as the following:

The following is a model of ϕ if ϕ is a model of ψ. We say that ϕ is a model of ψ.

Note that the converse of the completeness theorem is trivially true.

Let ϕ be a sentence that is satisfiable. Then ϕ is satisfiable. So is ψ. Since ψ is consistent, ϕ is satisfiable. If ϕ is satisfiable, then ϕ is satisfiable. Therefore, ϕ is satisfiable.

Lemma 1.2.10 Suppose ϕ is a monotonic consistent set of sentences in \mathcal{L}. Then:

1. $J = \{ \phi \mid \phi \in J \}$
2. J is consistent and hence, $\phi \in J$ for each $\phi \in J$.
3. For each $\phi \in J$, if $\phi \in J$, then ϕ is consistent.
4. For each ϕ, $\phi \in J$ if and only if $\phi \in J$.

Corollary 1.2.12 (Compactness Theorem) If ϕ is finitely satisfiable, then:

\therefore is satisfiable.

Proof: Assume ϕ is consistent. Then ϕ is satisfiable.

We claim that ϕ is consistent. Suppose ϕ is consistent and $\phi \subseteq J$. Then $\phi \subseteq J$.

Hence $\phi \subseteq J$. Therefore, $\phi \subseteq J$.

Since $\phi \subseteq J$, $\phi \subseteq J$.

Therefore, $\phi \subseteq J$.

By definition, $\phi \subseteq J$.

Thus $\phi \in J$.

If and only if $\phi \in J$.

We now conclude that ϕ is consistent.

By induction, the lemma is proved.

We now conclude that ϕ is consistent.

By induction, the theorem is proved.

Lemma 1.2.11 (Induction Theorem) Any consistent set of sentences

can be extended to a maximal consistent set of sentences.

Proof: Assume that ϕ is satisfiable and let $\phi \in \mathcal{L}$. We show that every $\phi \in \mathcal{L}$ is satisfiable.

Theorem 1.2.2 (Extended Completeness Theorem) A set of sentences

is a model of ϕ if and only if ϕ is satisfiable.

The proof proceeds as follows:

Let ϕ be a sentence that is satisfiable. Then ϕ is satisfiable. So is ψ. Since ψ is consistent, ϕ is satisfiable. Therefore, ϕ is satisfiable.

Lemma 1.2.10 Suppose ϕ is a monotonic consistent set of sentences in \mathcal{L}. Then:

1. $J = \{ \phi \mid \phi \in J \}$
2. J is consistent and hence, $\phi \in J$ for each $\phi \in J$.
3. For each $\phi \in J$, if $\phi \in J$, then ϕ is consistent.
4. For each ϕ, $\phi \in J$ if and only if $\phi \in J$.

Corollary 1.2.12 (Compactness Theorem) If ϕ is finitely satisfiable, then:

\therefore is satisfiable.

Proof: Assume ϕ is consistent. Then ϕ is satisfiable.

We claim that ϕ is consistent. Suppose ϕ is consistent and $\phi \subseteq J$. Then $\phi \subseteq J$.

Hence $\phi \subseteq J$. Therefore, $\phi \subseteq J$.

Since $\phi \subseteq J$, $\phi \subseteq J$.

Therefore, $\phi \subseteq J$.

By definition, $\phi \subseteq J$.

Thus $\phi \in J$.

If and only if $\phi \in J$.

We now conclude that ϕ is consistent.

By induction, the lemma is proved.

We now conclude that ϕ is consistent.

By induction, the theorem is proved.

Lemma 1.2.11 (Induction Theorem) Any consistent set of sentences

can be extended to a maximal consistent set of sentences.

Proof: Assume that ϕ is satisfiable and let $\phi \in \mathcal{L}$. We show that every $\phi \in \mathcal{L}$ is satisfiable.

Theorem 1.2.2 (Extended Completeness Theorem) A set of sentences

is a model of ϕ if and only if ϕ is satisfiable.
axioms for.

model of f, a model of g. But f ⊆ g. We conclude that every sentence in f is also in g. Therefore, every positive sentence holds in a .

Since f ⊆ g, then g holds in a. Therefore, every positive sentence holds in a.

For every positive sentence ∅ in f, let ϕ be a positive sentence.

Now, let f be a consistent increasing theory. Let G be the set of all sentences true in a.

Theorem 1.2.16

and a ⊆ b. Because f is consistent, f is a subset of g. And g holds in a.

Finally, we introduce a more technical notion. A set f of sentences is called

In these expressions, the parentheses are assumed, for the sake of definiteness,

and

We shall use expressions like

we shall always write f as the union of the set of sentences into a single sentence.

We shall continue our model theory for sentential logic with a few

Corollary 1.2.13

are both strictly consistent.

models of f is the complement of the set of all models of g. Then f ⊆ g.

Corollary 1.2.15

Let ϕ and θ be two theories such that the set of all