(1) Let κ_β be an infinite cardinal. Prove that if β is a limit ordinal, then $\text{cof}(\kappa_\beta) = \text{cof}(\beta)$. Prove that if β is a successor ordinal, then κ_β is regular. Show by example that there are arbitrarily large cardinals with countable cofinality.

(2) Verify that the following is a well-ordering of the class Ord \times Ord.

$$\text{max}(\alpha, \beta) < \text{max}(\gamma, \delta) \iff \begin{cases} (\alpha, \beta) < (\gamma, \delta) \lor (\alpha, \beta) = (\gamma, \delta) \land \alpha < \gamma) \lor (\alpha, \beta) = (\gamma, \delta) \land \alpha = \gamma \land \beta < \delta) \end{cases}$$

(3) For α an ordinal, define $W(\alpha)$ as follows: (i) $W(0) = 0$; (ii) $W(\alpha + 1) = P(W(\alpha))$; for α a limit ordinal, (iii) $W(\alpha) = \bigcup_{\beta<\alpha} W(\beta)$, where P denotes power set. Using transfinite induction, show that $W(\alpha)$ is transitive for each α.

(4) In the notation of the previous problem, let $M = (W(\omega), \epsilon)$ be the structure whose domain consists of the elements of $W(\omega)$ and where ϵ has the usual meaning. Which axioms of ZFC does M satisfy?

(5) Let M be a model, in any language, whose domain is countable. Prove that the following are equivalent:

(a) M has uncountably many automorphisms.

(b) If B is a finite subset of the domain of M then there is a non-identity automorphism of M which is the identity when restricted to B.

1