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Abstract. This paper attempts to serve as an introduction to abstract model

theory. We introduce the notion of abstract logics, explore first-order logic

as an instance of and as the basis for abstract logics, and end by proving
Lindström’s theorem.
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0. Introduction

This paper hopes to serve as an introduction to abstract model theory, though
I cannot profess to know but very little of the subject. On a general note, we
will assume set theory: specifically, Zermelo-Fraenkel set theory with the axiom of
choice. We will often use the axiom of choice or Zorn’s lemma – particularly in
Section 3 – without citation, and we will index sets with ordinals with little guilt.

Abstract model theory concerns itself with extensions of first-order logic, and its
starting point and perhaps most well-known result is Lindström’s theorem. Lind-
ström’s theorem states that first-order logic is completely characterized among its
extensions by two of its more basic theorems: the downward Löwenheim-Skolem
theorem and the compactness theorem. As a consequence of this, at least one of
these must fail in any proper extension of first-order logic.

One of the central tasks of abstract model theory, as noted by Barwise (1974), is
to determine the relationship between gaining expressive power in extending first-
order logic and losing ‘control’ over the extension. The motivation for moving to
extensions of first-order logic is simple: a significant amount of mathematics can-
not be expressed in terms of first-order sentences. Lindström’s theorem, however,
already places a restriction on the usefulness of any proper extension of first-order
logic: at least one of two theorems which help make first-order logic manageable
does not hold. We aim to provide a proof for Lindström’s theorem, as well as
develop the concepts in logic and model theory necessary in doing so.
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1. Abstract Logics

Among the basic concepts of model theory are those of a language and a model,
and we will require both of these in order to state any other definitions.

Definition 1.1. A language L is the union of three disjoint sets L = R ∪ F ∪C,
as well as a function g, where R is a set of of relation symbols, F is a set of function
symbols and C is a set of constant symbols, and g assigns to each relation and
function symbol a natural number called its arity. We will require languages to be
nonempty.

Example 1.2. The set L = {≤, ·,+, 0, 1} is a language, where · and + are binary
function symbols, ≤ is a binary relation, and 0 and 1 are constant symbols. So
is L ′ = {≤, S}, where ≤ is a binary relation symbol, and S is a unary function
symbol.

This definition is relatively simple though, on a cautionary note, the reader
should refrain from looking at the relation, function and constant symbols as rela-
tions, functions or constants. In particular, note that the arity of the relation and
function symbols is not actually meaningful in any way, even though we would wish
to identify the arity of a relation or function symbol with the arity of its interpre-
tation in a model. Specifically, in the example above, an expression like +(0, 1) or
S(0) would be purely formal constructions, which would only be meaningful within
an abstract logic which provides syntactical rules to form such constructions. Fi-
nally, we will prefer to talk about the number of ‘places’ of a relation or function
symbol; we note that we mean the same thing by the ‘number of places’ and the
‘arity’ of a given symbol.

Note that languages are sets, and as such have cardinalities; however, a more
useful notion is what we shall call the ‘power’ of the language. The following
definition may seem peculiar at first, but the motivation behind this is that the
power of language is precisely the cardinality of the set of all finite strings we
can form using symbols in the language. When we begin to discuss sentences in
first-order logic, the usefulness of this definition will become clear.

Definition 1.3. The power of a language L is the maximum max(ℵ0, |L |), where
|L | is the cardinality of the language. We often write ‖L ‖ for the power of L .

Example 1.4. The language L = {0, 1,+, ·,≤} has power ‖L ‖ = ℵ0. The lan-
guage L ′ which has all real numbers as constant symbols, and no relation or func-
tion symbols, has power ‖L ′‖ = 2ℵ0 .

Proposition 1.5. Consider a language L . The set of finite tuples of symbols in
L has cardinality equal to the power of ‖L ‖.

Proof. Let α = |L |. If α is infinite, then for any particular n, the set of n-tuples
has cardinality α. The union over n of these sets must then also have cardinality α.
If α were finite, there would be only finitely many n-tuples for a given n, and the
union over n would have cardinality ℵ0. Hence, the cardinality of the set of finite
tuples of symbols in L is max(ℵ0, α) = ‖L ‖. �

As we discussed before, symbols in a language have no inherent meaning. To
assign meaning to the symbols in a language, we use the notion of a model.
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Definition 1.6. A model A for a language L is an ordered pair (A,I ) where A
is a set of constants, often referred to as the universe, and I is the interpretation
function which assigns to each n-placed relation symbol of L an n-placed relation
on A, to each m-placed function symbol of L an m-placed function mapping from
Am to A, and constant symbol of L a constant in A.

Example 1.7. The real numbers with multiplication and addition defined normally
is a model for the language L = {0,1,⊕,�}, with the interpretation function
assigning 0, 1, ⊕ and � to 0, 1, + and · respectively.

If we refer to the ‘size’, ‘power’ or ‘cardinality’ of a model A = (A,I ), it will be
understood that we simply mean the cardinality of A.

Given two models of the same language, there is a natural notion of ‘correspond-
ing’ relations, functions and constants.

Definition 1.8. Let A = (A,IA) and B = (B,IB) be two models of the lan-
guage L , and consider relations RA on A and RB on B. We say that RA is the
corresponding relation of RB in A if there is some P in L for which IA(P ) = RA
and IB(P ) = RB . The corresponding functions and corresponding relations are
defined similarly.

It is easy to see that we can, in fact, generalize this concept of a ‘correspond-
ing’ function to models with differing languages, as long as the intersection of the
languages is non-empty.

Sometimes, we may wish to enlarge languages and models. We can define the
concept of an ‘expansion’ of a model or language to help us more easily define what
we mean by an abstract logic. Often, it is easier or more productive to deal with
expansion or reducts of models or languages than it is to deal with the original
models themselves.

Definition 1.9. We say that a language L is an expansion of a language L ′ if
L ′ ⊂ L ; in this case, we sometimes call L ′ a reduction of L . When L \ L ′

consists solely of constant symbols, we say that L is a simple expansion of L ′.

Definition 1.10. Let A = (A,I ) be a model in a language L , and let L ′ be
some reduction of L . The reduct A′ of A to L ′ is the restriction A′ = (A,I |L ′).
In this case, we also say that A is the expansion of A′ to L ′.

Note that if we have a model A for a language L , we can always expand this to
a model for some expansion L ′ = L ∪X by simply specifying interpretations for
the additional symbols in X.

A more general notion than that of an expansion of a model is that of an exten-
sion. With extensions, the universes need not be the same, though we still require
that one is a subset of the other.

Definition 1.11. A model B = (B,IB) is said to be an extension of a model
A = (A,IA) for a language L if we have A ⊂ B and:

(i) For each n-placed relation RA of A, there is a corresponding relation RB
of B such that RA is the restriction of RB to A. As relations are just
ordered n-tuples, we could write this as RA = RB ∩An.

(ii) For each m-placed function GA of A, there is a corresponding function GB
of B such that GA is the restriction of GB to A, or GA = GB |Am , with
the additional requirement that GB(a1, . . . , am) be in A if a1, . . . , am ∈ A.
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(iii) For each constant a in A, there is a corresponding constant b in B.

In this case, we also say that A is a submodel of B.

When looking at submodels of a given model, there is a subtlety in the second
part of the definition worth noting. Rather than simply restrict the domain of
functions, notice that we also require the universe of a sub-model to remain closed
under the function. The reason behind this is that A is itself a model, and we
initially required that the co-domain of the interpretations of function symbols
remain within the universe. On another note, it should also be easy to see that, in
the above definition, any language for which B is a model must contain L .

Naturally, we would also want some way of saying that two models are essentially
‘the same’, and so we obtain the following definition of an isomorphism of models.

Definition 1.12. Two models A = (A,IA) and B = (B,IB) for a language L
are isomorphic if there is a bijection f : A→ B with the requirement that:

(i) For each n-placed relation RA of A and the corresponding relation RB of
B, RA(x1, . . . , xn)1 if and only if RB(f(x1), . . . , f(xn)).

(ii) For each m-placed function GA of A and the corresponding function GB
of B, f(GA(x1, . . . , xn)) = GB(f(x1), . . . , f(xn)).

(iii) For each constant x and the corresponding constant x′, we have f(x) =
f(x′).

In this case, we say that there is an isomorphism between A and B, and write
A ∼= B.

Note that we require there be a unique corresponding relation, function or con-
stant in the above definition.

We now present the relatively lengthy definition of an abstract logic. An abstract
logic, being the basis of abstract model theory, should be properly viewed as simply
an extension of first-order logic. We do not define first-order logic first because,
to some extent, the definition of an abstract logic makes that of first-order logic
easier to understand. However, it is advisable to revisit this definition while reading
through that of first-order logic.

At this point, we will assume that the languages we are dealing with do not
contain function symbols, for the rest of this section as well as the final section.
Doing otherwise would introduce needless complications into both our definition
and the proof of Lindström’s theorem. In particular, in the relativization property
below, if we do not ignore function symbols in the language and the definition of a
submodel, it is no longer true that a submodel B of A with the specified universe
necessarily exists.

Definition 1.13. An abstract logic is an ordered pair (l,�l) where l is the class of
sentences of the logic and �l is the satisfaction relation of the logic. We require
abstract logics to satisfy the following:

(i) (Occurrence) For each ϕ ∈ l, there is a finite language Lϕ associated to ϕ
(which we call the set of symbols occurring in ϕ). For any model A of the
language L , we require the statement A �l ϕ to be either true or false if
Lϕ ⊂ L and undefined otherwise.

1By the statement RA(x1, . . . , xn), we mean that the ordered pair (x1, . . . , xn) is in R; we
view relations as sets of ordered n-tuples.
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(ii) (Expansion) If A is a model of the language L containing Lϕ, and B is
an expansion of A to some language L ′ containing L , then if A �l ϕ, we
must also have B �l ϕ.

(iii) (Isomorphism) If A ∼= B and A �l ϕ, then B �l ϕ.
(iv) (Renaming) Let f be a bijection between two languages L and L ′ which

preserves the number of places for all symbols. For each model A with
language L , let A′ be the model for L ′ induced by f (in the obvious
way). If ϕ ∈ l and Lϕ ⊂ L , then there must be a sentence f(ϕ) ∈ l
(obtained by substituting symbols in ϕ by their images under f) with
Lf(ϕ) = f(Lϕ) such that for each model A for L , we have A �l ϕ if and
only if A′ �l f(ϕ).

(v) (Closure) For any language L , l contains all atomic sentences of the lan-
guage (these will be defined in the next section), and is closed under the
connectives ∧ and ¬. That is, if ϕ,ψ ∈ l, then ϕ ∧ ψ ∈ l and ¬ϕ ∈ l.
Furthermore, if A is a model of the language L = Lϕ ∪Lψ, we require
A �l (ϕ∧ψ) if and only if A �l ϕ and A �l ψ are both true, and we require
A �l (¬ϕ) if and only if A �l ϕ is false.

(vi) (Quantifiers) For each ϕ ∈ l and each constant symbol c ∈ Lϕ, there is
a sentence (∀xc)ϕ(xc) where Lϕ(xc) = Lϕ \ {c}. Furthermore, if we let
A = (A,I ) be a model of the language Lϕ(xc) and Ay = (A,I ′) for y ∈ A
be the expansion of A to Lϕ by adding I ′(c) = y, we require:

A �l (∀xc)ϕ(xc) if and only if Ay �l ϕ for all y ∈ A.

(vii) (Relativization) Let ϕ ∈ l be a sentence, A = (A,I ) be a model, R
be an (n + 1)-placed relation on A and b1, . . . , bn be constants in A,
with the requirement that neither R nor b1, . . . , bn are interpretations
of symbols in Lϕ. There must then be a sentence ϕ | G(x, c1, . . . , cn),
called the relativization of ϕ to G(x, c1, . . . , cn) in the expansion L ′ =
Lϕ ∪ {G, c1, . . . , cn}, where G is an (n + 1)-placed relation symbol and
c1, . . . , cn are constant symbols. If we expand the model A to a model A′ of
L ′ by adding the obvious interpretations for G, c1, . . . , cn and additionally
consider a submodel B of A with universe B = {a ∈ A | R(a, b1, . . . , bn)},
we further require that:

A′ �l ϕ | G(x, c1, . . . , cn) if and only if B �l ϕ.

The satisfaction relation should be seen as a declaration of truth in the model.
When we write A � ϕ, we often say A satisfies or is a model of ϕ, or ϕ holds in,
is true in or is satisfied by A. We will also use the same expressions for sets of
sentences T .

These properties will likely all become clear and intuitive after our definition of
first-order logic, with the possible exception of the relativization property, which
will likely appear peculiar regardless. The relativization property simply states that
for any sentence, any given model of the language of the sentence and any relation
on the universe of the model, one can ‘carve out’ a subset of the universe with the
relation and there will then be a sentence which is true in the model if and only if
the original sentence is true in the submodel restricted to the carved out subset.
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2. First-Order Logic

The definition of an abstract logic, as will soon be apparent, simply aims to
capture the structure of first-order logic: in a sense, first-order logic is the most
‘basic’ abstract logic, with just the bare essentials. The purpose of this section
will be to specify what we mean by first-order logic, in an attempt to make the
definition of an abstract logic more intelligible. We begin by introducing atomic
sentences, with the remark that the following notion of an atomic sentences works
just as well for abstract logics in general.

Definition 2.1. Let L be a language. Then the following are terms:

(i) Constant symbols.
(ii) F (t1, . . . , tm) where F is an m-placed function symbol and t1, . . . , tm are

terms.
(iii) Any string of symbols that can be shown to be a term by a finite number

of applications of the above.

Remark 2.2. Note that, when we write F (t1, . . . , tm), this is purely formal, though
our intuitive understanding of F as taking t1, . . . , tm as arguments is often helpful.

The terms of a language form the basis of atomic sentences:

Definition 2.3. Let L be a language and let ≡ be an identity relation.2. Then
the following are atomic sentences:

(i) t1 ≡ t2, where t1 and t2 are terms.
(ii) P (t1, . . . , tn) where t1, . . . , tn are terms and P is a relation symbol.

When we required all atomic sentences of any given language to be in an abstract
logic, this was the definition of an atomic sentence that we had in mind. It should
be easy to see that we obtain the following definition of first-order logic if we simply
attempt to construct a ‘minimal’ abstract logic.

Definition 2.4. First-order logic is the pair (lω,ω,�) where lω,ω contains:

(i) All atomic sentences for any given language.
(ii) The sentence ¬ϕ for any ϕ ∈ lω,ω.
(iii) The sentence ϕ ∧ ψ if ϕ,ψ ∈ lω,ω.
(iv) The sentence (∀xc)ϕ(xc) where ϕ ∈ lω,ω and ϕ(xc) is obtained by replacing

every instance of the constant c by the variable xc.
(v) Only sentences which can be shown to be sentences by a finite number of

applications of the above.

We define the satisfaction relation inductively given a model A = (A,I ) for a
language L . That is, we have:

(i) A � R(t1, . . . , tn) if and only if (I (t1), . . . ,I (tn)) ∈ I (R).
(ii) A � t1 ≡ t2 if and only if I (t1) = I (t2).
(iii) A � ¬ϕ if and only if Lϕ ⊂ L and it is not the case that A � ϕ.
(iv) A � (∀xc)ϕ(xc), where Lϕ ⊂ L and c /∈ L , if and only if we have

Ay = (A,I ′) where I ′ is obtained from I by adding an interpretation
for c, namely I (c) = y for y ∈ A, and we require that Ay � ϕ for all
y ∈ A.

2The relation ≡ should be thought of as a purely formal symbol, just as ¬, ∧ and ∀ should be
thought of as purely formal symbols in the definition of an abstract logic. We generally take the

≡ relation as a given in an abstract logic, just as we take equality as a given in models.
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To actually verify that first-order logic is an abstract logic is tedious though
straightforward, with the possible exception of the relativization property. The
reader should check, however, that the relativization of ϕ to R(x, b1, . . . , bn) is
obtained by replacing each instance of (∀x)ψ(x) (for any sentence ψ) in ϕ by the
sentence (∀x)[R(x, b1, . . . , bn)→ ψ].

Having used the connective →, it is worth noting at this point that there are
other connectives which are commonly used in first-order logic which we have not
discussed explicitly, but are simply combinations of the connectives we have speci-
fied, and therefore implicitly determined. We will, for the sake of clarity, define the
following:

(i) ϕ ∨ ψ
(ii) (∃xc)ϕ(xc)
(iii) ϕ→ ψ

To mean, respectively:

(i) ¬(¬ϕ ∧ ¬ψ)
(ii) ¬[(∀xc)¬ϕ(xc)]
(iii) ¬(ϕ ∧ ¬ψ)

Finally, while we did not require a discussion of variables for the quantifier
property of abstract logics, it would perhaps be appropriate to do so here. We did
not technically define what we mean by a ’variable’, though the intuition behind
this should be clear. Normally, an infinite set of variables is a part of the abstract
logic (and we require only a countably infinite set of variables, because sentences
can have at most finitely many constant symbols), but it is more convenient to not
make this explicit for notational reasons.

3. Compactness and the Downward Löwenheim-Skolem Theorem

For the rest of this section, it will be assumed that we are working within first-
order logic. The purpose of this section will be to equip first-order logic with logical
axioms, rules of inference and the concept of a ‘deduction’. This will help us define
the notion of witnesses for a sentence, with which we can prove two lemmas which
have, as a direct consequence, the compactness and the downward Löwenheim-
Skolem theorems, as well as the extended completeness theorem.

Definition 3.1. A sentence ϕ is said to be a tautology if and only if for any
A = (A,I ) in a language L with Lϕ ⊂ L , we have A � ϕ.

Intuitively, this means that these sentences are - in some sense - ‘structurally’
true, because the specific interpretation of the symbols used does not matter. An
example of a tautology in first-order logic as we have defined it would be, for
instance, the sentence c ≡ c for a constant symbol c, because any model which
provides an interpretation for c evidently satisfies the sentence - it is always true
that I (c) = I (c). Here, it is in some sense the structure of the sentence which
makes it true regardless of the specific interpretation of the symbols.

An important reason we single out tautologies as such is precisely because we
regard them as being ‘inherently true’ in some vague sense of the word, and we
would therefore like to allow ourselves the ability to use them in making deductions.
In particular, tautologies form part of our logical axioms.

Definition 3.2. The following are logical axioms:
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(i) The sentence ϕ, where ϕ is a tautology.
(ii) The sentence (∀v)(ϕ → ψ(v)) → (ϕ → (∀v)ψ(v)) where ϕ and ψ are

sentences.
(iii) The sentence (∀v)ϕ→ ψ, where ψ is obtained by substituting each instance

of v which is not quantified over in ϕ by the term t (such that all variables
x in t are not quantified over in ψ).

Note that the last two are tautologies themselves, but they are used often enough
that it is worth mentioning them explicitly.

Definition 3.3. Consider a set of sentences T in a language L . We say that
a sentence ϕ is deducible from T , written T ` ϕ, if and only if there is a finite
sequence of sentences ϕ1, . . . , ϕn where each ϕi is one (or more) of:

(i) A tautology.
(ii) A sentence in T .
(iii) (Detachment) A sentence ψ if there are natural numbers j, k < i where ϕj

is γ and ϕk is γ → ψ, for any sentence γ.
(iv) (Generalization) A sentence (∀xc)ψ(xc) if there is a natural number j < i

such that ϕj is ψ and c ∈ Lϕ, but c does not occur in any sentence in T .
Here, ψ(xc) is obtained by substituting the variable xc for each instance
of c.

The last two are often referred to as rules of inference. Such a sequence of sentences
is often called a deduction.

There is an important notion of consistency which shows up very frequently in
model theory:

Definition 3.4. A set of sentences T in a language L is inconsistent if for any
sentence ϕ for a language L , we can deduce ϕ from T . T is said to be consistent
otherwise.

Definition 3.5. A set of sentences T in a language L is said to be maximal
consistent if it is consistent and the only set of consistent sentences of L containing
T is T itself.

We will now state, without proof, a useful theorem in model theory:

Theorem 3.6. (Lindenbaum’s Theorem) For any consistent set of sentences T ,
there is a maximal consistent set of sentences T ′ containing T .

The idea of the proof uses the fact that there are at most ‖L ‖ sentences that
we can form, and so we can index these by the ordinals less than ‖L ‖. We start
with T and at each successor ordinal, we add the sentence to our current set if
the resulting set is consistent, and we take unions at the limit ordinals. A simple
transfinite induction shows that this set is consistent, and by construction it is
maximal consistent.3

Another important concept is that of a set of witnesses.

Definition 3.7. Let T be a set of sentences with the associated language L and
let C be a set of constant symbols of L . We say that C is a set of witnesses for

3A complete proof can be found in Chang & Keisler, on page 10.
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T in L if and only if for every sentence ϕ in the language L , there is a constant
c ∈ C such that:

T ` (∃xd)ϕ(xd)→ ϕ(c)

where ϕ(c) is obtained from ϕ by replacing every instance of d with c.

And this definition helps us prove one of two useful lemmas.

Lemma 3.8. Let T be a consistent set of sentence of L and let C be a set of new
constant symbols of power |C| = ‖L ‖. Let L = L ∪ C be a simple expansion of
L formed by adding C. Then T can be extended to a consistent set of sentences T
in L which has C as a set of witnesses in L .

Proof. Let α = ‖L ‖ = |C|, and index the elements of C as cβ for β < α, where the

cβ are distinct if their subscripts are distinct. The power of L is evidently also α,

and so we can index all sentences of L with α.
We define a sequence of sets of sentences of L , (Tξ) for ξ < α, recursively:

(i) T0 = T .
(ii) Tξ+1 = Tξ ∪{(∃xd)ϕξ(xd)→ ϕξ(cξ)} (where ϕ(cξ) is constructed as in the

definition).
(iii) Tξ =

⋃
ζ<ξ Tζ when ξ is a limit ordinal different from 0.

We now wish to show that this set of sentences is consistent. We note that
Tξ is evidently consistent at non-zero limit ordinals, and that T0 is consistent by
hypothesis. We will now show that if Tξ is consistent, then Tξ+1 must be consistent.
If this were not the case, then:

Tξ ` ¬[(∃xd)ϕξ(xd)→ ϕξ(cξ)].

We can rewrite this as:

Tξ ` (∃xd)ϕξ(xd) ∧ ¬ϕξ(cξ).
And by the rule of generalization, since cξ does not occur in Tξ by construction, we
can rewrite this as:

Tξ ` (∀xd)[(∃xd)ϕξ(xd) ∧ ¬ϕξ(xd)].
We will assume that the following are tautologies, without proof (though this should
be intuitively clear and follow from our definitions):

(∀xd)(∃xd)ϕξ(xd) ∧ ¬ϕξ(xd)→ (∃xd)ϕξ(xd) ∧ (∀xd)¬ϕξ(xd)

(∃xd)ϕξ(xd) ∧ (∀xd)¬ϕξ(xd)→ (∃xd)ϕξ(xd) ∧ (∃xd)¬ϕξ(xd).
And this allows us to obtain that:

Tξ ` (∃xd)ϕξ(xd) ∧ (∃xd)¬ϕξ(xd).
Which shows that Tξ itself must have been inconsistent, contradicting the hy-

pothesis in our induction. Thus, we have shown that Tξ is consistent for all ξ < α

and we can therefore construct a consistent set of sentences T =
⋃
ζ<ξ Tζ .

We then see that T is a consistent set of sentences in L which, by construction,
has C as a set of witnesses since, for any sentence ϕ with language L , there is a
constant c ∈ C such that T ` (∃xd)ϕ(xd)→ ϕ(c). This completes the proof. �

The following lemma is even more tedious and, as such, we provide only a partial
proof.



10 SALMAN SIDDIQI

Lemma 3.9. Let T be a consistent set of sentences and C be a set of witness for
T in L . Then there is a model A = (A,I ) where for any a ∈ A, a = I (c) for
some c ∈ C and A � T .

Proof. If C is a set of witness for T in L , then C is also a set of witnesses for
every extension of T (since any sentence that can be deduced from T can also be
deduced from any extension of T ). Furthermore, if A � T ′ for some extension T ′ of
T , then evidently A � T . Thus, we can assume that T is a maximal consistent set
of sentences.

For any two constants c, d ∈ C, we will define c ∼ d if and only if c ≡ d ∈ T .
Because T is maximal consistent, we know that c ≡ c ∈ T and if c ≡ d and d ≡ e
are in T , then c ≡ e and d ≡ c are in T . Thus, if c ∼ d and d ∼ e, then c ∼ e and
d ∼ c. We see that ∼ is an equivalence relation on C as defined, and so for each

c ∈ C, we can define
∼
c to be the equivalence class of c in C under this equivalence

relation. We construct a model A = (A,I ) where A is the set of equivalence classes
of all c ∈ C.

For the relations on A, we will define R to be an n-placed relation on A for an

n-placed relation symbol P such that R(
∼
c1, . . . ,

∼
cn) if and only if P (c1, . . . , cn) ∈ T .

We note that by our axioms of identity, we have:

T ` P (c1, . . . , cn) ∧ c1 ≡ d1 ∧ . . . ∧ cn ≡ dn → P (d1, . . . , dn)

And this establishes that our choice of the representative of the equivalence does
not matter, which shows that our interpretation will be well-defined.

For constants, we note that we can consider constant symbols d, e ∈ L and form
the sentence (∃xe)(d ≡ xe), which must be in T because of . This sentence must
have some constant c ∈ C as a witness, and so d ≡ c ∈ T (as we assumed T was
maximal consistent). The equivalence class of the constant is unique, as our axioms
of identity show that:

T ` (d ≡ c ∧ d ≡ c′ → c ≡ c′)
We can therefore uniquely interpret any constant d with an equivalence class in C.

Similarly, for functions, we remark that we can perform the same trick to con-
struct the sentence (∃xe)[F (c1, . . . , cm) ≡ xe] ∈ T for any m-placed function symbol
F ∈ L . Once again, because T has witnesses in C, there must be a constant c ∈ C
such that F (c1, . . . , cm) ≡ c ∈ T . Once again, we can use the axioms of identity to
show that while the c’s are not necessarily unique, their equivalence classes must
be and so we can always define a function G on the set A of equivalence classes.

To complete our proof, it remains to be shown that A � T . This can be accom-
plished through a tedious induction on the complexity of sentences in T , but we
will omit the proof. �

Theorem 3.10 (Downward Löwenheim-Skolem). Every consistent theory T in L
has a model of cardinality at most ‖L ‖.

Proof. By Lemma 3.8, there is an extension T of T and a simple extension L of
L (the latter with ‖L ‖ = ‖L ‖) such that T has witness in L . We note that in

our constructions, we had |C| = ‖L ‖. Then, by Lemma 3.9, there is a model A
for T , and so a model A for T , where |A| ≤ |C|. We can then take the reduct B

of A to the language L , and so we have |B| = |A| ≤ ‖L ‖ = ‖L ‖, completing the
proof. �
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Theorem 3.11 (Extended Completeness). Let T be a set of sentence of L . Then
T is consistent if and only if T has a model.

Proof. By Theorem 3.10, if T is consistent then T has a model. Then, if T has a
model A, suppose T were inconsistent. We would then have T ` ϕ and T ` ¬ϕ
for some sentence ϕ in the same language as T . We would then have A � ϕ and
A � ¬ϕ, which cannot happen by our definition of the satisfaction relation. �

It turns out extended completeness is equivalent to compactness. This equiva-
lence becomes clear with the following (obvious) proposition.

Proposition 3.12. A set of sentences is consistent if and only if every finite subset
is consistent.

Proof. Consistency concerns only finite deductions. �

The proof of the compactness theorem is straightforward.

Theorem 3.13 (Compactness). A set of sentences T has a model if and only if
every finite subset of T has a model.

Proof. By Theorem 3.11, T has a model if and only if T is consistent. However,
by Proposition 3.12, T is consistent if and only if every finite subset is consistent.
Once again, by Theorem 3.11, every finite subset of T is consistent if and only if
every finite subset of T has a model. Hence, T has a model if and only if every
finite subset of T has a model. �

4. Lindström’s Theorem

Lindström’s theorem characterizes first-order logic up to equivalence. To present
a proof of the theorem, however, we will need to develop a few definitions and a
lemma. Once again, we remind the reader that we are technically ignoring function
symbols, though we may occasionally mention functions and function symbols to
elucidate the mechanics of some of the proofs (in which case, these should be simply
thought of as relations and relation symbols).

Though we have not defined what it means for two abstract logics to be ‘equiv-
alent’, one might guess that an isomorphism argument could come into play here.
Full isomorphisms, however, are too restrictive for our purposes, and so we begin
by defining the concept of a partial isomorphism.

Definition 4.1. Let A = (A,IA) and B = (B,IB) be models. A partial iso-
morphism between A and B is an isomorphism between finite submodels A′ =
(A′,I ′A′) and B′ = (B′,I ′B′) of A and B respectively.

Definition 4.2. Let A = (A,I ) and B = (B,I ′) be models for a language L .
We say that A and B are partially isomorphic (written A ∼=p B) if there is a
nonempty set of partial isomorphisms I with the property that for every partial
isomorphism F ∈ I and a ∈ A, there is a partial isomorphism G ∈ I such that G(a)
is defined and F ⊂ G, and similarly for all b ∈ B. This last property is often called
the back-and-forth property.

Note that two partially isomorphic models need not necessarily be isomorphic;
this can be seen in the case where both models are uncountable, since the union of
the domains of the partial isomorphisms can be constructed to be at most countably
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infinite. However, if we restrict the cardinality of the model to at most ℵ0, then
two models are indeed partially isomorphic if and only if they are isomorphic.

Proposition 4.3. If two at most countable models are partially isomorphic, then
they are isomorphic.

Proof. We will present an outline of the proof. If the set of partial isomorphisms
is nonempty, we can find a partial isomorphism which is an isomorphism of the
submodels with only one element in each (one can always restrict the domain of
any partial isomorphism). Then, however, we could construct an increasing chain
of partial isomorphisms using the back-and-forth property. Since the models are
countable, for any given relation, function or constant, there is a partial isomor-
phism which preserves it. Hence, the models must be isomorphic. �

We aim to characterize first-order logic by the downward Löwenheim-Skolem
theorem and the compactness theorem, and so we make the following two definitions
for abstract logics in general, which allow for more convenient phrasing in the
statement and proof of the lemma and the theorem.

Definition 4.4. We define the Löwenheim number of an abstract logic (l,�l) to be
the least cardinal α such that every sentence ϕ ∈ l which has a model has a model
of power at most α.

Definition 4.5. We say that an abstract logic (l,�l) is countably compact if for
every countable set T of sentences of l, T has a model if and only if every finite
subset of T has a model.

It is interesting to note the difference between countable compactness and the
compactness theorem (which we might call ‘full’ compactness). While it is true
that there is a version of the compactness theorem in first-order logic where the
set of sentences need not be countable, it turns out that simply requiring that
the compactness theorem holds for countable sets of sentences is sufficient, despite
being a strictly weaker condition.

Note that, by Theorems 3.10 and 3.13, first-order logic has Löwenheim number
ℵ0 (we sometimes write ω instead) and is countably compact. These two things
will characterize first-order logic up to equivalence, but before we specify what we
mean when we say that two abstract logics are equivalent, we present the following
definition of an equivalence of models.

Definition 4.6. Let A and B be models, and let (l,�l) be an abstract logic. We
say that A and B are l-elementarily equivalent if for any sentence ϕ ∈ l, we have
A �l ϕ if and only if B �l ϕ.

At this point, we can prove a useful lemma, which is a somewhat interesting
result in its own right. The idea of the proof is that if two models A and B are
partially isomorphic, then there must be a sentence ψ ∈ l which expresses this (as
well as the fact that A �l ϕ and B �l ¬ϕ). The fact that there must then be a
countable model because l has Löwenheim number ℵ0 gives us the contradiction we
need.

Lemma 4.7. Let (l,�l) be an abstract logic with Löwenheim number ℵ0. If A and
B are models for a language L which are partially isomorphic, then A and B are
l-elementarily equivalent.
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Proof. Suppose A and B are models for L that were partially isomorphic by some
I, but that there were some sentence ϕ ∈ l such that A �l ϕ but B �l ¬ϕ. By the
expansion property of abstract logics, we need only consider the reducts of A and
B to Lϕ, and so we may as well assume L = Lϕ and, therefore, that L is finite.

We will attempt to construct a model C and a sentence ψ ∈ l such that C �l ψ
and ψ implies that that A ∼=p B. To do this, we will let U and W be unary relation
symbols, E be a binary relation symbols and p be a binary function symbol. We
will use the notation 〈x, y〉 for p(x, y) and 〈x1, . . . , xn〉 for p(〈x1, . . . , xn−1〉, xn). We
now expand the language L to a language L ′ = L ∪ {U,W,E, p} and consider
the following sentences of l:

(i) ϕ | U(x)
(ii) (¬ϕ) |W (x)
(iii) ∀x, y, z, w(〈x, y〉 ≡ 〈z, w〉 ↔ (x ≡ z ∧ y ≡ w))
(iv) ∀x, y, u[E(x, y) ∧ U(u)→ ∃w(W (w) ∧ E(〈x, u〉, 〈y, w〉))]
(v) For each n-placed relation symbol R in L (where n is allowed to vary),

the sentence:
(∀x1, . . . , xn, y1, . . . , yn)[E(〈x1, . . . , xn〉, 〈y1, . . . , yn〉)
→ (U(x1)↔W (y1)) ∧ . . . ∧ (U(xn)↔W (yn))
∧(R(x1, . . . , xn)↔ R(y1, . . . , yn))]

(vi) For each n-placed function symbol F in L (where n is allowed to vary),
the sentence:
(∀x1, . . . , xn+1, y1, . . . , yn+1)[E(〈x1, . . . , xn+1〉, 〈y1, . . . , yn+1〉)
→ (U(x1)↔W (y1)) ∧ . . . ∧ (U(xn+1)↔W (yn+1))
∧(F (x1, . . . , xn) ≡ xn+1 ↔ F (y1, . . . , yn) ≡ yn+1)]

Since there are only finitely many relation symbols and function symbols, we can
form a sentence ψ which is the conjunction of all of the above. We note that ψ is a
sentence in the language L ′, and is therefore also a sentence in the language L ′′,
where L ′′ is obtained by adding the elements of L indexed with B to L ′. We
form a model C = (C,I ) of L ′′ whose universe is the disjoint union of the sets A,
B, A′ and B′, where we let A′ and B′ be the sets of finite sequences of A and B
respectively. For the sake of convenience, we will index the elements of C by A if
they were elements of A or A′, and by B otherwise.

We assign to symbols which are in both L ′′ and L their interpretation under
IA if they are indexed by A, and their interpretation under IB otherwise. We then
define I (U) to be the relation X where X(a) if and only if a ∈ A and, similarly,
I (W ) to be the relation Y where Y (b) if and only if b ∈ B. We further define I (E)
to be the relation Z where Z(c, d) if and only if c ∈ A ∪ A′, d ∈ B ∪ B′ and there
is an isomorphism between the submodels of A and B with universes restricted to
the elements of A in c and B in d respectively. Finally, we define I (p) to be the
function P where P (x, y) is defined to be the sequence 〈x, y〉, P (〈x1, . . . , xn〉, y) is
defined to be the sequence 〈x1, . . . , xn, y〉 and P (x, 〈y1, . . . , yn〉) is defined to be the
sequence 〈x, y1, . . . , yn〉. This completes our construction of C.

We note that because A ∼=p B, A �l ϕ and B �l ¬ϕ, we have C �l ψ by
construction. We see, however, that because l has Löwenheim number ℵ0, there
must be a model C0 of power at most ℵ0 such that C0 �l ψ, from which we can
obtain models A0 and B0 which are at most countable (using the interpretations
of the relations U and W ). We note that we must then have both A0 �l ϕ and
B0 �l ¬ϕ, but also A0

∼=p B0. This, however, is a contradiction by Proposition 4.3
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because both A0 and B0 are now at most countable, and so A and B must have
been l-elementarily equivalent. �

Finally, we require a definition of an equivalence of abstract logics.

Definition 4.8. Let (l,�l) and (l′,�l′) be abstract logics. We say that (l,�l) and
(l′,� l′) are equivalent if for every ϕ ∈ l, there is a ϕ′ ∈ l′ such that Lϕ = L ′ϕ′

and for any model A for Lϕ, A �l ϕ if and only if A �l ϕ′, and vice-versa.

In essence, we consider two abstract logics ‘equivalent’ if there is no way to
distinguish between them from the point of view of a model. We are finally in a
position to prove Lindström’s theorem. This central idea of the proof lies in the
first three and final paragraphs, but we also need to construct a sentence and a
model, as we did in the previous lemma, which requires the better part of a page.

Theorem 4.9 (Lindström). Let (l,�l) be a countably compact abstract logic with
Löwenheim number ℵ0. Then (l,�l) is equivalent to first-order logic, (lω,ω,�).

Proof. We wish to show that for every sentence ϕ ∈ l, there is some sentence
ψ ∈ lω,ω such that for any model A for a language L containing Lϕ, we have
A �l ϕ if and only if A � ψ. Since the converse follows from the closure property of
abstract logics, this will complete the proof.

By the expansion and occurrence properties, we need only consider the case
where L is finite, since the satisfaction relation depends only on the reduct to
Lϕ, which itself must be finite. We define a sequence of relations Ik between
finite n-tuples of A and B and say that (〈a1, . . . , an〉, 〈b1, . . . , bn〉) ∈ I0 if the sub-
models of A and B obtained by restricting the models to the sets {a1, . . . , an}
and {b1, . . . , bn} respectively are lω,ω-elementarily equivalent. We further say that
(〈a1, . . . , an〉, 〈b1, . . . , bn〉) ∈ Im+1 if and only if for all c ∈ A, there is a b ∈ B such
that (〈a1, . . . , an, c〉, 〈b1, . . . , bn, d〉) ∈ Im. Because L is finite, and therefore there
are only finitely many atomic sentences of L , and we are assuming it contains no
function symbols, we see that for each k there is a finite set Γk of sentences of
first-order logic in the language L such that ØIkØ if and only if A and B satisfy
the same sentences of Γk, where Ø is the empty sequence.

We now consider any ϕ ∈ l with Lϕ ⊂ L . We define A ≡k B to mean ØIkØ
as above. We suppose that there is no k such that for any two models A and B,
if A ≡k B and A �l ϕ then B �l ϕ. For each k, we can then find models Ak and
Bk such that Ak ≡k Bk and Ak �l ϕ, but Bk �l ¬ϕ. We will show that we must
then be able to construct models A′H and B′H which are partially isomorphic but
for which A′H �l ϕ and B′H �l ¬ϕ.

By taking a subsequence, we can assume that all the Ak satisfy the same atomic
sentences of L . Furthermore, by the isomorphism property of abstract logics,
we assume that each Ak has the same interpretation of the contsants of L . The
model A formed by the union of all of the models Ak then has each model Ak as
a submodel. We will also, abusing the isomorphism property, take each Ak so that
their universes are all disjoint from ω, the first infinite ordinal. We use the same
construction for B.

We use the notation a or b to mean a finite sequence of elements of A, and ab to
mean their concatenation (by attaching the sequence b to the end of the sequence
a, with a similar construction for attaching elements of A). We will let A′ be the
set of finite sequences of A and define functions F and F ′ such that F (a, b) = ab
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and F (a,b) = ab. We then construct A′′ which is an extension of A with universe
A∪A′ and a relation U (where U(a) if a ∈ A′), as well as functions F and F ′. We
construct B′′ analogously.

We form a model C for L with universe C which is the disjoint union of A, A′, B
andB′. We add relationsR and S such that, for each k ∈ ω, Ak = {a ∈ A | R(a, k)},
A′k = {a ∈ A′ | R(a, k)}, Bk = {b ∈ B | S(b, k)} and B′k = {b ∈ B | S(b, k)}. We
define a relation I such that for k ∈ ω, we have I(k,a,b) if and only if a Ik b,
and the usual order relation ≤ on ω. We also retain the functions defined in the
previous paragraph. We then consider an expansion L ′ of L which is obtained by
adding relation symbols for each of the functions and relations defined above (we
look at the binary functions as ternary relations), and we extend the interpretation
function of C to L ′ by adding the obvious interpretations for the added symbols.

We construct a sentence ψ ∈ l in this expanded language which expresses that
ω under ≤ is a well-ordering with well-defined successors and predecessors except
for the first element, and that for all k ∈ ω, Ak ≡k Bk, Ak �l ϕ but Bk �l ¬ϕ (this
sentence is constructed in exactly the same way as the sentence in the preceding
lemma was constructed, except we use the quantifier property an additional time to
quantify over k, and we add sentences expressing that ω under ≤ is a well-ordering
with well-defined successors and predecessors except for the first element).

By our construction, this sentence ψ ∈ l holds in C. Furthermore, we can consider
a countable set of sentences T which contains the sentences:

(i) (∃x)(1 ≤ x)
(ii) (∃x)(1 ≤ x ∧ 2 ≤ x)
(iii) (∃x)(1 ≤ x ∧ 2 ≤ x ∧ 3 ≤ x)

...

as well as the sentence ψ (we use ≤, 1, 2, 3, . . . loosely). We see that C is a model
for any finite subset of T and that therefore there must be a model C′′ for T . This
model then contains a nonstandard element H (nonstandard in the simple order).
Then, we have AH �l ϕ, BH �l ¬ϕ and AH ≡H BH , where AH and BH have
universes AH and BH defined analogously to Ak and Bk in the construction of C
above. Then, we can define a relation J between m-tuples a in the universe of AH
and b in the universe of BH where a J b if and only if a I ′H−m b.

This relation is a partial isomorphism between A′H and B′H because A′H ≡H B′H
and so, by our initial construction, we must have a suitable sequence of isomor-
phisms such that ØIHØ. Then, however, since A′H and B′H are partially isomorphic
and (l,�l) has Löwenheim number ℵ0, A′H and B′H must in fact be l-elementarily
equivalent, which is a contradiction because ϕ is true in A′H and not in B′H . Hence,
for any ϕ, there is a k ∈ ω such that if A ≡k B and A �l ϕ, then B �l ϕ.

However, we remark that for each k, we had a finite set of first-order sentences
Γk such that for all models A and B, A ≡k B if and only if A and B satisfied
the same sentences of Γk. Hence, for every ϕ ∈ l there is a k ∈ ω such that, for
all models A and B, if A and B satisfy the same sentences of Γk and A �l ϕ,
then B �l ϕ. We can restate this as: given any sentence ϕ ∈ l and model A such
that A �l ϕ, there is a finite set of first-order sentences in the same language as
ϕ such that any model B which satisfies the same sentences as A also satisfies ϕ.
This shows that ϕ is equivalent to some combination of first-order sentences in Γk,
completing the proof. �
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