(1) (a) Suppose $\mathcal{L} = \{ f \}$, a binary function symbol. Write down sentences of first order logic expressing “f is surjective” and “f is injective.”

(b) Suppose $\mathcal{L} = \{ +, \times, 0, 1 \}$. Write down infinitely many sentences of first order logic which together express “every polynomial has a root” and “the characteristic is zero.”

(2) Let T be a consistent set of sentences in some language \mathcal{L}. Prove that it can be extended to a maximal consistent set of sentences.

(3) Let M be a model in some language \mathcal{L} and suppose that every element of M is the interpretation of some constant symbol. Verify that $T = Th(M)$ has witnesses in \mathcal{L}.

(4) Prove that if $\langle M_n : n < \omega \rangle$ is an increasing chain of \mathcal{L}-models and N is their union, then any sentence φ which is “$\forall \cdots \exists \cdots$” and which is true in each M_n is also true in N.

(5) Let \mathbb{F}_p denote the algebraic closure of the finite field with p elements (so, a countable algebraically closed field of characteristic p). Let \mathcal{D} be a nonprincipal ultrafilter on P, the primes. Prove\footnote{You are welcome to use the fact that if \mathcal{D} is a nonprincipal ultrafilter on a countable set I, and each $M_i (i \in I)$ is countable, then the ultraproduct $\prod_{i \in I} M_i / \mathcal{D}$ has size continuum.} that the ultraproduct $\prod_{p \in P} \mathbb{F}_p / \mathcal{D}$ is an algebraically closed field of characteristic zero and size \mathfrak{c}. (Briefly check the axioms directly.)

Turn over for the Challenge Problem.
This problem is about thinking through some interesting definitions. It continues ideas from HW2.5.

A family \mathcal{F} of infinite subsets of ω has a pseudointersection, sometimes called an infinite pseudointersection for emphasis, if there is an infinite $A \subseteq \omega$ such that $A \subseteq^* B$ for every $B \in \mathcal{F}$, where \subseteq^* means that there are at most finitely many elements of A which do not belong to B. Prove that the family \mathcal{F} of co-finite subsets of ω has the strong finite intersection property, meaning that the intersection of any finitely many (but at least one) elements of the family is infinite, and that it has a pseudo-intersection. Prove that the family $\mathcal{G} = \{\omega \setminus \{0, \ldots, n\} : n < \omega\}$ is well ordered by \subseteq^*, and that it has a pseudo-intersection.

Let p be the smallest size of a family of infinite subsets of ω with the strong finite intersection property and no pseudointersection. Let t be the smallest size of a family of infinite subsets of ω which is well ordered by \subseteq^* and has no pseudointersection. Verify that $p \leq t$.