Assume each language has a binary relation symbol =, interpreted as equality.

(1) Let \(\mathcal{L} = \{ < \} \) and consider the model \(M_1 = (\mathbb{Q}; <) \), i.e. the rationals in which \(< \) is interpreted to mean the usual linear order. Prove that for any \(a, b \in \mathbb{Q} \), there is an automorphism of \(M_1 \) which sends \(a \) to \(b \).

(2) Give examples of a language \(\mathcal{L} \) and a model with infinite domain which does not have any automorphisms except for the identity: (a) one example where \(\mathcal{L} \) is allowed to be infinite, (b) a different example where \(\mathcal{L} \) is finite.

(3) Consider the model \(M_3 = (\mathbb{Z}; <) \) meaning: \(\text{Dom}(M_3) = \mathbb{Z}, \mathcal{L} = \{ < \} \), \(< \) is a binary relation interpreted as the usual linear order on \(\mathbb{Z} \).
 (a) Describe the submodels of \(M_3 \).
 (b) How does the answer change if we assume the language also has a constant symbol \(c \), interpreted as 0?
 (c) How does the answer change if we assume that, in addition to the constant from (b), the language also has a unary function \(S \) interpreted to mean “successor” (i.e. \(S_{M_3}(a) = a + 1 \) for each \(a \in \mathbb{Z} \))?

(4) Consider a model \(M_4 \) in the language \(\mathcal{L} = \{ R \} \), \(R \) a binary relation symbol. Assume \(R \) is symmetric and irreflexive. Call \(M_4 \) special if it satisfies: there exist infinitely many elements, and for any \(n < \omega \), whenever \(\{ a_1, \ldots, a_n \} \), \(\{ b_1, \ldots, b_n \} \) are disjoint sets of distinct elements of \(\text{Dom}(M_4) \), there exists \(c \in \text{Dom}(M_4) \) such that \(i \leq n \implies R_{M_4}(c, a_i) \) and \(i \leq n \implies \neg R_{M_4}(c, b_i) \).
 Prove that any two countable (so, countably infinite) special graphs are isomorphic.

(5) Suppose the language has a binary relation symbol \(R \). Write down first order axioms to ensure
 (a) that \(R \) is a special graph.
 (b) that \(R \) is an equivalence relation with precisely one class of size \(n \) for each finite \(n \).

Please make your answers on this problem easy to read (also explain the formulas you have written in English).
Challenge problem (optional; turn in on a separate page):
Will any two special graphs of the same uncountable size also be isomorphic?