

support 2, but its P2 is clearly not universal.

2.3 Static configurations

This section asks: what can we tell about ϕ from the T1-configurations which ap-

pear in its characteristic sequence, without yet appealing to localization (Definition

2.27) or to invariance under localization? Some answers are given: we describe config-

urations which signal that ϕ has the order property, the independence property, the

tree property and SOP2 (Chapter 0, Definitions 0.9-0.11). More extensive analysis

will come in Chapter 3. Recall that:
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Theorem J. (Shelah; see Chapter 0, §0.4)

• T is simple iff no formula ϕ of T has the tree property, iff no ϕ has the 2-tree

property.

• If ϕ has the 2-tree property then either ϕ has TP1 or ϕ has TP2.

We fix a monster model M from which the parameters are drawn; see Convention

2.3.

Definition 2.18. (Diagrams, arrays, trees) Let λ ≥ µ be finite cardinals or ω. Write

⊆ to indicate initial segment. The sequence 〈Pn〉 has:

1. an (ω, 2)-diagram if there exist elements {aη : η ∈ 2<ω} ⊆ P1 such that

• for all η ∈ 2<ω, ¬P2(aηa0, aηa1), and

• for all n < ω and η1, . . . ηn ∈ 2<ω, we have that η1 ⊆ · · · ⊆ ηn =⇒

Pn(aη1 , . . . aηn)

That is, sets of pairwise comparable elements are P∞-consistent, while immedi-

ate successors of the same node are P2-inconsistent.

2. a (λ, µ, 1)-array if there exists X = {aml : l < λ,m < µ} ⊂ P1 such that:

• P2(a
m1
l1
, am2

l2
) ⇐⇒ (l1 = l2 → m1 = m2)

• For all i < ω,

Pn(am1
l1
, . . . amn

ln
) ⇐⇒

∧
1≤i,j≤n

P2(a
mi
li
, a

mj

lj
)



65

That is, any C ⊂ X, possibly infinite, is a P∞-graph iff it contains no more

than one element from each column. (We will relax this last condition in the

more general Definition 2.46 below.)

3. a (λ, µ)-tree if there exist elements {aη : η ∈ µ<λ} ⊂ P1 such that

• for all η2, η2 ∈ µ<λ,

P2(aη, aν) ⇐⇒ (η1 ⊆ η2 ∨ η2 ⊆ η1)

i.e. only if the nodes are comparable; and

• for all n < ω, η1, . . . ηn ∈ µ<λ,

η1 ⊆ · · · ⊆ ηn =⇒ Pn(aη1 , . . . aηn)

Remark 2.19. Diagrams are prototypes which can give rise to either arrays or trees,

in the case where the unstable formula ϕ has the independence property or SOP2,

respectively.

The arrays will be revisited in Definitions 2.41 and 2.46.

Claim 2.20. Let ϕ be a formula of T and set θ(x; y, z) = ϕ(x; y)∧¬ϕ(x; z). Let 〈Pn〉

be the characteristic sequence of (T, θ). The following are equivalent:

1. 〈Pn〉 has an (ω, 2)-diagram.

2. R(x = x, ϕ(x; y), 2) ≥ ω, i.e. ϕ is unstable.

3. R(x = x, θ(x; yz), 2) ≥ ω, i.e. θ is unstable.
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Proof. (2) → (1): We have in hand a tree of partial ϕ-types R = {pν : ν ∈ 2ω},

partially ordered by inclusion, witnessing that R(x = x, ϕ, 2) ≥ ω. Let us show that

we can build an (ω, 2)-diagram. That is, we shall choose parameters {aη : η ∈ 2<ω} ⊂

P1 satisfying Definition 2.18(1).

First, by the definition of the rank R, which requires the partial types to be

explicitly contradictory, we can associate to each ν an element cν ∈ M , `(cν) = `(y)

such that:

• ϕ(x; cν) ∈ pνa1 \ pν , and

• ¬ϕ(x; cν) ∈ pηa0 \ pη.

i.e., the split after index ν is explained by ϕ(x; cν).

Second, choose a set of indices S ⊆ 2<ω such that:

• (∀η ∈ 2<ω) (∃s ∈ S)(η ( s)

• (∀s1 ( s2 ∈ S) (∃η /∈ S) (s1 ( η ( s2)

It will suffice to define asai for s ∈ S, i ∈ {0, 1}. (The sparseness of S ensures the

chosen parameters for ϕ won’t overlap, which will make renumbering straightforward.)

Recall that the aη will be parameters for θ(x; y, z) = ϕ(x; y) ∧ ¬(x; z). So we define:

• asa0 = (csa0, cs);

• asa1 = (cs, csa1).
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The consistency of the paths through our (ω, 2)-diagram is inherited from the

tree R of consistent partial types. However, ¬P2(asa0, asa1) because these contain an

explicit contradiction:

¬∃x
(

(ϕ(x; csa0) ∧ ¬ϕ(x; cs)) ∧ (ϕ(x; cs) ∧ ¬(ϕ(x; csa1)
)

(1) → (3): Reading off the parameters from the diagram we obtain a tree of

consistent partial θ-types {pη : η ∈ 2<ω}, partially ordered by inclusion. For any

η ∈ 2<ω, ¬P2(aηa0, aηa1), i.e. ¬∃x(θ(x; aηa0) ∧ θ(x; aηa1)). Furthermore, θ(x; aηa0) ∈

pηa0\pη, while θ(x; aηa1) ∈ pηa1\pη. So there is no harm in making the types explicitly

inconsistent, as the rank R requires, by adding ¬ θ(x; aηai) to pηaj for i 6= j < 2.

(2) ↔ (3): for all A, |A| ≥ 2, |Sϕ(A)| = |Sθ(A)|.

Claim 2.21. Let ϕ be a formula of T and set θ(x; y, z) = ϕ(x; y)∧¬ϕ(x; z). Let 〈Pn〉

be the characteristic sequence of (T, θ). The following are equivalent:

1. 〈Pn〉 has an (ω, 2, 1)-array.

2. ϕ has the independence property.

3. θ has the independence property.

Proof. (1)→ (3): This is Observation 2.47. (Essentially, let A0 be the top row of the

array A, and σ, τ ⊂ A finite disjoint; let B ⊂ A be a maximal positive base set, i.e. a

maximal P∞-complete graph, in A containing σ and avoiding τ . Then any realization

of the type corresponding to B is a witness to this instance of independence.)
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(2) → (1): Let 〈i` : ` < ω〉 be a sequence over which ϕ has the independence

property. For t < 2, j < ω set a0
j = (i`, i`+1), a

1
j = (i`+1, i`). Then {atj : t < 2, j < ω}

is an (ω, 2, 1)-array for P∞.

(3) → (2): For any infinite A, |Sϕ(A)| = |Sθ(A)|, as any type on one side can be

presented as a type on the other. The independence property can be characterized in

terms of the cardinality of the space of types over finite sets ([26] Theorem II.4.11).

Claim 2.22. Let ϕ be a formula of T and set θ(x; y, z) = ϕ(x; y)∧¬ϕ(x; z). Let 〈Pn〉

be the characteristic sequence of (T, θ). Suppose that T does not have SOP2. Then

the following are equivalent:

1. 〈Pn〉 has an (ω, ω, 1)-array.

2. ϕ has the 2-tree property.

Proof. (1) → (2) Each column (=empty graph) of the array witnesses that ϕ is 2-

dividable, and the condition that any subset of the array containing no more than

one element from each column is a P∞-complete graph ensures that the dividing can

happen sequentially.

(2) → (1) By Theorem J above, NSOP2 implies ϕ has TP2. That is, there is a

tree of instances {ϕ(x; aη) : η ∈ ω<ω} such that first, for any finite n, η1 ⊆ · · · ⊆ ηn

implies that the partial type {ϕ(x; aη1), . . . ϕ(x; aηn)} is consistent; and second,

¬∃x
(
ϕ(x; aη) ∧ ϕ(x; aν)

)
⇐⇒ (∃ρ ∈ ω<ω)(∃i 6= j ∈ ω)

(
η = ρai ∧ ν = ρaj

)
Thus the parameters {aη : η ∈ ω<ω} ⊂ P1 form an (ω, ω, 1)-array for P∞.
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It is straightforward to characterize the analogous k-tree properties in terms of

arrays whose columns are k-consistent but (k + 1)-inconsistent.

Claim 2.23. The following are equivalent:

1. 〈Pn〉 has an (ω, 2)-tree.

2. ϕ has SOP2.

Proof. (2) → (1) This is a direct translation of Definition 0.11.

(1) → (2) It suffices to show that 〈Pn〉 has an (ω, ω)-tree, which is true by com-

pactness, using the strictness of the tree.

In Chapter 3, §3.5 we will consider a distinguished configuration:

Definition 2.24. P∞ has the compatible order property if there exists a sequence

C = 〈ai, bi : i < ω〉 ⊂ P1 such that for any n < ω and any a1, b1, . . . an, cn ⊂ C,

Pn((a1, b1), . . . (an, cn)) ⇐⇒ (max{a1, . . . an} < min{b1, . . . bn})

Say that Pm has the compatible order property to indicate that this holds for all Pn,

n ≤ m.

Observation 2.25. Suppose (T, ϕ) 7→ 〈Pn〉, and that 〈Pn〉 has the compatible order

property. Then ϕ2 has the tree property, and in particular, SOP2.

Proof. Let us build an SOP2-tree {ϕ2(x; aη, bη) : η ∈ ω<ω} following Definition 0.11

above by specifying the corresponding tree of parameters {cη : η ∈ ω<ω} ⊂ P1,
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where each cη is a pair (aη, bη). Let S = 〈aibi : i < Q〉 be an indiscernible sequence

witnessing the compatible order property. We will use two facts in our construction:

1. Let 〈ai`bj` : ` < ω〉 be any subsequence of S such that ` < k =⇒ ai` < bj` <

aik < bjk . Then {ϕ2(x; aij , bij ) : j < ω} 2-divides by Observation 2.30.

2. Let ai1 , bj1 , . . . ain , bjn ∈ S. Then

Pn((ai1 , bj1), . . . (ain , bjn)) ⇐⇒ max{i1, . . . in} < min{j1, . . . jn}

so in particular

P2((ai1 , bj1), (ai2 , bj2)) ⇐⇒ max{i1, i2} < min{j1, j2}

Let η ∈ ω<ω be given and suppose that either cη has been defined or η = ∅. If

cη has been defined, it will be (ai, bj) for some i < j ∈ Q. Let 〈k` : ` < ω〉 be any

ω-indexed subset of (i, j)∩Q, or of Q if η = ∅. Define cηa` = (ak`
, bk`+1

). Now suppose

we have defined the full tree of parameters cη in this way. By fact (1) we see that

immediate successors of the same node are P2-inconsistent. By fact (2)n, paths are

consistent, while by fact (2)2, any two ∗incomparable (Definition 0.11) elements cν , cη

are P2-inconsistent.

Remark 2.26. The significance of the compatible order property is suggested by Chap-

ter 3, Observation 3.28, along with Theorem 3.32.
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2.4 Localization and persistence

A major goal of these methods is to analyze ϕ-types, and thus to concentrate on

the combinatorial structure which is “close to” or “inseparable from” the complete

graph A representing a consistent partial ϕ-type under analysis.

Pn asks about incidence relations on a set of parameters; it will be useful to

definably restrict the witness and parameter sets. For instance:

• we may ask that the witnesses lie inside certain instances of ϕ, e.g. by setting

P ′
1(y) = ∃x(ϕ(x; y) ∧ ϕ(x; a)), i.e. P ′

1 = P2(y, a).

• we may ask that the parameters be consistent 1-point extensions (in the sense

of some Pn) of certain finite graphs C. For instance, we might define P ′′
1 (y) =

P1(y) ∧ P2(y, c1) ∧ P3(y, c2, c2).

The next definition gives the general form.

Definition 2.27. (Localization) Fix a characteristic sequence (T, ϕ) → 〈Pn〉, and

choose B,A ⊂M |= T with A a positive base set and A = ∅ possible.

1. (the localized predicate P f
n ) A localization P f

n of the predicate Pn(y1, . . . yn)

around the positive base set A with parameters from B is given by a finite

sequence of triples f : m→ ω × Pℵ0(y1, . . . yn)× Pℵ0(B) where m < ω and:

• writing f(i) = (ri, σi, βi) and š for the elements of the set s, we have:

P f
n (y1, . . . yn) :=

∧
i≤m

Pri(σ̌i, β̌i)
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• for each ` < ω, T1 implies that there exists a P`-complete graph C` such

that P f
n holds on all n-tuples from C`. If this last condition does not hold,

P f
n is a trivial localization. By localization we will always mean non-trivial

localization.

• In any model of T1 containing A and B, P f
n holds on all n-tuples from A.

Write LocBn (A) for the set of localizations of Pn around A with parameters from

B (i.e. nontrivial localizations, even when A = ∅).

2. (the localized formula ϕf ) For each localization P f
n of some predicate Pn in the

characteristic sequence of ϕ, define the corresponding formula

ϕfn(x; y1, . . . yn) := ϕn(x; y1, . . . yn) ∧ P f
n (y1, . . . yn)

When n = 1, write ϕf = ϕf1 . Let Sfϕ(N) denote the set of types p ∈ Sϕ(N)

such that for all {ϕi1(x; ci1), . . . ϕin(x; cin)} ⊂ p, P f
n (ci1 , . . . cin). Then there is

a natural correspondence between the sets of types

Sfϕ(N)↔ Sϕf (N)

3. (the ∗localized formula ϕf+a) We have thus far described localizations of the

parameters of ϕ. We will also want to consider restrictions of the possible

witnesses to ϕ by adjoining instances of ϕk. That is, set

ϕf+a(x; y) = ϕf+a1,...ak(x; y) := ϕ(x; y) ∧ P f
1 (y) ∧ ϕk(x; a1, . . . ak)
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where, as indicated, k = `(a). The ∗ is to emphasize that this is really the

construction from ϕ of a new, though related, formula, which will have its own

characteristic sequence, given by:

4. (the ∗localized characteristic sequence 〈P f+a
n : n < ω〉) The sequence 〈P f+a

n :

n < ω〉 associated to the formula ϕf+a is given by, for each n < ω,

P f+a
n (y1, . . . yn) =

∧
i≤n

P f
1 (yi) ∧ Pn+k(y1, . . . yn, a1, . . . ak)

When f or a are empty, we will omit them.

Remark 2.28. Convention 2.3 applies: that is, localization is not essentially depen-

dent on the choice of model M . See Definition 2.36 (Persistence) and the observation

following.

As a first example of the utility of localization, notice that when ϕ is simple we

can localize to avoid infinite empty graphs.

Observation 2.29. Fix a positive base set A for the formula ψ, possibly empty.

When ψ does not have the tree property, then for each k < ω there is a finite set

C over which ψ is not k-dividable. As a consequence, if ψ does not have the tree

property, then for each predicate Pn there is a localization around A on which there is

a uniform finite bound on the size of a Pn-empty graph. We can clearly also choose

the localizations so that none of ψ1, . . . ψ` are k-dividable for any finite k, ` fixed in

advance. When ψ is low, we can do this for all k at once (Definition 1.19).
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Proof. This is the proof that D(x = x, ψ, k) < ω for any simple formula ψ; see for

instance [13].

2.4.1 Stability in the parameter space

The classification-theoretic complexity of the formulas Pn is often strictly less

than that of the original theory T . Note that the results here refer to the formulas

Pn(y1, . . . yn), not necessarily to their full theory T1.

Observation 2.30. Suppose (T, ϕ) 7→ 〈Pn〉. If P2(x; y) has the order property then

ϕ(x; y) ∧ ϕ(x; z) is 2-dividable.

Proof. Let 〈ai, bi : i < ω〉 be a sequence witnessing the order property for P2, so

P2(ai, bj) iff i < j. This means that ∃x(ϕ(x; ai) ∧ ϕ(x; bj)) iff i < j. So ϕ(x; ai) ∧

ϕ(x; bi+1) are consistent for each i, but the set {ϕ(x; ai) ∧ ϕ(x; bi+1) : i < ω} is

2-inconsistent.

Remark 2.31. By compactness, without loss of generality the sequence of Observation

2.30 can be chosen to be (T−)indiscernible, and so actually witnesses the dividing of

some instance of ϕ2.

Note that the converse of Observation 2.30 fails: for ϕ(x; y)∧ϕ(x; z) to divide it is

sufficient to have a disjoint sequence of “matchsticks” in P2 (i.e. (ai, bi) : i < ω such

that P2(ai, bj) iff i = j), without the additional consistency which the order property

provides.
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But see Chapter 3, Theorem 3.19, which illuminates the role of the order.

Observation 2.32. Suppose that (T, ϕ) 7→ 〈Pn〉, and for some n, k and some parti-

tion of y1, . . . yn into k object and (n-k) parameter variables, Pn(y1, . . . yk; yk+1, . . . yn)

has the order property. Then ϕn(x; y1, . . . yn) is 2-dividable.

Proof. The proof is analogous to that of Observation 2.30, replacing the ai by k-tuples

and the bj by (n-k)-tuples.

Thus in cases where we can localize to avoid dividing of ϕ, we can assume any

initial segment of the associated predicates Pn are stable:

Conclusion 2.33. For each formula ϕ and for all m < ω, if ϕ2n does not have the

tree property, then for each positive base set A there are a finite B and P f
1 ∈ LocB1 (A)

over which P2, . . . Pn do not have the order property. In particular, this holds if T is

simple.

By way of motivating the next subsection, let us prove the contrapositive: If the

order property in P2 persists under repeated localization, then ϕ has the tree prop-

erty. Compare the proof of Observation 2.25 above. Without the compatible order

property, we cannot ensure the tree is strict. While that argument built a tree out of a

set of parameters which were given all at once (a so-called “static” argument), the fol-

lowing “dynamic” argument must constantly localize to find subsequent parameters,

so cannot ensure that elements in different localizations are inconsistent.
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Lemma 2.34. Suppose that in every localization of P1 (around A = ∅), P2 has the

order property. Then ϕ2 has the tree property.

Proof. Let us describe a tree with nodes (cη, dη), (η ∈ ω<ω), such that:

1. for each ρ ∈ ωω, {cη, dη : η ⊆ ρ} is a complete P∞-graph, where ⊆ means initial

segment.

2. for any ν ∈ ω<ω, P2(cηai, dηaj) ⇐⇒ i ≤ j.

For the base case (η ∈ ω1), let 〈ci, di : i ∈ ω〉 be an indiscernible sequence

witnessing the order property (so P2(ci, dj) ⇐⇒ i ≤ j) and assign the pair (ci, di)

to node i.

For the inductive step, suppose we have defined (cη, dη) for η ∈ ωn. Write Eη =

{(cν , dν) : ν ≤ η} for the parameters used along the branch to (cη, dη). Using x̌ to

mean the elements of the set x, let P
fη

1 be given by Pn+1((y, z), Ěη). Let 〈aj, bj : j ∈ ω〉

be an indiscernible sequence witnessing the order property inside this localization, and

define (cηai, dηai) := (aj, bj).

Finally, let us check that this tree of parameters witnesses the tree property for

ϕ2. On one hand, the order property in P2 ensures that for each n ∈ ω<ω, the set

{ϕ2(x; cηai, dηai) : i ∈ ω}

is 1-consistent but 2-inconsistent. On the other hand, the way we constructed each

localization P
fη

1 ensured that each path was a complete P∞-graph, thus naturally
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a complete P ′
∞-graph, where 〈P ′

n〉 is the characteristic sequence of the conjunction

ϕ2.

Remark 2.35. Example 2.12 (page 61) shows that the condition that ϕ has the tree

property is necessary, but not sufficient, for the order property in P2 to be persistent,

Definition 2.36 below.

Question 2.1. Is SOP2 sufficient?

Compare Theorem 3.32.

2.4.2 Persistence

Definition 2.36. (Persistence) Fix (T, ϕ) 7→ 〈Pn〉, M |= T sufficiently saturated,

and a positive base set A, possibly ∅. Let X be a T0-configuration, possibly infinite.

Then X is persistent around the positive base set A if for all finite B ⊂ M and for

all P f
1 ∈ LocB1 (A), PB

1 contains witnesses for X.

We will write X is A-persistent to indicate that X is persistent around A.

Note 2.37. Persistence asks whether all finite localizations around A contain wit-

nesses for some T0-configuration X. The predicates Pn mentioned in X are, however,

not the localized versions. We have simply restricted the set from which witnesses

can be drawn. This is an obvious but important point: for instance, in the proof of

Lemma 2.45 below it is important that the sequence of P2-inconsistent pairs found

inside of successive localizations P fn

1 are P2-inconsistent in the sense of T1.
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Observation 2.38. (Persistence is a property of TA) The following are equivalent,

fixing T, ϕ, 〈Pn〉, A ⊂ M a small positive base set in the monster model, and a T0-

configuration X. Write P f
1 (M) for the set which P f

1 defines in the model M .

1. In some sufficiently saturated model M |= T1 which contains A, X is persistent

around A in M . That is, for every finite B ⊂ M and every localization P f
1 ∈

LocB1 (A), there exist witnesses to X in P f
1 (M).

2. In every model N |= T1, N ⊃ A, for every finite B ⊂ N , every localization

P f
1 ∈ LocB1 (A), and every finite fragment X0 of X, P f

1 (N) contains witnesses

for X0.

Proof. (2) =⇒ (1) Compactness.

(1) =⇒ (2) Suppose not, letting P f
1 ∈ LocB1 (A) and X0 witness this. To this P f

1

we can associate a T1-type p(y1, . . . y|B|) ∈ S(A) which says that the localization given

by f with parameters y1, . . . y|B| contains A but implies that X0 is inconsistent. But

any sufficiently saturated model containing A will realize this type, and thus contain

such a localization.

To reiterate Convention 2.3, then, we may, as a way of speaking, call a configu-

ration “persistent” while working in some fixed sufficiently saturated model, but we

always refer to the corresponding property of T .

Corollary 2.39. Persistence around the positive base set A remains a property of T

in the language with constants for A.
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In Section 2.5 below we will see that stability and simplicity can be naturally

characterized in terms of persistence.

Finally, let us check the (easy) fact that persistence of some T0-configuration

around ∅ in some given sequence 〈Pn〉 implies its persistence around any positive

base set A for that sequence.

Fact 2.40. Suppose that X is an ∅-persistent T0-configuration in the characteristic

sequence 〈Pn〉 and A is a positive base set for 〈Pn〉. Then X remains persistent around

A.

Proof. Let p(x0, . . . ) ∈ L(=, P1, P2, . . . ) describe the type, in VX-many variables, of

the configuration X = (VX , EX). Let q(y) ∈ S(A) be the type of a 1-point P∞-

extension of A in the language L0 = {Pn : n < ω} ∪ {=}. We would like to know

that q(x0), q(x1), . . . , p(x0, . . . ) is consistent, i.e., that we can find, in some given

localization, witnesses for X from among the elements which consistently extend A.

If not, for some finite subset A′ ⊂ A, some n < ω, and some finite fragments q′ of

q|A′ and p′ of p,

q′(x0) ∪ · · · ∪ q′(xn) ` ¬p′(x0, . . . xn)

But now localizing P1 according to the conditions on the lefthand side (which are all

positive conditions involving the Pn and finitely many parameters A′) shows that X

is not persistent, contradiction.
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2.5 Dividing lines: Stability and simplicity

In this section we will see that the language of localization and persistence natu-

rally characterizes the model-theoretic dividing lines of stability and simplicity.

2.5.1 Stability: the case of P2

The argument in this technically much simpler case will generalize without too

much difficulty. We first revisit an avatar of the independence property.

Definition 2.41. ((ω, 2)-arrays revisited)

1. The predicate Pn is (ω, 2) if there is C := {ati : t < 2, i < ω} such that for all

` ≤ n, any `-element subset C0,

P`(C0) ⇐⇒
(
ati, a

s
j ∈ C0 =⇒ (i 6= j) ∨ (t = s)

)
2. If for all n < ω, Pn is (ω, 2), we say that P∞ is (ω, 2).

3. A path through the (ω, 2)-array A is a set X ⊂ A which contains no more than

one element from each column. Paths will be positive base sets.

Remark 2.42. If P∞ is (ω, 2), then ϕ has the independence property.

Proof. This is a special case of Observation 2.47 below.

Lemma 2.43. If ϕ is stable then there is a finite localization P f
1 for which TFAE:

1. There exists X ⊂ P f
1 , X an (ω, 2)-array wrt P2
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2. There exists Y ⊂ P f
1 , Y an (ω, 2)-array wrt P∞

Proof. Choose the localization P f
1 according to Observation 2.29 so that neither ϕ

nor ϕ2 divide on parameters from P f
1 . This is possible because stable formulas are

simple and low (Definition 1.19). Let Z = 〈cti : t < 2, i < ω〉 ⊂ P f
1 be an indiscernible

sequence of pair which is an (ω, 2)-array for P2. Each of the sub-sequences 〈c0i : i < ω〉,

〈c1i : i < ω〉 is indiscernible, so will be either P2-complete or P2-empty; by choice of

P f
1 , they cannot be empty.

It remains to show that any path X ⊂ Z is a P∞-complete graph. Suppose not,

and let n be minimal so that the n-type of some increasing sequence of elements

zt11 , . . . z
tn
n implies ¬∃x(

∧
i<n ϕ(x; ztii )). Choose an infinite indiscernible subsequence

of pairs Z ′ ⊂ Z2 of the form 〈c0i , c1i+1 : i ∈ W ⊂ ω〉. Then the set {ϕ(x; c0i ) ∧

ϕ(x; c1i+1) : i ∈ W} will be 1-consistent by definition but n-inconsistent by assumption,

contradicting the hypothesis that ϕ2 is not dividable in the localization P f
1 .

Lemma 2.44. Suppose every localization P f
1 around some fixed positive base set A

contains elements y, z such that ¬P2(y, z). Then P∞ is (ω, 2).

Proof. Choose P f0
1 to be any localization given by the previous lemma. We construct

an (ω, 2)-array as follows.

At stage 0, let c00, c
1
0 be any pair of P2-incompatible elements each of which is a

consistent 1-point extension of A in P f0
1 . At stage n+1, write Cn for {cti : t < 2, i ≤ n}

and suppose we have defined P fn

1 ∈ LocCn
1 (A). By hypothesis, there are c0n+1, c

1
n+1 ∈
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P fn

1 such that ¬P2(c
0
n+1, c

1
n+1) and such that each cin+1 is a consistent 1-point extension

of A (Fact 2.40). Let Cn+1 = Cn ∪ {c0n+1, c
1
n+1} and define P

fn+1

1 ∈ Loc
Cn+1

1 (A) by

P
fn+1

1 (y) = P f
1 (y) ∧ P2(y; c0n+1) ∧ P2(y; c1n+1)

Thus we construct an (ω, 2)-array for P2, as desired. Applying Lemma 2.43 we obtain

an (ω, 2)-array for P∞.

In the next Corollary, an “empty pair” is the T0-configuration given by Vx =

2, Ex = {{1}, {2}}, in the notation of Convention 2.5.

Corollary 2.45. Suppose an empty pair is persistent around A. Then ϕ has the

independence property, so it follows that ϕ is unstable.

Proof. By Lemma 2.44, P∞ is (ω, 2), which by Remark 2.42 implies that ϕ has the

independence property.

2.5.2 Stability: the case of k

The generalization will be straightforward once the right definitions are in place.

We will show that, in each Pn (n ≥ 2), a persistent n-tuple of Pn-inconsistent elements

produces a so-called (ω, n)-array, which will imply the independence property for a

formula close to ϕ and thus for ϕ itself. We first establish a “sharpness lemma” which

gives a normal form for the arrays when n > 2. Recall that the P a
n are ∗localized

predicates from Definition 2.27.
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Definition 2.46. ((ω, n)-arrays revisited) Assume n ≤ `. Compare Definition 2.18;

here, the possible ambiguity of the amount of consistency will be important.

1. The predicate P` is (ω, n) if there is C = {cti : t < n, i < ω} ⊂ P1 such that, for

all ct1i1 , . . . c
t`
i`
∈ C,

• `-tuples from ` distinct columns are consistent, i.e.

∧
j,k≤`

ij 6= ik =⇒ P`(c
t1
i1
, . . . ct`i`)

• and no column is entirely consistent, i.e. for all σ ⊂ `, |σ| = n,

∧
j,k∈σ

ij = ik =⇒ ¬P`(ct1i1 , . . . c
t`
i`

)

Any such C is an (ω, n)-array. The precise arity of consistency is not specified,

see condition (4).

2. If for all n ≤ ` < ω, P` is (ω, n), say that P∞ is (ω, n).

3. A path through the (ω, n) array C is a set X ⊂ C which contains no more than

n-1 elements from each column.

4. P` is sharply (ω, n) if it contains an (ω, n)-array C on which, moreover, for all

{ct1i1 , . . . c
t`
i`
} ⊂ C

P`(c
t1
i1
, . . . ct`i`) ⇐⇒

∧
σ⊂`,|σ|=n

( ∧
j,k∈σ

ij = ik =⇒
∨

j 6=k∈σ

tj = tk

)

i.e., if every path is a P`-complete graph.
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5. P∞ is sharply (ω, n) if P` is sharply (ω, n) for all n ≤ ` < ω.

Observation 2.47. If P∞ is sharply (ω, k) then ϕk−1 has the independence property.

Proof. Let X = 〈a1
i , . . . a

k
i : i < ω〉 be the array in question; then ϕk−1 has the

independence property on any maximal path, e.g. B := 〈a1
i , . . . a

k−1
i : i < ω〉. To see

this, fix any σ, τ ⊂ ω finite disjoint; then by the sharpness hypothesis {a1
i , . . . a

k−1
i :

i ∈ σ} ∪ {a2
j , . . . a

k
j : j ∈ τ} is a P∞-complete graph and thus corresponds to a

consistent partial ϕ-type q. But any realization α of q cannot satisfy ϕ(x; a1
j) for any

j ∈ τ , because Pk does not hold on the columns. A fortiori ¬ϕk(α; a0
j , . . . a

k−1
j ).

Let us write down some conventions for describing types in an array.

Definition 2.48. Let xti, x
s
j be elements of some (ω, n)-array X.

1. Let I(xti) = {xsj ∈ X : j = i}, i.e. the elements in the same column as xti.

2. Let X0 = {xt1i1 , . . . x
t`
i`
} ⊂ X be a finite subset. The column count of {xt1i1 , . . . x

t`
i`
}

is the unique tuple (m1, . . .m`) ∈ ω` such that:

• mi ≥ mi+1 for each i ≤ `

• Σi mi = `

• if Y0 = {y1, . . . yr} is a maximal subset of X0 such that y, z ∈ Y0, y 6=

z → y /∈ I(z), then some permutation of

(|I(y1) ∩X0|, . . . , |I(yr) ∩X0|)

is equal to (m1, . . .m`).
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In other words, we count how many elements have been assigned to each column,

and put these counts in descending order of size. Write col-ct(x) for this tuple.

3. Let ≤ be the lexicographic order on column counts, i.e. (1, . . . 1) < (2, 1, . . . ).

This is a discrete linear order, so we can define (m1, . . .m`)
+ to be the immediate

successor of (m1, . . .m`) in this order. Define gap((m1, . . .m`)) = mi where

((n1, . . . n`)
+ = (m1, . . .m`) and ∀j 6= i mj = nj, i.e. the value which has just

incremented.

Recall that if ϕ is stable then ϕ is simple and low. By analogy to Lemma 2.43,

Lemma 2.49. (Springboard lemma) Suppose that ϕ is simple and low, and let 〈Pn〉

be the characteristic sequence of (T, ϕ). For each n < ω, there exists a localization

P f
1 of P 1 in which the following are equivalent:

1. P f
1 contains a sharp (ω, n)-array for P2n−2.

2. P f
1 contains a sharp (ω, n)-array for P∞.

Proof. Assume (1), so let C = {cti : t < n, i < ω} ⊂ P f
1 be sharply (ω, n) for

P2n−2, chosen without loss of generality to be an indiscernible sequence of n-tuples.

Fix a path Y = y1, . . . ym of minimal size m > n such that ¬Pm(y1, . . . ym). Let

S := {c0i , . . . cn−1
i , c1i+1, . . . c

n
i+1 : i < ω} ⊂ C2n−2 be a sequence of pairs of offset

(n− 1)-tuples.

Note that S is 1-consistent as we assumed (1).
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On the other hand, C is indiscernible, so any increasing sequence of m elements

from S will cover all the possible m-types from C. Since Y is inconsistent, this implies

that S is m-inconsistent. Thus ϕ2n−2 is m-dividable.

The appropriate localization is thus one in which (for good measure) none of the

finite set of formulas {ϕ2`−2 : 1 ≤ ` ≤ n} are dividable. By lowness, each of these

formulas has a uniform finite bound n` on the arity of its dividing. By simplicity, the

D(x = x, ϕ2`−2, n`)-ranks are finite, so the desired localization exists.

Remark 2.50. Suppose that ϕ is simple and low, and let P f
1 be the localization from

Lemma 2.49. Suppose that there is an (ω, n)-array C for Pn, and a1, . . . ar ∈ C, with

r < n− 1 and `+ r = n. Then the following are equivalent:

1. P f
1 contains a sharp (ω, `)-array D ⊂ C for P

{a1,...ar}
2`−2 .

2. P f
1 contains a sharp (ω, `)-array for P

{a1,...ar}
∞ , i.e. for 〈P {a1,...ar}

` : ` < ω〉.

Proof. The remark asks us to reprove the lemma for the formula ϕa and its associated

characteristic sequence; because of the additional hypotheses about c and `, this proof

is contained in the previous argument.

Lemma 2.51. (Sharpness lemma) Suppose that ϕ is simple and low and that in

some localization P f
1 , Pn is (ω, n). Then there exists 0 ≤ r < n − 1 and a finite

tuple a1, . . . ar (empty if r = 0) such that the predicate P a
2`−2 is sharply (ω, `), where

` = n− r and P a
2`−2 is the ∗localized predicate in the sense of Definition 2.27. (When

r = 0, this is just P2n−2.)
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Proof. Let C = {cti : t < n, i < ω} ⊂ P f
1 be an indiscernible sequence of n-tuples

which is an (ω, n)-array for Pn. We will systematically check all k-tuples (for k ≤

2n − 2, and which do not contain an entire column) for consistency, by inducting

on column count. Column count does not entirely determine the type of a tuple, of

course, but it is close enough for our purposes. For notation, let g be an enumeration,

in lexicographic order, of all possible values of col-ct(X0) which occur on paths X0 ⊂

C, |X0| ≤ 2n− 2.

At stage s + 1, suppose we are considering r-tuples with column count f(s),

for some 1 < r ≤ 2n − 2. If for all c1, . . . cr ⊂ C, col-ct(c1, . . . cr) = f(s) =⇒

Pr(c1, . . . cr), then we continue to stage s+2; and if we reach 2n−2 this way, we have

proved the lemma with r = 0. Otherwise, f(s) is the first column-count to produce

an inconsistency, witnessed by c1, . . . cr ⊂ C. Let ` = gap(g(s + 1)), in the notation

of Definition 2.48, be the size of the column just incremented, and w.l.o.g. suppose c1

is in this column. Then we can set a := {ci : i ≤ r, ci /∈ I(c1)} to be the elements in

the other columns. Notice that by indiscernibility we could have chosen the columns

containing these r inconsistent elements to be as far apart as desired.

Let D0 ⊂ C be the set of ` rows (where ` = gap(g(s + 1)) = |I(c1)|) containing

the elements of I(c1). Then, by indiscernibility of the array C, P a
` is w.l.o.g. (ω, `)

on some infinite subset D ⊂ D0; and by inductive hypothesis, it is sharply (ω, `).

Fact 2.52. The following are equivalent for a formula ϕ(x; y).

1. ϕ has the independence property.
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2. For some n < ω, ϕn has the independence property.

3. For every n < ω, ϕn has the independence property.

4. Some ∗localization ϕa has the independence property.

Proof. (1) → (3) → (2) → (1) → (4) are straightforward: use the facts that the

formulas ϕi, ϕj generate the same space of types, and that the independence property

can be characterized in terms of counting types over finite sets ([26]:II.4). Finally, (4)

→ (2) as we have simply specified some of the parameters.

Lemma 2.53. Suppose that for some n < ω, every localization of P1 around some

fixed positive base set A contains an n-tuple on which Pn does not hold. Then Pn is

(ω, n).

Proof. We proceed just as in the case of n = 2. Let P f
1 be any localization, for

instance that of Lemma 2.49.

At stage 0, let c00, c
1
0, . . . c

n−1
0 ⊂ P f0

1 := P f
1 be an n-tuple of elements on which Pn

does not hold, chosen by Fact 2.40 so that each ci0 is a consistent 1-point extension

[in the sense of Pn] of A. Let X0 = {{ci0} : i ≤ n} be the set of these singletons.

Recall that x̌ denotes the elements of x. Define

P f1
1 (y) = P f0

1 (y) ∧
∧
x∈X0

P2(y; x̌)

which includes A by construction.
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At stage m+ 1, write Cm for {cti : t < n, i ≤ m} and consider the localized set of

elements P fm

1 ∈ LocCm
1 (A). Let

Xm := {x ⊂ Cm : |x| = n− 1 and for all i < m, |x ∩ (Ci+1 \ Ci)| ≤ 1}

i.e. sets which choose no more than one element from each stage in the construction.

By hypothesis, there are c0m+1, . . . c
n−1
m+1 ∈ P

fm

1 such that ¬Pn(c0m+1, . . . c
n−1
m+1) and

such that for all x ∈ Xm, each cim+1 is a consistent 1-point extension of A ∪ x, in the

sense of Pn. Let Cm+1 = Cm ∪ {c0m+1, . . . c
n−1
m+1}, and let Xm+1 be the sets from Cm+1

which choose no more than one element from each stage in the construction. We now

define P
fm+1

1 ∈ Loc
Cm+1

1 (A) by

P
fm+1

1 (y) = P fm

1 (y) ∧
∧

x∈Xm+1

Pn(y; x̌)

(If m < n, the parameters from x̌ need not necessarily be distinct.) Again, this

localization contains A by construction. Thus we construct an (ω, n)-array for Pn, as

desired.

We are now in a position to prove:

Theorem 2.54. Fix (T, ϕ) 7→ 〈Pn : n < ω〉 and a positive base set A. Suppose

that for some n < ω, there is a T0-configuration for which X = n, {1, . . . n} /∈ Ex

(i.e. a Pn-empty tuple) and X is persistent around A. Then ϕ has the independence

property.
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Proof. We work inside the localization P f
1 ⊃ A given by Lemma 2.49. As a tuple of

Pn-inconsistent elements is persistent, we apply Lemma 2.53 to obtain Y ⊂ P f
1 on

which Pn is (ω, n). By the sharpness lemma (2.51), we obtain a sharp (ω, `)-array for

the predicate P a
2`−2. (Note that in that lemma, we obtained sharpness at the cost of

adding parameters; we can’t do this indefinitely, but luckily P f
1 says that 2n − 2 is

enough.) Recall that 0 < |a|+ 1 < n.

By choice of the localization P f
1 , as we now satisfy condition (1) of Lemma 2.49, we

obain a sharp (ω, `)-array for the entire sequence 〈P a
n 〉. By Observation 2.47 applied to

the ∗localized formula ϕa, a sharp (ω, `)-array means that ϕa`−1 has the independence

property. By Fact 2.52 applied to ϕa, ϕa has the independence property. By (4) →

(1) of the same fact, ϕ must also have the independence property, so we finish.

The property that for all n, no nontrivial T0-configuration is persistent for Pn

around the positive base set A characterizes the class of formulas which are stable in

some localization around the type corresponding to A:

Theorem 2.55. Let ϕ be a formula of T and 〈Pn : n < ω〉 its characteristic sequence.

In the notation of Definition 2.27,

1. If the localization ϕf of ϕ is stable, then for each P∞-graph A ⊂ P f
1 and for

each n < ω, there exists a localization P fn

1 ⊃ A of P f
1 which is a Pn-complete

graph, i.e. {y1, . . . yn} ⊂ P fn

1 → Pn(y1, . . . yn).

2. If the localization ϕg of ϕ is not stable, then for all n < ω, P g
1 contains a tuple
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of Pn-inconsistent elements.

In other words, the following are equivalent for any positive base set A:

(i) There exists a localization ϕf of ϕ (with ϕf = ϕ possible) such that ϕf is stable

and P f
1 ⊃ A.

(ii) For every n < ω, there exists a localization P fn

1 ⊃ A which is a Pn-complete

graph.

Proof. It suffices to prove the first two statements. (1) is Theorem 2.54. On the other

hand, if ϕf has the order property its associated P f
1 contains a diagram in the sense

of Definition 2.18. Thus it contains two P2-inconsistent elements, and so a fortiori an

n-tuple of Pn-inconsistent elements, for each n.

Remark 2.56. (Instability and order) In order to get the independence property for

ϕ we need an (ω, k)-array for P∞. The construction of Lemma 2.53 produces an

(ω, k) array for Pn whenever a Pn-empty tuple is persistent, but certainly when ϕ is

not low there is no reason to expect analogues of the springboard lemmas. However,

if the sequence has finite support then this argument can indeed be used to extract

independence from persistence of an empty tuple.

This suggests that empty tuples are not persistent (under all localizations) in se-

quences with finite support in theories without the independence property. In fact this

is easy to see: in (Q, <) for instance, let ϕ(x; y, z) = y > x > z and let the positive

base set A be given by some concentric sequence of intervals {(ai, bi) : i < κ} ⊂ P1.
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Then there is indeed a P2-empty pair (c1, c2), (d1, d2) which are each consistent 1-point

extensions of A – namely, any pair of disjoint intervals lying in the cut described by

the type corresponding to A. Localizing to require consistency with any such pair

amounts to giving a definable complete graph containing A, i.e. realizing the type.

One could, of course, consider less powerful notions of persistence, for instance by

restricting the form of allowed localizations.

2.5.3 Simplicity

We have seen that the natural first question for persistence, whether there exist

persistent empty tuples, characterizes stability: Theorem 2.55. Here we will show

that a natural next question, whether there exist persistent infinite empty graphs,

characterizes simplicity. Recall that a formula ϕ is simple if it does not have the tree

property.

Notice that we have an immediate proof of this fact by Observation 2.29, which

appealed to finite D(ϕ, k)-rank for simple formulas to conclude that infinite empty

graphs are not persistent. Let us sketch the framework for a different proof by analogy

with the previous section. This amounts to deriving Observation 2.29 directly in the

characteristic sequence.

Remark 2.57. In the case of stability, much of the work came in establishing sharp-

ness of the (ω, `)-array. Here, since the persistent configuration is infinite, we have

compactness on our side; we may in fact always choose the persistent empty graphs
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to be indiscernible and uniformly k-consistent but (k+1)-inconsistent, for some given

k < ω. This greatly simplifies matters. The role of the springboard lemma is played by

compactness as well; this could have been done in the stable case, but lowness allowed

us to give the stronger derivation obtained above. (That argument would remain valid

in cases where e.g. A = ∅ and we restrict the class of allowed localizations to ones

which involve instances of some fixed initial segment of the characteristic sequence.)

Observation 2.58. Suppose that (T, ϕ) 7→ 〈Pn〉. Then the following are equivalent:

1. there is a set T = {aη : η ∈ 2<ω} ⊂ P1 such that, writing ⊆ for initial segment:

(a) For each ν ∈ 2ω, {aη : η ⊂ ν} is a complete P∞-graph.

(b) For some k < ω, and for all ρ ∈ ω<ω, the set {aρai : i < ω} ⊂ P1 is a

Pk-empty graph.

2. ϕ has the k-tree property.

Proof. This is a direct translation of Definition 0.11.

Lemma 2.59. Let Xk be the T0-configuration describing a strict (k+ 1)-inconsistent

sequence, i.e. VXk
= ω and EXk

= {σ : σ ⊂ ω, |σ| ≤ k}. Suppose that for some fixed

k < ω and some formula ϕ, Xk is persistent in the characteristic sequence 〈Pn〉 of ϕ.

Then ϕ is not simple.

Proof. Let us show that ϕ has the tree property, around some positive base set A if

one is specified. At stage 0, by hypothesis there exists an infinite indiscernible sharply
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(k + 1)-inconsistent sequence Y0 ⊂ P1, each of whose elements can be chosen to be a

consistent 1-point extension of A in the sense of P∞ by Fact 2.40. Set ai to be the

ith element of this sequence, for i < ω.

At stage t+1, suppose we have constructed a tree of height n, Tn = {aη : η ∈ ω≤n}

such that, writing ⊆ for initial segment:

• every path is a consistent n-point extension of A, i.e. A ∪ {aη : η ⊆ ν} is a

complete P∞-graph, for each ν ∈ ωn;

• for all 0 ≤ k < n and all η ∈ ωk, {aηai : i < ω} is Pk-complete but Pk+1-empty.

We would like to extend the tree to level n + 1, and it suffices to show that the

extension of any given node aν (for ν ∈ ωn) can be accomplished. But this amounts

to repeating the argument for stage 0 in the case where A = A ∪ {aη : η ⊆ ν}. By

assumption and Fact 2.40, this remains possible, so we continue.

Notice that the threat of all possible localizations is what makes continuation

possible. That is, the schema which says that “x is a 1-point extension of A” simply

says that x remains (along with witnesses for Xk) in each of an infinite set of local-

izations of P1 with parameters from A. If this schema is inconsistent, there will be a

localization contradicting the hypothesis.

Theorem 2.60. Let ϕ be a formula of T and 〈Pn〉 its characteristic sequence.

1. If the localization ϕf of ϕ is simple, then for each P∞-graph A ⊂ P f
1 and for

each n < ω, there exists a localization P fn

1 ⊃ A of P f
1 in which there is a
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uniform finite bound on the size of a Pn-empty graph, i.e. there exists mn such

that X ⊂ P f
1 and Xn ∩ Pn = ∅ implies |X| ≤ mn.

2. If localization ϕg of ϕ is not simple, then for all but finitely many r < ω, P g
1

contains an infinite (r + 1)-empty graph.

In other words, the following are equivalent for any positive base set A:

(i) There exists a localization ϕf of ϕ (with ϕf = ϕ possible) such that ϕf is simple

and P f
1 ⊃ A.

(ii) For each n < ω, there exists a localization P fn

1 ⊃ A in which there is a uniform

finite bound on the size of a Pn-empty graph.

Proof. Once again, it suffices to show the first two statements. (1) is Lemma 2.59

applied to the formula ϕf . Notice that by Theorem 2.55, if ϕf is simple unstable,

then there is at least one empty pair. (2) is the second clause of Observation 2.58,

where “almost all” means for r above k, the arity of dividing.

The arguments in this section use persistence to magnify the power of the T0-

configuration, but in a very compatible way. Genericity is inherent in the dynamic

arguments, and this restricts our ability to produce genuinely more complex instances

of inconsistency (e.g. TP1) than those already in the T0-configuration. Thus our

project of looking for complex structure in the characteristic sequence 〈Pn〉 must pass

through a more “static” analysis of the T0-configurations which occur inside some

fixed localization. This is the subject of the next chapter.
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Chapter 3

Regularity

In this chapter, building on work in Chapter 2, we consider how the distribution

and density of edges and of finite configurations in some given localization relate

to the the classification-theoretic complexity of ϕ. The framework of characteristic

sequences allows us to bring a deep collection of graph-theoretic structure theorems to

bear on our investigations. The organizing principle of the chapter is the question of

how arbitrarily large subsets of P1 can generically interrelate, in the sense of Szemerédi

regularity (Theorem L below). That is, we ask which properties of T affect the density

δ attained between arbitrarily large ε-regular subsets A,B ⊂ P1 (after localization),

where the edge relation is given by P2.

The picture we obtain is as follows. When ϕ is stable, by Theorem 2.55, the

density (after localization) is always 1. When ϕ is simple unstable, after localization,

there will be an infinite number of missing edges but we can say something strong
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about their distribution: the density between arbitrarily large ε-regular pairs must

tend towards 0 or 1 as the graphs grow. In the simple unstable case, a finer function

counting the number of edges omitted over finite subgraphs of size n is meaningful,

and we give a preliminary description of its possible values in Proposition 3.7. In

Section 3.4, we describe the property of having arbitrarily large ε-regular subsets of

P1 with edge density bounded away from 0 and 1 in terms of the order property for

P2, Theorem 3.19. In Section 3.5 we relate these issues to complexity in the sense of

the Keisler order.

3.1 Preliminaries

Convention 3.1. (Reminders and conventions)

1. Throughout this chapter 〈Pn : n < ω〉 will be the characteristic sequence as-

sociated to (T, ϕ), Definition 2.2. The predicates Pn will always refer to the

characteristic sequence, and A will be a positive base set as in Definition 2.1.

P f
1 will indicate the localization given by f , i.e. a definable finite restriction of

P1 of a certain fixed form: Definition 2.27.

2. Convention 2.3 applies: when we ask whether certain infinite configurations ex-

ist in the characteristic sequence, we will always mean whether this is consistent

with T .

3. For stability, simplicity, and other model-theoretic properties, see §0.4. Recall
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that ϕ is simple iff ϕ does not have the tree property, and ϕ is stable iff ϕ

does not have the order property. NSOP means that T does not have the strict

order property, Definition 0.9.

4. We will use the phrase “after localization [X is true]” to mean: “there exists a

localization P f
1 (consistent with the positive base set A, if one has been specified)

in which [X is true]”, in the sense of Definition 2.27.

5. ε, δ are real numbers, with 0 < ε < 1 and 0 ≤ δ ≤ 1.

6. Let G be a symmetric binary graph. We present graphs model-theoretically, i.e.

as sets of vertices on which certain edge relations hold. Throughout this chapter

R(x, y) is a binary edge relation, which will sometimes (we will clearly say when)

be interpreted as P2.

7. A graph is a simple graph: no loops and no multiple edges. ∀x(P1(x) →

P2(x, x)), but we will, by convention, not count loops when taking P2 as R.

8. Given a graph G:

• |G| is the size of G, i.e. the number of vertices.

• e(G) is the number of edges of G.

• ê(G) is the number of edges omitted in G.

• An empty graph is a graph with no edges.
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• A complete graph is a graph with all edges, i.e. in which x, y ∈ G, x 6=

y =⇒ R(x, y).

• The degree of a vertex is the number of edges which contain it.

• The dual graph G′ has the same vertices and inverted edges, i.e. for x 6= y,

G′ |= R(x, y) ⇐⇒ G |= ¬R(x, y).

9. Write (X,Y ) to indicate a a bipartite graph. Then:

• e(X, Y ) is the number of edges between elements x ∈ X and y ∈ Y . Note

that if G = A ∪ B then possibly e(G) 6= e(A,B), as the latter counts only

edges between A and B.

• ê(X, Y ) is the number of edges omitted between elements x ∈ X and y ∈ Y .

• The density of a finite bipartite graph (X, Y ) is δ(X,Y ) := e(X, Y )/|X||Y |

when |X|, |Y | 6= 0, and 0 otherwise.

• An infinite empty pair is (X,Y ) such that |X| = |Y | ≥ ℵ0 and for all

x ∈ X, y ∈ Y , we have ¬R(x, y).

• A complete bipartite graph is (X, Y ) such that for all x ∈ X, y ∈ Y ,

R(x, y).

• The dual (X,Y )′ of a bipartite graph inverts precisely the edges between

the components X and Y .

Note that many of the results in this chapter could be made stronger by replacing
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the assumption that ϕ is simple, ϕ is stable, etc. with “some localization ϕf is simple,

stable...” in the sense of Definition 2.27.

3.2 Counting functions on simple ϕ

Throughout this section, we consider the binary edge relation P2 from the character-

istic sequence of ϕ.

Observation 3.2. Suppose ϕ is stable and let A be a positive base set (possibly

empty). Then after localization, for any two disjoint finite X,Y ⊂ P1, δ(X,Y ) = 1.

Proof. Theorem 2.55 says that when ϕ is stable, then after localization P1 is a com-

plete graph, so a fortiori there are no edges omitted between disjoint components.

Definition 3.3. Define α : ω → ω to be

max {ê(X) : X ⊂ P1, |X| = n}

i.e. the largest number of P2-edges omitted over an n-size subset of P1.

Observation 3.4. Suppose ϕ does not have the tree property. Then after localization

α(n) < n(n−1)
2

.

Proof. The maximum possible value n(n−1)
2

of any α(n) is attained on a P2-empty

graph, on which x 6= y =⇒ ¬P2(x, y). Apply Theorem 2.60 which says that when

ϕ does not have the tree property then we have, after localization, a uniform finite



101

bound k on the size of a P2-empty graph X ⊂ P1. So the function α is eventually

strictly below the maximum.

These two Observations show that the function α(n) is meaningful, i.e.

n(n− 1)

2
> α(n) > 0

precisely when ϕ is simple unstable. With some care we can easily restrict the range

further. A famous theorem of Turán says that:

Theorem K. (Turán, [15]:Theorem 2.2) If Gn is a graph with n vertices and

e(G) >

(
1− 1

k − 1

)
n2

2

then Gn contains a complete subgraph on k vertices.

Recall also from Chapter 2, Claim 2.21 that if ϕ is simple unstable, ϕ has the

independence property and so P2 contains an (ω, 2)-array, Definition 2.18.

Observation 3.5. Suppose that P2 contains an (ω, 2)-array. Then α(n) ≥
⌊
n
2

⌋
.

Corollary 3.6. When ϕ is simple unstable, then after localization

(
1− 1

k − 1

)
n2

2
≥ α(n) ≥

⌊n
2

⌋
Proof. The righthand side is Observation 3.5. For the lefthand side, let k > 1 be the

uniform finite bound on the size of an empty graph, given by simplicity (see the proof

of Observation 3.4), and apply Turán’s theorem to the dual graph.
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At the end of Section 3.3 we will give a proof of the following:

Proposition 3.7. When ϕ is simple unstable either(
1− 1

1− k

)
n2

2
≥ α(n) ≥ n2

4
or O(n2) > α(n) ≥

⌊n
2

⌋
The proof will follow from Proposition 3.14 below, which will show more, namely

that for ϕ simple unstable, either O(n2) > α(n) or there exists an infinite empty pair

in P1.

Our strategy is going to be to show that in the absence of such an “empty pair”

we can partition sufficiently large graphs into many pieces of roughly equal size so

that, asymptotically, almost no edges are omitted between pairs. Thus the bulk of

the omitted edges must occur inside the (relatively much smaller) components. The

main tool will be Theorem L below.

3.3 Szemerédi regularity

We begin with a review of Szemerédi’s celebrated regularity lemma. Throughout

this section ε, δ are real numbers, 0 < ε < 1 and 0 ≤ δ ≤ 1.

Definition 3.8. [29], [15] The finite bipartite graph (X, Y ) is ε-regular if for every

X ′ ⊂ X, Y ′ ⊂ Y with |X ′| ≥ ε|X|, |Y ′| ≥ ε|Y |, we have: |δ(X, Y )− δ(X ′, Y ′)| < ε.

The regularity lemma says that sufficiently large graphs can always be partitioned

into k pieces Xi of approximately equal size so that almost all of the pairs (Xi, Xj)

are ε-regular.
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Theorem L. (Szemerédi [15], [29]) For every ε,m0 there exist N = N(ε,m0), m =

m(ε,m0) such that for any graph X, N ≤ |X| < ℵ0, for some m0 ≤ k ≤ m there

exists a partition X = X1 ∪ · · · ∪Xk satisfying:

• ||Xi| − |Xj|| ≤ 1 for i, j ≤ k

• All but at most εk2 of the pairs (Xi, Xj) are ε-regular.

One important consequence is that we may, approximately, describe large graphs

G as random graphs where the edge probability between xi and xj is the density di,j

between components Xi, Xj in some Szemerédi-regular decomposition. We include

here two formulations of this idea from the literature, the first for intuition and the

second for our applications.

Theorem M. (from Gowers [11]) For every α > 0 and every k there exists ε > 0

with the following property. Let V1, . . . Vk be sets of vertices in a graph G, and suppose

that for each pair (i, j) the pair (Vi, Vj) is ε-regular with density δij. Let H be a graph

with vertex set (x1, . . . xk) and let vi ∈ Vi be chosen uniformly at random, the choices

being independent. Then the probability that vivj is an edge of G iff xixj is an edge

of H differs from Πxixj∈HδijΠxixj /∈H(1− δij) by at most α.

The formulation we will use, Theorem N, requires a preliminary definition.

Definition 3.9. [15] (The reduced graph)

1. Let G = X1, . . . Xk be a partition of the vertex set of G into disjoint pieces.

Given parameters ε, δ, define the reduced graph R(G, ε, δ) to be the graph with
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vertices xi (1 ≤ i ≤ k) and an edge between xi, xj just in case the pair (Xi, Xj)

is ε-regular of density ≥ δ.

2. Write R(t) for a full graph of height t whose reduced graph is R, i.e., R(t)

consists of k clusters X1, . . . Xk, each with t vertices, such that e(Xi) = 0, and

δ(Xi, Xj) = 1 iff there is an edge between xi and xj in R.

The following lemma (called the “Key Lemma” in [15]) says that sufficiently small

subgraphs of the reduced graph must actually occur in the original graph G.

Theorem N. (Key Lemma, [15]:Theorem 2.1) Given δ > ε > 0, a graph R, and

a positive integer m, let G be any graph whose reduced graph is R, and let H be a

subgraph of R(t) with h vertices and maximum degree ∆ > 0. Set d = δ − ε and

ε0 = d∆/(2 + ∆). Then if ε ≤ ε0 and t− 1 ≤ ε0m, then H ⊂ G. Moreover the number

of copies of H in G is at least (ε0m)h.

Remark 3.10. In the statement of the Key Lemma, “H ⊂ G” means that there is

a bijection f : H → X ⊂ G such that e(h1, h2) implies e(f(h1), f(h2)). With some

slight modifications (recording whether a missing edge in the reduced graph means the

density is near 0 or the pair is not regular; and using the dual graphs when necessary)

we may assume “H ⊂ G” has the usual meaning of isomorphic embedding, but this

will not be an issue for the arguments in this section.

Definition 3.11. Let G be a graph and let G = X1 ∪ · · · ∪ Xn be a decomposition

into disjoint pieces, e.g. as given by Theorem L. Call the edges between vertices in
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different components interstitial edges.

An easy application of the Key Lemma shows that

Observation 3.12. Suppose that there exists δ, 0 < δ < 1 such that for all 0 < ε < 1

and all N ∈ N there exist disjoint subsets XN , YN ⊂ P1, |XN | = |YN | ≥ N such that

(XN , YN) is ε-regular with density δ. Then P1 contains an infinite empty pair.

Proof. Apply the Key Lemma to each dual graph (XN , YN)′, which is still regular,

of density bounded away from 0 and 1. For each t < ω, for all N sufficiently large,

(XN , YN)′ contains a complete bipartite graph on t vertices, as this occurs as a subset

of R(t).

Corollary 3.13. We can explictly reword this as:

1. If P1 does not contain an infinite empty pair then we can define a function

f : (0, 1)× ω → (0, 1) monotonic increasing as ε→ 0 and N →∞ such that if

(X, Y ) is an ε-regular pair of size N then its density is at least δ := f(ε,N).

2. Likewise we can define g : (0, 1)×ω → (0, 1) monotonic increasing as ε→ 0 and

k → ∞ such that if X is a graph large enough to admit an ε-regular decompo-

sition into k-many pieces then the density between any two regular components

is at least δ := g(ε, k).

We are now prepared to prove:

Proposition 3.14. When ϕ is simple unstable, if there does not exist an infinite

empty pair X, Y ⊂ P1, then α(n) < O(n2).
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Proof. By the analysis above, if there is no infinite empty pair then the density

between ε-regular pairs of size n must tend to 1 as n→∞, ε→ 0. Let us count the

interstitial edges as we partition graphs X into ` pieces, most of which are pairwise

ε-regular, by applying the Regularity Lemma (as ` grows). Recall that the goal is to

show that for any positive constant c, eventually the count α(n) falls below cn2.

Suppose that X, |X| = n is large enough to admit an ε-regular decomposition into

`-many pieces of size m. Then in the notation of Corollary 3.13, setting δ := g(ε, `),

the contribution of the interstitial edges is at most:

ε`2m2 + (1− ε)`2(1− δ)m2

as the term on the left assumes the irregular pairs are missing all possible edges, and

the term on the right counts the expected number missing from the regular pairs.

But m = |X|/`, so given some such regular decomposition the count is simply

εn2 + (1− ε)(1− δ)n2

As n → ∞, it continually passes the threshold for ε-regular decompositions into at

least k pieces. Corollary 3.13 ensures that for any δ < 1, as ε→ 0, for cofinally many

k there is a threshold size Nε,k such that any in graph X of size n > Nε,k there is

a Szemerédi decomposition into k pieces such that the pairwise regular components

have density at least δ. Thus as n → ∞, ε → 0 and δ → 1. So there will eventually

be less than cn2 interstitial edges added to α, for any c > 0.
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It remains to consider edges omitted entirely within components. The idea is that

α(m`) ≤ `
m2

2

which falls below the order of (m`)2 as m stays fixed and ` → ∞. Let us be more

careful, however, as these quantities are not entirely independent. Notice that the

first part of the argument shows that for any constant c, for n greater than some Nc,

there exist ε, k such that all graphs of size n admit a Szemerédi decomposition into

k components, almost all of which are ε-regular and such that no more than cn2 of

the interstitial edges are missing. When n/k > Nc, each of the components in the

decomposition has this property in turn. For any finite d, by choosing n sufficiently

large, we can ensure that this decomposition continues to a depth of d steps. At each

stage in the decomposition, the potentially large number of missing edges disappears

inside the relatively much smaller components. As we can do this for any ε, for

cofinally many k depending on ε, and for any d, we see that the total edge count must

also fall below c′n2 for any c′ > 0.

Proof. (of Proposition 3.7) This is now an immediate corollary of Proposition 3.14,

n2

4
being the number of edges omitted in an empty pair.

Remark 3.15. Proposition 3.14, and thus Proposition 3.7, are more natural than

might appear. We know that when ϕ is simple unstable P2 will contain a tuple of

inconsistent elements; in fact, even the random graph, the “least complex” example

of a simple theory, contains an infinite empty pair, for instance ({(a, x) : x ∈M,x 6=
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a}, {(y, a) : y ∈ M, y 6= a}) when ϕ = xRy ∧ ¬xRz. Also, as Szemerédi regularity

deals with density, it cannot (in this formulation) give precise information about edge

counts below O(n2). On the other hand, notice that the analysis of types in the random

graph, Example 2.7, reduces to a definable (ω, 2)-array, on which α is essentially

linear.

3.4 Order and genericity

The main idea of the previous proof was that in the course of a regular decomposi-

tion, if a growing sequence of ε-regular pairs Xn, Yn failed to have density sufficiently

close to 1, we could in due course extract an infinite pair X ′, Y ′ with density 0. This

was because, by the Blow-up Lemma, if the density of some increasing sequence of

ε-regular pairs stayed bounded away from 1, we could obtain increasingly large empty

graphs as subgraphs.

Examining this assumption more carefully, we can give an “excluded-middle”

characterization for the associated P2 in a class of theories which strictly includes

simple theories: in some localization, the density of any sufficiently large ε-regular

pair X, Y ⊂ P1 must approach either 0 or 1 (as a function of ε and N), Corollary

3.20 below.

The next few results are given for any symmetric binary relation R.

Lemma 3.16. Suppose that for some 0 < δ < 1 and for all ε, n with 0 < ε < 1, n ∈ N
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we have a bipartite R-graph (X, Y ), |X| = |Y | ≥ n, such that (X, Y ) is ε-regular with

density d, where |d− δ| < ε. Then R has the order property (Definition 0.9).

Proof. In order to apply the reformulated Key Lemma, it suffices to show that for

sufficiently small ε0 and sufficiently large k0 there is a Szemerédi-regular decompo-

sition of X and of Y into k0 pieces such that all but k0(ε0)
2 of the pairs Xi, Yi are

ε0-regular with density near δ.

Given ε0, k, let k0, N0 be the number of components and threshold size, respec-

tively, given by the regularity lemma. Choose ε so that 1
k0
> ε and n > N0. Let

(X, Y ) be the ε-regular pair of size at least n and density near δ, given by hypothesis.

By regularity, n > N0 means that there is a decomposition X = ∪i≤k0Xi, Y =

∪i≤k0Yi into disjoint pieces of near equal size and that all but ε0(k0)
2 of the pairs

(Xi, Yj) are ε0-regular. However any one of these regular pairs (Xi, Yj) will satisfy

|Xi|, |Yj| = n/k0 > εn, so |d(Xi, Yj)−d(X, Y )| = |d(Xi, Yj)−δ±ε| < ε and |d(Xi, Yj)−

δ| < 2ε, as desired.

This is a version of the graph-theoretic “Slicing Lemma”:

Fact 3.17. (Slicing Lemma, [15]:Fact 1.5) Let (A,B) be an ε-regular pair with density

d, and, for some α > ε, let A′ ⊂ A, |A′| ≥ α|A|, B′ ⊂ B, |B′| ≥ α|B|. Then (A′, B′)

is an ε′-regular pair with ε′ = max{ε/α, 2ε}, and for its density d′ we have |d′−d| < ε.

The remaining ingredient is a lemma from Chapter 4 which inverts a construction

of Shelah:
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[Lemma 4.5, quoted for completeness.] Suppose the formula R(x; y) has the order

property. If T does not have the strict order property, then on some infinite (A,B),

R is a bipartite random graph.

Definition 3.18. Fix a binary edge relation R. Call a density 0 ≤ δ ≤ 1 attainable

if for all ε there exists a sequence 〈Sδε = 〈(Xi, Yi) : i < ω〉 of finite bipartite R-graphs

such that for all n < ω, ε > 0 there is N < ω such that for all i > N ,

• |Xi| = |Yi| ≥ n,

• (Xi, Yi) is ε-regular with density di, where |di − δ| < ε.

Theorem 3.19. (NSOP) The following are equivalent for a binary relation R(x, y):

1. For some 0 < δ < 1 and for all N, ε there exist disjoint X,Y with |X| = |Y | ≥ N

such that (X, Y ) is ε-regular with density d, |d− δ| < ε.

2. For any attainable 0 < δ < 1 such that for all N, ε there exist disjoint X, Y with

|X| = |Y | ≥ N such that (X, Y ) is ε-regular with density d, |d− δ| < ε.

3. R has the order property.

Proof. (2) → (1) Attainable densities exist, e.g. 1
2
: consider subgraphs of an infinite

random bipartite graph.

(1) → (3) Lemma 3.16.

(3) → (1) Chapter 4, Lemma 4.5, which says that from (3), assuming NSOP , we

can construct an infinite random bipartite graph with edge relation R.
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Corollary 3.20. Suppose that (T, ϕ) 7→ 〈Pn〉, and T is simple. Then after local-

ization, the density of any sufficiently large P2-regular pair (X,Y ) must approach

either 0 or 1. More precisely, for each such P2 in some finite localization there ex-

ists f : N × (0, 1) → [0, 1
2
] monotonic increasing as n → ∞, ε → 0 such that if

X, Y ⊂ P1, |X|, |Y | ≥ n and (X, Y ) is ε-regular, then either d(X, Y ) < f(n, ε) or

d(X, Y ) > 1− f(n, ε).

Proof. The analysis of Chapter 2 showed that when T is simple, after localization the

formulas Pn are stable (Conclusion 2.33), so in particular P2 cannot have the order

property.

Remark 3.21. This is a class strictly containing the simple theories. For instance,

there is a theory with NTP1 page 61 whose P2, after localization, contains an (ω, ω)

array but does not contain the order property. In the next section, we consider the

force of this dividing line.

3.5 Two kinds of order property

The previous section gave some insight into the idea, which arose in Chapter 2,

that having the order property in P2 is a signal of complexity for ϕ (Observation

2.30). That proof simply showed that the order property in P2 implies dividability

of ϕ2. Theorem 3.19 said much more, namely that in the absence of strict order, P2

has the order property iff it is, in some sense, universal for finite bipartite graphs.
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“In some sense” refers to the issue of edges within the components X, Y of a

bipartite graph. This section considers two polar opposite order properties and their

implications in P2. In the language of Theorem 3.19, the first case arises when P2

has nontrivial density between some pair of positive base sets for types; the second,

when P2 has nontrivial density between some pair of dividing sequences.

Definition 3.22. (Two kinds of order property) Let 〈Pn〉 be the characteristic se-

quence of ϕ.

1. ϕ has the n-compatible order property, for some n < ω (or n =∞) if there exist

〈ai, bi : i < ω〉 such that for all m ≤ n (or m < ω), Pm((ai1 , bj1), . . . (aim , bjm))

iff max{i1, . . . im} < min{j1, . . . jm}.

1.′ When the sequence has support 2 this becomes: there exist 〈ai, bi : i < ω〉 such

that P2(ai, aj), P2(bi, bj) for all i, j and P2(ai, bj) iff i < j.

2. ϕ has the n-empty order property, for some n ∈ ω, if:

there exist 〈ai, bi : i < ω〉 such that (i) P2(ai; bj) iff i < j and (ii) ¬Pn(ai1 , . . . ain),

¬Pn(bi1 , . . . bin) hold for all i1, . . . in < ω.

Let us briefly justify excluding a natural third possibility, the “semi-compatible

order property:”

Observation 3.23. There is a formula in the random graph which has the semi-

compatible order property.
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Proof. Let us apply the construction of Example 2.2, page 59. Choose two distin-

guished elements 0, 1 (this can be coded without parameters; see the example). Define

ψ(x; y, z) to be x = y if z = 0, xRy otherwise. Then on any sequence of distinct el-

ements 〈aibi : i < ω〉 ⊂ M which witness the order property (aiRbj ⇐⇒ i < j), we

have additionally that

∃x
(
ψ(x; ai, 0) ∧ ψ(x; bj, 1)

)
⇐⇒ ∃x

(
x = ai ∧ xRbj

)
⇐⇒ i < j

so P2 has the order property on the sequence 〈(ai, 0), (bi, 1) : i < ω〉. On the other

hand, ∃x(x = ai ∧ x = aj) ⇐⇒ i = j, so the row of elements (ai, 0) is a P2-empty

graph. Finally, ∃x(xRbi ∧ xRbj) always, by the axioms of the random graph; so the

row of elements (bj, 1) is a P∞-complete graph.

Remark 3.24. Assuming MA + 2ℵ0 > ℵ1, Shelah has constructed an ultrafilter on

ω which saturates certain models of the random graph, but not of theories with the

tree property, thus a fortiori not maximal theories (Theorem H, page 38). This fact,

coming after the analysis in this section, is a strong argument for the “semi-compatible

order property” being less complex: it cannot, by itself, imply maximality.

We return to the study of the compatible and empty order properties.

Convention 3.25. When more than one characteristic sequence is being discussed,

write Pn(ϕ) to indicate the nth hypergraph associated to the formula ϕ. Recall that

ϕ`(x; y1, . . . y`) :=
∧
i≤` ϕ(x; yi).

The following general principle will be useful.
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Claim 3.26. Suppose that we have a sequence 〈ci : i ∈ Z〉 and a formula ρ(x; y, z)

such that:

• ∃xρ(x; ci, cj) ⇐⇒ i < j

• ∃x
(∧

`≤n ρ(x; ci` , cj`)
)

just in case max{i1, . . . in} < min{j1, . . . jn}

Then ρ has the ∞-compatible order property.

Proof. This is a fairly straightforward translation of the definition, but let us give

a picture. Essentially, we can now describe intervals. For instance, setting bk =

(c−2i, c2i) and ak = (c2i−1, c3i) for 1 ≤ k ≤ n, j = n-k is sufficient. In the following

picture, matching parentheses are pairs:

← [− [− [− [− (−]− (−]− (−]− (−]−)−)−)−)→

Observation 3.27. Suppose that ϕ has the strict order property, i.e. there is an

infinite sequence 〈ci : i < ω〉 on which ∃x(¬ϕ(x; ci) ∧ ϕ(x; cj)) ⇐⇒ i < j. Then

¬ϕ(x; y) ∧ ϕ(x; z) has the ∞-compatible order property.

Proof. Writing ρ(x; y, z) = ¬ϕ(x; y) ∧ ϕ(x; z),

• ∃xρ(x; ci, cj) ⇐⇒ i < j, by definition of strict order;

• ∃x(ρ(x; ci, cj) ∧ ρ(x; ck, c`)) ⇐⇒ i, k < j, `

and the characteristic sequence P∞(ρ) has support 2. Apply Claim 3.26.
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Recall from Chapter 2, Definition 2.5 that T0-configurations are the Pn- (here,

P2-) graphs which can consistently occur in some characteristic sequence.

Observation 3.28. (NSOP) Let 〈Pn : n < ω〉 be the characteristic sequence of ϕ and

〈P ′
n : n < ω〉 that of ϕ2. Suppose that ϕ has the compatible order property witnessed

by X ⊂ P1, and that the sequence 〈Pn〉 restricted to X has support 2. Then P ′
2 is

universal for finite T0-configurations. Moreover, there is an infinite subset C ′ ⊂ P ′
1

over which P2 is a random graph, and the sequence P ′
n restricted to C ′ has support 2.

Proof. By Corollary 4.6 to Lemma 4.5, which assumes NSOP, since P2 has the order

property between P∞-complete graphs we may find two disjoint infinite sets A,B

which are P∞-complete graphs so that (A,B) is an infinite bipartite random graph

for P2 and inherits support 2. Let C = A ∪ B. Let us show by induction on ` that

the graph with vertices in P ′
1 and edge relation P ′

2 is universal for finite symmetric

binary graphs on ` vertices. For ` = 1 it is true. Suppose ` = m + 1, and we would

like to embed a graph given by {x1, . . . xm+1} and edge relation R. Suppose that, by

inductive hypothesis, we have found {(ai, bi) : i ≤ m} ⊂ P ′
1 such that:

• ai ∈ A, bi ∈ B for i ≤ m

• P2(ai, aj) and P2(bi, bj) for 1 ≤ i, j ≤ m, and therefore P ′
1((ai, aj)), P

′
1((bi, bj))

• xi 7→ (ai, bi) (i ≤ m) is a graph isomorphism,

i.e. if i 6= j then R(xi, xj) iff P ′
2((ai, bi), (aj, bj)).
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Now R(xm+1, xi) ⇐⇒ i ∈ σ for some σ ⊂ m. By the choice of A,B it is easy to

find am+1 ∈ A such that P2(am+1, bj) ⇐⇒ j ∈ σ, and bm+1 such that P2(bm+1, aj)

for all 1 ≤ j ≤ m. Then P ′
2 holds on the pair (am+1, bm+1), (aj, bj) iff

∃x (ϕ2(x; am+1, bm+1) ∧ ϕ2(x; aj, bj)) ⇐⇒ P4(am+1, bm+1, aj, bj) ⇐⇒ P2(am+1, bj)

as we built all other pairs to be consistent, and assumed that on C the characteristic

sequence of ϕ depends on 2. As we have built C ′ directly from C, it is straightforward

to check that in fact the entire sequence 〈P ′
n〉, restricted to C ′, inherits support 2.

Remark 3.29. Thus the compatible order property pushes forward to a random graph,

whereas the incompatible order property would simply push forward to a P2(ϕ2)-empty

graph.

Example 3.1. Let T be the theory of the triangle-free random graph with edge relation

R. Consider ϕ(x; y, z) = xRy ∧ xRz. (The negative instances could be added but are

not necessary.) Then:

• P1((y, z)) ⇐⇒ ¬yRz.

• P2((y, z), (y′, z′)) iff {y, y′, z, z′} is an empty graph.

• The sequence has support 2, as the only problems come from a single new edge:

Pn((y1, z1), . . . (yn, zn)) iff

∃x

(∧
i≤n

xRyi ∧
∧
j≤n

xRzj

)
that is, if

⋃
i

yi ∪
⋃
j

zj is a P2-empty graph.
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Let 〈ai, bi : i < ω〉 be a sequence witnessing the incompatible order property with

respect to the edge relation R, say aiRbj iff j ≤ i. Then ∃x(xRai ∧ xRbj) iff i < j,

i.e. (ai, bj) ∈ P1 iff i < j. Also, ∃x(xRai ∧ xRbj ∧ xRak ∧ xRb`) if, in addition,

i, k < j, `. Apply Claim 3.26.

SOP3 will be discussed in Chapter 4, §4.3. Recall from Chapter 1 that SOP3

implies maximality in the Keisler order.

Lemma 3.30. Suppose that θ(x; y) has SOP3, so `(x) = `(y). Let ϕr = ϕ, ψ` = ψ

be the formulas from Definition 4.8. Then ρ(x; y, z) := ϕr(y, x) ∧ ψ`(x, z) has the

∞-compatible order property on some A′ ⊂ P1. Moreover, we can choose A′ so that

the sequence restricted to A′ has support 2.

Remark 3.31. This is an existential assertion, and it is straightforward to check that

it remains true if we modify ρ to include the corresponding negative instances.

Proof. (of Lemma) Let A := 〈ai : i < Q〉 be an infinite indiscernible sequence from

Definition 4.8. Then

P1((ai, aj)) ⇐⇒ ∃x (ϕr(ai, x) ∧ ψ`(x, aj)) ⇐⇒ i < j

by the choice of ϕ, ψ. More generally,

Pn((ai1 , aj1), . . . (ain , ajn)) ⇐⇒ ∃x

(∧
t≤n

ϕr(x; ait) ∧
∧
t≤n

ψ`(x; ajt)

)

which, again applying Definition 4.8, happens iff max{i1, . . . in} < min{j1, . . . jn}, a

condition which has support 2. We now apply Claim 3.26 to obtain A′ ⊂ A × A
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witnessing the compatible order property. Note that while 〈Pn〉 need not depend on

2 elsewhere in P1 (we know very little about ρ off A), it does depend on 2 on elements

from the sequence A′.

Assuming NSOP , we thus obtain a simpler proof of Shelah’s theorem that any

theory with SOP3 is maximal in the Keisler order ([27], [28]):

Theorem 3.32. Suppose T has SOP3 and not strict order. Then there exist a formula

ρ of T with characteristic sequence 〈Pn〉 and an infinite set C ⊂ P1 such that:

• P2 is a random graph on C.

• The sequence 〈Pn〉 restricted to C ⊂ P1 depends on 2.

Thus T is maximal in the Keisler order.

Proof. Let ρ′ be the formula defined in Lemma 3.30, and A′ the compatible order

property sequence from that proof. Apply Observation 3.28 to ρ′ obtain the random

graph with support 2 in the characteristic sequence of ρ := ρ′2. In order to show that

these conditions imply maximality by Lemma 5.14, recall that there exists (T, ϕ)

whose sequence depends on 2 and which is maximal in the Keisler order: namely,

ϕ(x; y, z) = y > x > z in any theory of strict linear order.

Conclusion 3.33. For any theory T without the strict order property, the following

are equivalent. Each clause mentions a formula ϕ and its associated characteristic

sequence 〈Pn〉. In the proof, we indicate by subscripting how the formulas relate.
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1. For some formula ϕ of T , ϕ has the ∞-compatible order property (Definition

3.22).

2. For some formula ϕ of T , there exists an infinite C ⊂ P1(ϕ) witnessing the

compatible order property such that P∞(ϕ) restricted to C has support 2.

3. For some formula ϕ of T , there exist infinite positive base sets A,B ⊂ P1(ϕ)

such that P∞(ϕ) restricted to A ∪ B has support 2 and (A,B) is a bipartite

random graph with edge relation P2(ϕ).

4. For some formula ϕ of T , there exists an infinite C ′ ⊂ P1(ϕ) on which the

characteristic sequence 〈Pn(ϕ)〉 has support 2, and on which P2(ϕ) is a random

graph.

5. For some formula ϕ of T , in P1(ϕ) there are arbitrarily large ε-regular pairs of

positive base sets whose interstitial density stays bounded away from 0 and 1,

where the edge relation is taken to be P2(ϕ). That is, there exist δ, 0 < δ < 1

such that for every n < ω and 0 < ε, there are positive base sets A,B ⊂ P1(ϕ),

n ≤ |A| = |B| < ℵ0 so that (A,B) is ε-regular in the sense of Szemerédi, with

density d such that |d− δ| < ε.

6. (Translating (5)) For some formula ϕ of T , there exists 0 < δ < 1 such that for

every n < ω, 0 < ε there exist parameter sets A,B ⊂ P1(ϕ), n < |A| = |B| < ℵ0

such that
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• {ϕ(x; a) : a ∈ A}, {ϕ(x; b) : b ∈ B} are both consistent partial ϕ-types

• the likelihood that instances chosen from each are consistent is roughly δ,

∣∣∣∣ |{(a, b) : a ∈ A, b ∈ B, {(ϕ(x; a), ϕ(x; b)} consistent}|
|A||B|

− δ
∣∣∣∣ ≤ ε

• and in fact for every A′ ⊂ A,B′ ⊂ B, |A′| ≥ ε|A|, |B′| ≥ ε|B|,

∣∣∣∣ |{(a, b) : a ∈ A′, b ∈ B′, {(ϕ(x; a), ϕ(x; b)} consistent}|
|A′||B′|

− δ
∣∣∣∣ < ε

Proof. The only time the formula changes is from (3) to (4), when ϕ becomes ϕ2.

(1)ϕ =⇒ (2)ϕ by compactness.

(2)ϕ =⇒ (3)ϕ is Corollary 4.6 to Lemma 4.5.

(3)ϕ =⇒ (4)ϕ2 is Observation 3.28.

(3)ϕ =⇒ (5)ϕ is clear.

(1)ϕ ⇐⇒ (5)ϕ is Theorem 3.19.

(5)ϕ ⇐⇒ (6)ϕ is a direct translation.

(4)ϕ =⇒ (1)ϕ as this random graph will be universal for finite T0-configurations.
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Chapter 4

Depth of independence

In this chapter, we observe and explicate a discrepancy between the model-

theoretic notion of an infinite random k-partite graph and the finitary version given

by Szemerédi regularity, showing essentially that a class of infinitary k-partite random

graphs which do not admit reasonable finite approximations must have the strong or-

der property SOP3 (a model-theoretic notion of rigidity, Definition 4.7 below). This

is structurally interesting, but also suggestive because SOP3 is known to imply max-

imality in the Keisler order.

4.1 A seeming paradox

The formal definitions of “bipartite random graph,” etc. will be given in the next

section, but there are no real surprises.
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Observation 4.1. Let T be the theory of the triangle-free random graph, with edge

relation R. Then it is consistent with T that there exist disjoint infinite sets X, Y, Z

such that each pair (X, Y ), (Y, Z), (X,Z) is a bipartite random graph.

Proof. The construction has countably many stages. At stage 0, let X0 = {a}, Y0 =

{b}, Z0 = {c} where a, b, c have no R-edges between them. At stage i+ 1, let Xi+1 be

Xi along with 2|Yi|+|Zi|-many new elements:

1. for each subset τ ⊂ Yi, a new element xτ such that for y ∈ Y , xτRy ⇐⇒ y ∈ τ ,

however ¬xτRx for any x previously added to Xi+1.

2. for each subset ν ⊂ Zi, a new element xν such that for z ∈ Z, xνRz ⇐⇒ z ∈ ν,

with xν likewise R-free from previous elements of Xi+1.

Yi+1, Zi+1 are defined symmetrically. As we are working in the triangle-free random

graph, in order that the the construction be able to continue, it is enough that the

sets Xi, Yi, Zi are each empty graphs, i.e., at no point do we ask for a triangle.

To finish, set X =
⋃
iXi, Y =

⋃
i Yi, Z =

⋃
i Zi. Each pair is a bipartite random

graph, as desired.

Theorem O. (weak version of Key Lemma, Chapter 2) Fix 1 > δ > 0 and a binary

edge relation R. Then there exist ε′ = ε′(δ), N ′ = N ′(ε′, δ) such that: if ε < ε′,

N > N ′, X,Y, Z are disjoint finite sets of size at least N , and each of the pairs

(X, Y ), (Y, Z), (X,Z) is ε-regular with density δ, then there exist x ∈ X, y ∈ Y, z ∈ Z

so that x, y, z is an R-triangle.
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Obviously, we cannot have anR-triangle in the triangle-free random graph. Nonethe-

less each of the pairs (X, Y ) in Observation 4.1 manifestly has finite subgraphs of any

attainable density.

The difficulty comes when we try to choose finite subgraphs X ′ ⊂ X, Y ′ ⊂ Y, Z ′ ⊂

Z so that the densities of all three pairs are simultaneously near the same δ > 0. If

(X ′, Y ′) and (Y ′, Z ′) are reasonably dense, (X ′, Z ′) will be near 0. Put otherwise, we

may choose elements of X independently over Y , and independently over Z, but not

both at the same time.

The constructions in this chapter generalize this example, and give a way of mea-

suring the “depth” of independence in a constellation of sets X1, . . . Xn, where any

pair (Xi, Xj) is a bipartite random graph. The example of the triangle-free random

graph is paradigmatic: we shall see that a bound on the depth of independence will

produce the 3-strong order property SOP3.

4.2 Independence and order

In all of our applications the formulaR(x; y) will be symmetric. For the definitions,

we just ask that `(x) = `(y).

Definition 4.2. (Constellations of order and independence properties)

1. The sets A,B witness the order property for ϕ if |A| = |B| ≥ ℵ0 and there exist

enumerations A = 〈ai : i < ρ〉, B = 〈bi : i < ρ〉 such that either: ϕ(ai, bj) iff
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i < j for all i, j < ρ, or ¬ϕ(ai, bj) iff i < j for all i, j < ρ.

2. Fix some formula ϕ(x; y). Let A,B be disjoint sets of k- and n-tuples respec-

tively, where k = `(x), n = `(y). Then A is independent over B with respect to

ϕ just in case for any two finite disjoint η, ν ⊂ B, there exists a ∈ A such that

b ∈ η → ϕ(a; b) and b ∈ ν → ¬ϕ(a; b).

3. Fix a formula R(x; y). Let A1, . . . Ak be disjoint sets (of m-tuples, where m =

`(x) = `(y)). Then A1 is independent over A2, . . . Ak with respect to R just in

case A1 is independent over B :=
⋃

2≤i≤k Ai in the sense of (2).

4. The formula R(x; y) is a bipartite random graph if there exist disjoint infinite

sets A,B such that A and B are each independent over the other wrt R.

5. A formula R is Xm
2 if there exist disjoint infinite sets 〈Ai : i < m〉 such that for

any two distinct i, j < m, the sets Ai, Aj witness the order property for R.

6. A formula R is Imk , m ≥ k ≥ 2, if there exist disjoint infinite sets 〈Ai : i < m〉

such that for any distinct i1, . . . ik < ω, Ai1 is independent over
⋃

2≤j≤k Aij w.r.t.

R. Notice that k refers to the scope of the independence (i.e. the number of

columns involved), not the size of the finite disjoint η, ν.

Observation 4.3. 1. Let R(x; y) be a symmetric formula. If R is Iωω then there

is an infinite subset of the monster model on which R is a random graph. (Cer-

tainly this need not be definable or interpretable in any way). The converse is

also true.
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2. If R(x; y) has the strict order property then R′(x; y, z) = R(x, y) ∧ ¬R(x, z) is

Xω
2 . So this phenomenon occurs both in order and independence.

3. If ϕ(x; y) (not necessarily symmetric) has the order property then θ(xy; zw) =

ϕ(x;w) does too, and furthermore θ is Xω
2 and so, assuming NSOP , also Iω2

(see below). But the asymmetry between the parameter and object variables is

not erased; the result is really a bipartite random graph for ϕ, and not a random

graph.

We first sketch a classic proof of Shelah, as the details of its argument will be used

in Lemma 4.5. Recall that:

Definition 4.4. ([26]) A formula ϕ(x; y) has the strict order property if there exists

an infinite sequence 〈ai : i < ω〉 such that: ∃x(ϕ(x; ai) ∧ ¬ϕ(x; aj)) iff j < i.

Theorem P. (Shelah, [26]:Theorem II.4.7)

Suppose ϕ(x; y) is unstable. Then either ϕ has the independence property, or for some

n < ω, η ∈ 2n,
∧
i<n ϕ(x; yi)

η[i] has the strict order property.

Proof. (Sketch) Let A = 〈ai : i < ω〉 be a sequence on which ϕ has the order property,

i.e. for any j ∈ ω, ∃x(i ≤ j → ¬ϕ(x; ai) ∧ i > j → ϕ(x; ai)). By convention,

ϕ(x; y)0 ≡ ¬ϕ(x; y).

Suppose that ϕ does not have the independence property on A, so there are n < ω,

a0, . . . an and σ ⊂ n, |σ| = k < n such that
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¬∃x(
∧
i≤n

ϕ(x; ai)
if i∈σ) (4.1)

Because of the order property, there is some τ ⊂ n, |τ | = k such that

∃x(
∧
i≤n

ϕ(x; ai)
if i∈τ ) (4.2)

namely, τ = {n− k + 1, . . . n}. Thus, for some finite m, we can find a sequence of m

sets σi ⊂ n, such that |σi| = k, σ0 = τ , σm = σ, and for each i, σi+1 is obtained from σi

by swapping two consecutive elements. Let t+1 ≤ m be the first time when (2) yields

to (1) and the witness vanishes. By indiscernibility of A, ¬∃x(
∧
i≤n ϕ(x; yi)

if i∈σt+1) is

true of any increasing n-tuple from A of the same order-type. In particular, suppose

that the inconsistency appeared when swapping elements a`, a`+1. Write p(y1, . . . yn)

for the type
∧
i≤n ϕ(x; yi)

if i∈σt , and q(y1, . . . y`−1, y`+2, . . . yn) for p on all but the

crucial pair y`, y`+1.

By choosing an n-tuple from A whose first `− 1 elements A0 and last n− (`+ 2)

elements A1 are sufficiently far apart, we get arbitrarily large indiscernible sequences

in between on which ∃x(q(A0, A1) ∧ ϕ(x; ai) ∧ ϕ(x; aj)) is true iff i < j. This gives

strict order.

Let us turn the construction around.

Lemma 4.5. Suppose the formula R(x; y) is X2
2 . If T does not have the strict order

property, then R is I2
2 .
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Proof. Let us begin with an indiscernible sequence 〈aibi : i < Q〉 which witnesses the

order property for R. Let A0 = {ai : i < Q}, B = {bi : i < Q}. Let D0 = ∅. Fix

some increasing ω-indexed subset of A0; call this C0, and set A := A0 \ C0.

We will construct two countable increasing sequences of sets Cn, Dn (n < ω) so

that (
⋃
nCn,

⋃
nDn) is a bipartite random graph. The idea is that at stage n, the

“independent” sets Cn, Dn will be relatively sparse inside A,B respectively, which

serve as a large scaffolding for the construction. More precisely:

Inductive hypothesis. A,B are fixed. At stage n ≥ 1, suppose that:

1. Cn, Dn are countably infinite.

2. (A ∪ Cn, B) and (A,B ∪ Dn) are indiscernible sequences witnessing the order

property for R.

3. Dn is independent over Cn.

4. Cn is independent over Dn−1.

We have defined A,B,C0, D0. We give a definition for any Dn (n ≥ 1). This will

be essentially symmetric for Cn: the only important difference is that Cn in the first

sentence becomes Dn−1 rather than Dn.

Definition of Dn. Fix some enumeration f : ω → ω<ω ×ω<ω of pairs of disjoint finite

subsets of Cn. For each i < ω, we want to choose an element di such that, writing

Di
n for {dj : j ≤ i},
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1. this instance of independence is satisfied: d |= pσ,τ (x) := (y ∈ σ → R(x, y),

z ∈ τ → ¬R(x, y))

2. the order property between (A,B∪Di
n) is preserved: di realizes some cut q(x) ∈

S(A) over A, which is not ±∞, and not the same cut as any element previously

added.

3. the indiscernibility of (A,B ∪Di
n) is preserved: di realizes the correct average

type r(x) ∈ S(B ∪Dn−1) (if i = 0), or ∈ S(B ∪Dj
n) for j = i− 1 (otherwise).

Let p, q′, r′ be finite fragments of the three types. p(x) ∪ q′(x) together can be

thought of as an instance of independence. To show that it is consistent, we now

threaten strict order by running through Shelah’s argument from Theorem P, with

the additional criterion r: that is, we ask after each swap whether there exists an x

such that r(x) and ... . This is a legitimate addition because at the first stage of the

construction, when the elements are in the expected order, there are many witnesses

from the sequence B. Almost any element from B will satisfy r, as the inductive

hypothesis says that (A,B ∪Dj
n) is indiscernible, for j < i.

The following Corollary will be useful for §3.5.

Corollary 4.6. Suppose that we strengthen the hypotheses of Lemma 4.5 as follows.

We are given a characteristic sequence 〈Pn〉 and an infinite indiscernible sequence

〈aibi : i < ω〉 of pairs of elements of P1 on which:

• P2(ai, bj) ⇐⇒ i < j
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• P2(ai, aj) and P2(bi, bj) for all i, j < ω

• Pn(ai1 , . . . aik , bj1 , . . . bjn−k
) iff P2 holds on all 2-element subsets of

{ai1 , . . . aik , bj1 , . . . bjn−k
}.

i.e. P2 is X2
2 on this sequence, but satisfies some additional compatibility conditions.

Then there exist sets C,D ⊂ P1 such that:

(i) (C,D) is a bipartite random graph for P2

(ii) P2(c, c
′) and P2(d, d

′) for all c, c′ ∈ C and d, d′ ∈ D

(iii) Pn(ci1 , . . . cik , dj1 , . . . djn−k
) iff P2 holds on all 2-element subsets of

{ci1 , . . . cik , dj1 , . . . djn−k
}

In other words, in carrying out the construction of Lemma 4.5 we can without loss

of generality retain the compatibility of each half as well as support 2.

Proof. At the inductive step, to the conditions (1)-(3) in the definition of di in the

proof of Lemma 4.5 we add the following schemata:

(4) di ∪B
⋃
j≤n−1Dj ∪Di

n is a P∞-complete graph

(5)k (k < ω) for all X ⊂ A ∪
⋃
j≤n−1Cj ∪ B

⋃
j≤n−1Dj ∪Di

n, X2 ⊂ P2 and di ∈ X

implies Xk ⊂ Pk

That is, we would like to show that we can add the condition of support 2 to

our inductive hypothesis. At stage t + 1 in the construction (fixing, if necessary,
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an enumeration of the countably many but not ω-indexed stages in the proof of the

previous Lemma), let St be the union of A,B and every element added thus far. The

claim is that we can choose the element at stage t+ 1 so that St+1 has support 2.

At stage 0, this is true by hypothesis. At stage t + 1, without loss of generality

suppose we are adding an element to Di
n. What the argument of Lemma 4.5 shows

is that any finite fragment of the type p, q′, r′ which our new element must satisfy

is realized by many elements of the original sequence B, provided that p over σ, τ is

swapped to its “initial position” in that argument, i.e. in linear order in the sense

of the (A,B)-order property. A fortiori, any element b from B has the property that

St ∪ {b} has support 2. So we in fact have a witness to the larger finite fragment

including pieces of (4), (5). This is all we need to run the argument from Lemma 4.5,

progressively swapping the elements in σ, τ , at each stage using the threat of SOP

to continue.

4.3 Towards SOP3

Definition 4.7. (Shelah, [27]:Definition 2.5) For n ≥ 3, the theory T has SOPn if

there is a formula ϕ(x; y), `(x) = `(y) = k, M |= T and a sequence 〈ai : i < ω〉 with

each ai ∈Mk such that:

1. M |= ϕ(ai, aj) for i < j < ω

2. M |= ¬∃x1, . . . xn(
∧
{ϕ(xm, xk) : m < k < n and k = m+ 1 mod n})
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Theorem Q. (Shelah, [27]: (1) is Claim 2.6, (2) is Theorem 2.9)

1. For a theory T , SOP =⇒ SOPn+1 =⇒ SOPn, for n ≥ 3 (not necessarily for

the same formula).

2. If T is a complete theory with SOP3, then T is maximal in the Keisler order.

For an alternate proof of (2), see Chapter 3, Theorem 3.32.

We will derive SOP3 from failures of randomness, using the following equivalent

definition. Remember that, by convention, ai, x, . . . need not be singletons.

Definition 4.8. ([28]:Fact 1.3) T has SOP3 iff there is an indiscernible sequence

〈ai : i < ω〉 and L-formulas ϕ(x; y), ψ(x; y) such that:

1. {ϕ(x; y), ψ(x; y)} is contradictory.

2. there exists a sequence of elements 〈cj : j < ω〉 such that

• i ≤ j =⇒ ϕ(cj; ai)

• i > j =⇒ ψ(cj; ai)

3. if i < j, then {ϕ(x; aj), ψ(x; ai)} is contradictory.

The idea of the construction is contained in the following straightforward example.

Example 4.1. Let T be the triangle free random graph, with edge relation R. Then

R is I3
2 but not I3

3 , and T is SOP3.
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Proof. Let us prove the final clause (for the rest see Observation 4.1 and the discussion

following).

The theory by definition contains a forbidden configuration, a triangle. Suppose

A,B,C are disjoint infinite sets witnessing I3
2 . Let us construct a sequence of triples

S = 〈ai, bi, ci : i < ω〉 such that, for i < ω,

• For all j ≤ i, biRaj.

• For all j ≤ i, ciRbj.

• For all j ≤ i, ai+1Rcj.

Define a binary relation <` on triples by:

(x, y, z) ≤` (x′, y′, z′) ⇐⇒ ((xRy′ ∧ yRz′ ∧ zRx′))

While <` need not be a partial order on the model, it does linearly order the sequence

S by construction. Looking towards Definition 4.8, let us define two new formulas

(the variables t stand for triples):

• ϕ(t0; t1, t2) = t1 <` t2 <` t0

• ψ(t0; t1, t2) = t0 <` t1 <` t2

Let us check that these formulas give SOP3. For condition (1), ϕ(t0; t1, t2), ψ(t0; t1, t2)

means that (x0, y0, z0) <` (x1, y1, z1) <` (x2, y2, z2) <` (x0, y0, z0). Then xiRyj, yjRzk,

zkRxi which gives a triangle, contradiction.
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It is straightforward to satisfy (2) by compactness (e.g. by choosing S codense in

a larger indiscernible sequence).

Finally, for condition (3), suppose i < j but ϕ(t; γi), ψ(t; γj) is consistent, where

t = (x, y, z). This means that (x, y, z) <` (ai, bi, ci) <` (aj, bj, cj) <` (x, y, z) (where

the middle <` comes from the behavior of <` on the sequence S). As in condition

(1), this gives a triangle, contradiction.

We can in fact build a much larger engine for producing the rigidity of SOP3 from

a forbidden configuration.

Theorem 4.9. Suppose that for some 2 ≤ n < ω, the formula R of T is In+1
n but not

In+1
n+1 . Then T is SOP3.

Proof. The construction is arranged into four stages.

Step 1: Finding a universally forbidden configuration G.

By hypothesis, R is not In+1
n+1 . This means that the infinitary type p(X0, . . . Xn),

which describes n+ 1 infinite sets Xi which are In+1
n+1 in the sense of Definition 4.2, is

not consistent. Let G be a finite inconsistent subset of height h, in the variables VG =

{xij : 1 ≤ i ≤ h, 0 ≤ j ≤ n}, and described by the edge map EG : {((i, j), (i′, j′)) :

i, i′ ≤ h, j 6= j′ ≤ n} → {0, 1}. As the inconsistency of p is a consequence of T , G

will be a universally forbidden configuration:
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T ` ¬(∃x1
0, . . . x

h
n)

( ∧
i,i′≤h, j 6=j′≤n

R(xij, x
i′

j′) ⇐⇒ E((i, j), (i′, j′)) = 1

)
(4.3)

Note that the configuration remains agnostic on edges between elements in the same

column, in keeping with the definition of Im` .

In what follows G will appear as a template which we shall try to approximate

using In+1
n . Here are the vertices of G arranged as they will be visually referenced

(the edges are not drawn in):

xh0 xhk xhn
...

...
...

xρ0 xρk xρn
...

...
...

x1
0 . . . x1

k . . . x1
n

Figure 4.1: Vertices of the forbidden configuration G, arranged in columns. When
comparing this configuration to an array whose rows are indexed modulo h, the
superscript of the top column becomes 0.

Step 2: Building an array A of approximations to G.

Let A0, . . . An be disjoint infinite sets witnessing In+1
n for R. As in Example 4.1,

we will use elements from these columns Ai to build an array A = 〈aρi : 1 ≤ ρ <

ω, 0 ≤ i ≤ n〉. Fixing notation,

• aρ0, . . . aρn is called a row.

• Col(i) = {j : j 6= i, i+ 1 (modn+ 1)} is the set of column indices associated to

the column index i.
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• Define an ordering on pairs of indices (β for “before”):

β((t′, i′), (t, i)) ⇐⇒ def(
(t′ < t ∧ i′ ∈ Col(i)) ∨ (t′ = t ∧ i′ < i)

)

Claim 4.10. We may build the array A to satisfy:

1. For all ρ, aρk ∈ Ak.

2. For any ρ′, ρ, k, k′ such that β((ρ′, k′), (ρ, k)),

aρk R aρ
′

k′ ⇐⇒ EG((r, k), (r′, k′)) = 1

where r ≡ ρ (mod h), r′ ≡ ρ′ (mod h).

Proof. We choose elements in a helix (a1
0, a

1
1, . . . a

1
n, a

2
0, a

2
1, . . . ) so that β((ρ′, k′), (ρ, k))

implies that aρ
′

k′ is chosen before aρk.

When the time comes to choose aρk, we look for an element of Ak which satisfies

Condition (2) of the Claim, that is, which, by Condition (1), realizes a given R-type

over disjoint finite subsets of the columns Ai (i ∈ Col(k)). As (A0, . . . An) was chosen

to be In+1
n and |Col k| = n− 1, an appropriate aρk exists.

Step 3: Defining the relation <`, which has no pseudo-(n+ 1)-loops.
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...

...

−−− −−− −−− −−− −−− −−− −−−
a`nh+h0 . . . a`nh+hk a`nh+h

n
...

...
...

B`n = a`nh+ρ0 a`nh+ρk a`nh+ρ
n

...
...

...
a`nh+1

0 a`nh+1
k a`nh+1

n

−−− −−− −−− −−− −−− −−− −−−

...

−−− −−− −−− −−− −−− −−− −−−
a`kh+h0 . . . a`kh+h

k a`kh+hn
...

...
...

B`k = a`kh+ρ0 a`kh+ρ
k a`kh+ρn

...
...

...
a`kh+1

0 . . . a`kh+1
k . . . a`kh+1

n

−−− −−− −−− −−− −−− −−− −−−

...

−−− −−− −−− −−− −−− −−− −−−
a2h

0 a2h
1 a2h

k a2h
n

...
...

...
...

B1 = ah+ρ0 ah+ρ
1 ah+ρk ah+ρn

...
...

...
...

ah+1
0 ah+1

1 ah+1
k . . . ah+1

n

−−− −−− −−− −−− −−− −−− −−−
ah
0 ahk ahn

...
...

...
B0 = aρ0 aρk aρn

...
...

...
a1
0 . . . a1

k . . . a1
n

Figure 4.2: Elements of the array A, arranged in blocks of h rows. The boldface
refers to Step 4 of the proof, when a proposed witness to G is assembled from the ith
columns of blocks Bi in a pseudo-(n+ 1)-loop.
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We now define a binary relation <` on m-tuples, where m = h(n + 1). Fix the

enumeration of these tuples to agree with the natural interpretation as blocks B`

of h consecutive rows in the array A (see Figure 4.3). That is, write the variables

Y := 〈yti : 1 ≤ t ≤ h, 0 ≤ i ≤ n〉, Z := 〈zt′i′ : 1 ≤ t′ ≤ h, 0 ≤ i′ ≤ n〉. Define:

Y <` Z ⇐⇒ (def)∧
1≤t′,t≤h, 0≤i,i′≤n

(i′ ∈ Col(i)) =⇒
(
zti R yt

′

i′ ⇐⇒ EG((t, i), (t′, i′)) = 1
)

Let B be a partition of the array A into blocks Bk (k < ω) each consisting of h

consecutive rows, so Bk := 〈art : 0 ≤ t ≤ n, kh + 1 ≤ r ≤ (kh) + h〉, for each k < ω

(see Figure 4.3). By Claim 4.10, i � j =⇒ Bi <` Bj.

Definition 4.11. A pseudo-(n + 1)-loop is a sequence Wi (0 ≤ i ≤ n) such that for

some m, 1 ≤ m < n: ∧
(0<j<i≤n)

Wj <` Wi

 ∧

( ∧
1≤j≤m

W0 <` Wj

)
∧

( ∧
m<j≤n

Wj <` W0

)
(4.4)

Suppose it were consistent with T to have blocks of variables W0 . . .Wn which

form a pseudo-(n + 1)-loop. Write Wk(i) = {whk+1
i , . . . whk+hi } for the ith column

of block Wk. Figure 4.3 gives the picture, where the elements a are replaced by

variables w and the blocks Bi become Wi. Set WG = W0(0) ∪ · · · ∪Wn(n) (which

can be visualized as the boldface columns in Figure 4.3).
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By definition of <`, the pseudo-(n+1)-loop (4.4) implies that whenever

(( j ∈ Col(i)) ∧ ((0 < j < i ≤ n) ∨ (j = 0 ∧ i ≤ m) ∨ (m < j ∧ i = 0)))

we will have:

(
∀ wtk ∈ W (i), wt

′

k′ ∈ W (j)
)(

wtk R wt
′

k′ ⇐⇒ EG((t, k), (t′, k′)) = 1
)

In other words, <` says that on certain pairs of elements in our proposed instance

WG of G, namely those elements whose respective columns “fall into each other’s

scope” as given by the Col operator, WG faithfully follows the template of G. It is

easy to check that in a pseudo-(n + 1)-loop every pair j 6= i in {0, . . . n} has this

property. Thus pseudo-(n+ 1)-loops in <` are inconsistent with T .

Step 4: Obtaining SOP3.

Step 3 showed that our array A of approximations had a certain rigidity, which

we can now identify as SOP3. Following Definition 4.8, let us define ϕr(x; y1, . . . yn)

and ψ`(x; y1, . . . yn), where the the variables are blocks, and the subscripts “`” and

“r” are visual aids: the element x goes to the left of the elements yi under ψ, and to

their right under ϕ.

That is, we set:

• ϕr(x; y1, . . . yn) = ∧
1≤i6=j≤n

yi <` yj ∧
∧

1≤i≤n

yi <` x
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• ψ`(x; y1, . . . yn) = ∧
1≤i≤n

x <` yi ∧
∧

1≤i6=j≤n

yi <` yj

Now let us verify that the conditions of Definition 4.8 hold. Let B be the sequence

of blocks defined in Step 3, and assume without loss of generality that B = 〈Bk : k <

ω〉 is indiscernible and moreover is dense and codense in some indiscernible sequence

B′. Let A = 〈Ai : i < ω〉 be an indiscernible sequence of n-tuples of elements of B.

1. {ϕr(x; y1, . . . yn), ψ`(x; y1, . . . yn)} is contradictory because it gives rise to a pseudo-

(n+ 1)-loop.

2. By construction, for any k < ω, the type

{ψ`(x;Aj) : j ≤ k} ∪ {ϕr(x;Ai) : k < i}

is consistent, because <` linearly orders B, thus also B′. Choose the desired

sequence of witnesses to be elements in the indiscernible sequence B′ which are

interleaved with B.

3. Suppose we have {ϕr(x;Aj), ψ`(x;Ai)} for some i < j, or in other words:

{ϕr(x;Bj1 , . . . Bjn), ψ`(x;Bi1 , . . . Bin)} where {i1, . . . in} < {j1, . . . jn}

Then x <` Bi1 <` · · · <` Bin <` Bj1 <` · · · <` Bjn <` x is a pseudo-(2n + 1)-

loop (remember that <` holds between any increasing pair of elements of B by

construction). Thus a fortiori we have a pseudo-(n+ 1)-loop, contradicting the

conclusion of Step 3.
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We have shown that the theory T has SOP3, so we finish.
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Chapter 5

Characteristic sequences and

ultrapowers

This chapter builds the bridge necessary to apply the techniques of previous chap-

ters to the realization of types in ultrapowers. In Section 5.1 we consider static and

dynamic arguments in the characteristic sequence, i.e. the attempt to fit the countably

many optimized predicates together to realize a type versus the attempt to optimize

some given Pn. In the second section, we collect some results on transferring structure

between sequences.

5.1 Static and dynamic arguments

This chapter builds on Chapters 1-2, but we recall here:
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Convention 5.1. Throughout this chapter:

• T is a first-order theory, ϕ is a formula of the language of T , 〈Pn〉 is the

characteristic sequence of (T, ϕ), in the notation of Chapter 2. T0, T1 are as in

Conventions 2.5-2.6.

• 〈Pn : n < ω〉 has support k if for all finite B ⊂ P1, Bk ⊂ Pk implies that

Bn ⊂ Pn, for all n.

• M |= T , D is a regular ultrafilter on λ, N = Mλ/D, Definition 1.1. Small

means of size ≤ λ.

• A set X ⊂ Mλ/D is induced if is the product of its projections to the index

models, Definition 1.26.

• Recall from Definition 2.1 that a consistent partial ϕ-type corresponds in the

characteristic sequence to a complete P∞-graph called a positive base set, i.e.

A ⊂ P1 such that An ⊂ Pn for all n. Any such A gives rise to a consistent

partial type {ϕ(x; a) : a ∈ A}. We may refer simply to the type A.

• A distribution d : Pℵ0(p) → D is a monotonic map from finite subsets of a

small, consistent partial type p into the filter which refines the  Loś map and

whose image is a regularizing set, Definition 1.4. Occasionally p will be identified

with the corresponding A, in which case the distribution will be described on the

singletons and naturally extended to all finite subsets of A.
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• k∗,m∗ are nonstandard integers used to indicate particular sizes, Remark 5.3.

The following observation highlights the two key steps in our project of using

characteristic sequences to analyze ϕ-types.

Observation 5.2. The following are equivalent for a complete P∞-graph A.

1. The type p corresponding to A is realized.

2. There exists an induced set X ⊂ PN
1 and a distribution d : A→ D such that:

(a) N |= A ⊂ X

(b) N |= Xn ⊂ Pn, for all n

(c) for each index t ∈ λ, {a[t] : t ∈ d(a)} ⊂ X[t] in the index model M [t]

(d) for each index t ∈ λ, if

m[t] := |{a[t] : t ∈ d(a)}| and

k[t] := max{k ≤ m[t] : (X[t])k ⊂ Pk in M [t]}

then m[t] ≤ k[t].

3. There exists a distribution d : A → D such that almost everywhere, A[t] is a

Pm[t]-complete graph.

Proof. (2) → (1): The conditions guarantee that the m[t]-tuple of elements repre-

sented in each index model is in Pm[t], and thus that the corresponding instances of

ϕ have a common witness α[t]. Then α := Πtα[t]/D realizes the type p, by definition

of distribution.
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(1) → (2): By Chapter 1, Observation 1.10, p has a distribution which is mul-

tiplicative. This says precisely that the m[t] elements assigned to each index model

form a m[t]-complete graph.

(2) ↔ (3): (3) is a direct translation, which amounts to saying that the set

assigned to each index model is a complete graph (where “complete” means in its

own arity).

Remark 5.3. The project is therefore to analyze the comparative complexity of types

A,A′ by comparing:

• The relative difficulty of finding, for each n < ω, an induced complete n-graph

Xn containing A: in other words, considering the complexity of Pn as a hyper-

graph in the neighborhood of the (Pn-complete, but almost always not definably

so) set A.

• The relative difficulty of putting these countably many predicates together in

order to produce a realization of the type: the nonstandard integer k∗ counting

the uniform degree of consistency may be much smaller than the nonstandard

integer m∗ counting the number of elements assigned to each index model.

Notice that each of these endeavors captures a different quality of limit argument.

The search for an appropriate Xn involves dynamic arguments of the general form:

If a particular Pn-configuration persists under any finite localization of P1 around A,

then something must be true of ϕ (ϕ is unstable, ϕ is not simple...). Whereas the
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slippage of putting the countably many predicates together involves static arguments

of the general form: If something is true for all Pn, thus for P∞, then something must

be true of ϕ (ϕ has the finite cover property, ϕ is not low).

Remark 5.4. The following are equivalent, for (T, ϕ) 7→ 〈Pn〉:

1. There is k < ω such that the sequence 〈Pn〉 has support k.

2. ϕ does not have the finite cover property (Definition 0.9).

When ϕ is unstable, some fixed finite conjunction of instances of ϕ has the finite

cover property (Theorem C, page 16). Nonetheless, it may happen that there is a

set Σ ⊂ L of formulas without the fcp such that M |= T is λ+-saturated iff M

realizes all ϕ0-types over sets of size λ for all ϕ0 ∈ Σ. This is true, for instance, of

Σ = {ψ(x; y, z) := xRy ∧¬xRz} in the random graph, and of Σ = {ψ(x; y, z) := y <

x < z} in (Q, <).

When ϕ is a formula (without parameters) which does not have the finite cover

property, issue (2) of Remark 5.3 is irrelevant:

Claim 5.5. Suppose that ϕ does not have the finite cover property in T . Then any

small ϕ-type is realized in any regular ultrapower of a model of T .

Proof. By the previous observation 〈Pn〉 has support k. As ϕ nfcp implies ϕ stable,

by Chapter 2 we can find an induced X ⊂ P1, A ⊂ X which is a complete Pk-graph;

as this is a first-order property, it will be true almost everywhere. Distribute the
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elements of A so that t ∈ d(a) implies that (i) M [t] |= a[t] ∈ X and (ii) XM [t] is a

complete Pk-graph. Thus, in every index model M [t], the set {a[t] : t ∈ d(a)} is a

complete P∞-graph, because “k-consistency implies n-consistency” is, for each n, a

consequence of T and thus true in every index model. Notice that the X adds no

essential structure in this argument: it is in fact a P1-definable set, with parameters

(Chapter 2), and serves simply as a template for refining the distribution.

We will not derive here Shelah’s proof that countable stable theories fall into two

equivalence classes in the Keisler order (or that this saturation depends on ϕ-types).

However, to indicate the subtlety of fcp:

Example 5.1. (fcp and parameters) Let M |= T , N = Mλ/D. Suppose that ϕ(x; y, z)

has the finite cover property modulo T but for some parameter a ∈ N ϕ(x; y, a)

does not have the fcp. Then the proof of Claim 5.5 may fail. For instance, let

T be the theory of a single equivalence relation E(x, y) with a class of size n for

every n, and let a ∈ N be an element in some nonstandard equivalence class. Then

ϕ(x; y, a) = E(x, a)∧x 6= a does not have the fcp but it is still possible for clause 2(d)

of Observation 5.2 to fail, index model by index model, in the finite equivalence class

E(x, a[t]).

Our focus here will be the unstable case, where we can always find limit predicates,

as we may assume that the lower cofinality lcf(ω,D) ≥ λ+ (see Definition 1.23,

Theorem G).
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Observation 5.6. Suppose that lcf(ω,D) ≥ λ+, N = Mλ/D and A ⊂ N is small.

Let Xi (i < ω) be a sequence of induced predicates in N satisfying Xi ⊃ Xi+1 ⊃ A,

for all i < ω. Then there exists an induced predicate P∞ such that for each i, Xi ⊃

X∞ ⊃ A.

Proof. This is Chapter 1, Lemma 1.28. Notice, however, an important difference in

the way it is used. In Chapter 1, the limit predicates X∞ sit inside a concentric

sequence Xi of definable complete graphs extending A. In other words, they are

consistent types all the way down; the refinements are to control the interaction of

these Xi with partial types in other formulas. Thus the fact that X∞ is interpreted

to be Xk in the index model M [t] still allows us to realize the type Xk in M [t].

A new problem, however, is highlighted by Observation 5.2.2(d), if we think of

the predicate X as X∞ which is interpreted as a Pk-complete graph Xk in the index

model M [t]. Here k is not simply the amount of the sequence which the index model

is able to code but also a degree of consistency. In Obs. 5.2.2(d) we cannot find

a witness for more than k elements of Xk at a time, so the difference in size of the

nonstandard integers k∗ and m∗ measuring consistency and size of the distribution,

respectively, becomes important.

Definition 5.7. (Flexibility) Let D be a regular ultrafilter.

1. Let X = {Xi : i < λ} be a regularizing set. For each index t < λ, set nt := |{i :

t ∈ Xi}|. The size of X is the nonstandard integer n∗ = Πtnt/D.
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2. Say that D is flexible if for every nonstandard integer n∗, D contains a regu-

larizing set of size ≤ n∗.

3. The theory T is low if for every formula ϕ there exists k < ω such that if ϕ

divides it ≤ k-divides.

Observation 5.8. If ϕ is stable then ϕ is low.

Proof. To show that ϕ has the independence property, it suffices to establish the

consistency of the following schema. For k < ω, Ψk says that there there exist

y1, . . . y2k such that for every σ ⊂ 2k, |σ| = k,

∃x
(
ϕ(x; yi) ⇐⇒ i ∈ σ

)
But Ψk will be true on any subset of size 2k of an indiscernible sequence on which ϕ

is k-consistent but (k + 1)-inconsistent, and such sequences exist for arbitrarily large

k by hypothesis of non-lowness.

Remark 5.9. It was shown in Chapter 1, Lemma 1.21 that saturation of a non low

theory requires the filter to be flexible. This establishes flexibility as a property which is

“seen” by theories, meaning that its absence can be detected by failures of saturation.

Thus it is a non-trivial property, i.e. one which any ultrafilter which saturates all

countable theories must be able to handle:

Corollary 5.10. (of Chapter 1, Lemma 1.21)
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1. Not all regular filters are flexible. In particular, a filter with µ < λ will not be

flexible.

2. Good filters must be flexible.

The utility of flexibility is that it can reconcile the sizes of any two nonstandard

integers.

Claim 5.11. Suppose D is flexible, N = Mλ/D. Let A ⊂ N be small, and suppose

that for each n < ω there is an induced Xn, A ⊂ Xn ⊂ P1 such that N |= (Xn)n ⊂ Pn.

Then the type A is realized in N .

Proof. We simply need to show that we can refine the distribution of A to satisfy

the conditions of Observation 5.2.2, in particular clause (d). In the notation of that

Observation, let k∗ = Πtk[t]/D be the product of the degrees of consistency k[t] (in

index model M [t]), modulo D; the worry is that k∗ << m∗. Let {Yi : i < λ} be any

regularizing set below k∗. Refine the distribution of A by intersecting d(ai) with Yi;

the resulting m∗ ≤ k∗ modulo D, so we are done.

Remark 5.12. Flexibility is sufficient for the conclusion of Claim 5.11, but it may

not be necessary, provided we add some conditions on the theory. Many theories will

not be able to code all possible discrepancies between k∗ and m∗, with nfcp theories as

an obvious example.

As an aside, non lowness cannot be necessary for flexibilty as we know that there

is a maximal theory, namely (Q, <), which is low.
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Conclusion 5.13. Whenever we may assume the filter D is flexible (e.g. if T is non

low), the distance between k∗ and m∗ in any distribution is immaterial, which means

we may focus on finding predicates for each of the complete Pn-graphs Xn, without

worrying about how to put them together. Otherwise, the distances k∗ << m∗ which

T is able to represent will play a role.

5.2 Comparing sequences

Let us write down an explicit way in which sequences are comparable. This will

be useful in applying arguments which appeal to particular configurations, e.g. those

of Chapter 3. In the next lemma, T1-configurations are consistent sub(hyper)graphs

of the characteristic sequence of T , 2.6.

Lemma 5.14. Suppose that we have two characteristic sequences, (T, ϕ) 7→ 〈Pn〉 and

(T ′, ϕ′) 7→ 〈P ′
n〉. Suppose that every finite T ′1-configuration of 〈P ′

n〉 can be isomorphi-

cally embedded into 〈Pn〉. Then any regular ultrafilter which realizes all small ϕ-types

must also realize all small ϕ′-types.

Proof. Let A′ ⊂ P ′
1 be a positive base set for ϕ′, given with a distribution d′ : A′ → D.

Essentially, the hypothesis allows us to transfer the blueprint of A′ (index model by

index model) over into the characteristic sequence of ϕ, where it will push forward

by  Loś’ theorem to a positive base set A for ϕ. A realization of this ϕ-type solves the

combinatorial problem, and this solution can then be transferred back to solve A′.
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More precisely, write A′[t] for the projection to each index model given by d′.

Define for each index t < λ an isomorphic embedding f [t] of A′[t] into P1. Then

f :=
∏

t<λ f [t]/D is an isomorphic embedding of A′ into P1; call its image A. Then

by  Loś’ theorem, A will be a positive base set (for ϕ), and as we chose each f [t] to

be an isomorphism, we can define a distribution d : A → D by d′(a′) = d(f(a)), for

each a′ ∈ A′.

Suppose the type correponding to the positive base set A is realized. Then by

Observation 5.2 there is a distribution d1 : A→ D which refines d and is a complete

graph almost everywhere. Use d1 and f to define d′1 refining d′, by setting d′1(a
′) =

d1(f(a′)). As f was everywhere a graph isomorphism, we have successfully found a

distribution of A′ which is a.e. a complete graph; so the corresponding type must be

realized.

Corollary 5.15. If (T, ϕ) 7→ 〈Pn〉 and this sequence is universal for finite T0-

configurations, then T is maximal in the Keisler order.

Proof. By Lemma 5.14 in light of Theorem 1.33, which says that the Keisler order

depends on an analysis of types in a finite language.
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