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Abstract. Binary tree-structured partition and classification schemes are a class of non-

parametric tree-based approaches to classification problems. After developing an original

definition of tree-structured partition and classification schemes, we introduce a standard
example of such a scheme and apply it to a well-known data set. We then introduce a set

of regularity conditions and prove that tree-structured partition and classification schemes

are risk consistent when these conditions are satisfied.
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1. Introduction

Tree-structured partition and classification schemes are one of the myriad statistical tech-
niques motivated by a desire to use certain known characteristics of an object to predict
some other characteristic of that object. Such schemes address this problem by constructing
binary decision trees, which at each node contain a simple rule for determining in which of
two child nodes an object with given known characteristics belongs . The end user determines
the predicted class of a new object by beginning at a ”root node” and moving down the tree
until he finds the ”terminal node” in which the object belongs. Each object belonging in a
given terminal node is predicted to be in the class to which the node is associated.
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Binary tree-structured partition and classification schemes, often referred to more simply
as classification tree processes, can be applied to any problem to which more common para-
metric techniques such as logistic or probit regression can be, and classification tree processes
have a number of advantages over the latter two techniques. Trees often predict more ac-
curately than parametric methods do, particularly when applied to problems in which the
data have non-linear structure. Unlike regression models, tree-structured classifiers do not
depend on strong assumptions about the data such as normality and homoscedasticity of the
errors. Classification trees are also more easily interpretable than logistic or probit regression
functions; non-experts applying the results of statistical analyses often understand tree charts
better than they do linear functions of many variables. Finally, under certain regularity con-
ditions, tree structured-classifiers possess a highly desirable property called risk consistency,
which means that as the amount of data used to train the tree goes to infinity, the accuracy
of the tree in predicting the response characteristic converges to the accuracy with which
one could predict the response characteristic if one were to know the explicit conditional
distribution of the response characteristic given the predictor variables.

The second section of this paper introduces the terminology needed to rigorously describe
binary tree-structured partition and classification schemes. The third section introduces a
simplified version of CART1, the canonical example of a binary tree-structured partition and
classification scheme, and the fourth section demonstrates the application of CART to a real-
world data set. The fifth section presents a number of theoretical results regarding the risk
consistency of partition and classification schemes.

2. Terminology

In order to rigorously describe the theoretical properties and practical performance of
classification trees, we first need to introduce a number of definitions. We will start by
describing the terminology used to describe the data set which trains a tree. Many of the
below definitions are adapted slightly from those used in the 1984 monograph Classification
and Regression Trees (Breiman, Friedman, Olshen, and Stone), while others are original to
this paper.

For a given observation with p predictor variables, we call the tuple containing the values
of the predictor variables the measurement vector, and denote it x = (x1, ...xp). We call
the space of all possible measurement vectors for the p variables the measurement space.

If C is the set of all possible values the response variable can take, then for a given
observation we call the value of the response variable c ∈ C the class of the observation. For
a classification problem, C will always be finite.

The three above definitions allow us to define the collection of observations used to train
the tree. A learning sample with n observations is a set of pairs of measurement tuples and
classes. We write a learning sample as L = {(x1, c1), . . . , (xn, cn)} where xi = {xi1, . . . , xip} ∈
χ and ci ∈ C.

If T̃ = {t1, . . . , tk} is a partition of a measurement space χ, we call the elements of T̃
nodes. We let  Lti = {(xj , cj) ∈ L : xj ∈ ti} denote the subset of L induced by ti and let LT̃
denote the partition of L induced by T̃ .

A partition and classification scheme can be thought of as an operation that uses
the information in the learning sample to first partition the measurement space into a set T̃
of nodes and then construct a partition classification function on T̃ , where a partition
classification function on T̃ is a function d : T̃ → C such that d is constant on every node of

1CART as an acronym for Classification and Regression Trees is a registered trademark of the San Diego

based data-mining software company Salford Systems
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T̃ . Formally, if we allow L to be the space of all learning samples and D to be the space of
all partition classification functions, then a partition and classification scheme is a function
Φ : L → D such that Φ(L) = (ψ ◦ φ)(L), where φ maps L to some induced partition LT̃
and ψ is an assignment rule which maps LT̃ to a partition classification function d on the

partition T̃ .
This paper focuses not on partition and classification schemes in general but on a specific

class of such schemes called binary tree-structured partition and classification schemes. Before
we define this class of schemes explicitly, we need to introduce a number of important features
of tree-structured classifiers.

A binary split function is a map s that sends one node to a pair of nodes such that if
s(t) = (s1(t), s2(t)) = (t1, t2), then t1, t2 6= ∅, t1 ∩ t2 = ∅, and t1 ∪ t2 = t. Intuitively, a
binary split function s partitions a parent node t ⊆ χ into a non-empty left child node t1 and
a non-empty right child node t2.

A question set is a finite set S = {s1, . . . , sm} of binary split functions. We can think of a
question set as the collection of all the potential rules we might use to split the measurement
space.

A goodness of split criterion is a function g which maps each pair (t, s) consisting of
a node t ⊂ χ and a binary split function s ∈ S to a real number. For any parent node t, the
goodness of split criterion ranks the split functions in the question set based on some measure
of the quality of the child nodes the split would produce. This ranking is typically determined
by the size of the reduction in some “impurity function.” A definition and examples of impurity
functions appear in the next section.

A stop-splitting rule is a map r from the power set of the measurement space χ to {0, 1}.
If r(t) = 0, then t will be split into two child nodes, but if r(t) = 1 then t is a terminal node
and will not be split.

Now we are finally able to define the class of processes which are the subject of this
paper. A binary tree-structured partition and classification scheme is a partition
and classification scheme Φ which can be written in the form

(2.1) Φ(L) = (ψ ◦ lim
i→∞

φ(i))(L),

where ψ is an assignment rule and

(2.2) φ(i)(L) = L(φi◦φi−1◦···◦φ1)(χ)

and for any partition T̃ of χ, including χ itself, φi(T̃ ) = {t′ : t′ is in the pair νi(t) for some t ∈
T̃} where

(2.3) νi(t) =

{
(arg maxs∈S g(Lt, s))(t) if r = 0

(t, t) if r = 1.

Remark 2.4. If g(Lt, si) = g(Lt, sj) = maxs∈S g(Lt, s) and i < j, then si is used.

A binary tree-structured partition and classification scheme Φ is therefore defined as an
assignment rule applied to the limit of a sequence of induced partitions φ(i)(L), where φ(i)(L)
is the partition of the learning sample L induced by the partition (φi ◦φi−1 ◦ · · · ◦φ1)(χ). For

every node t in a partition T̃ such that the stopping rule r(t) = 0, the function φ(T̃ ) splits
each node into two child nodes using the best binary split in the question set as determined
by the goodness of split criterion. For every node t ∈ T̃ such that the stopping rule r(t) = 1,

φ(T̃ ) leaves t unchanged.
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The process defined above is binary in the sense that each application of the function φ
splits each node in a partition into two or fewer child nodes. It is tree-structured in the sense
that the sequence φ(i) can easily be envisioned as an expanding tree, as illustrated below.
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limi→∞ φ(i)(L) = {Lt7 Lt8 Lt4 Lt13 Lt14 Lt10 Lt15 Lt16 Lt12}

It remains to be shown of, of course, that binary tree-structured partition and classification
schemes are well-defined, which is true only if there always exists some induced partition L′

such that

(2.5) lim
i→∞

φ(i)(L) = L′.

In fact a stronger result is true.

Proposition 2.6. If L is a learning sample and φ(i) is as above, then there exists some
N ∈ N such that

(2.7) n ≥ N =⇒ φ(n)(L) = lim
i→∞

φ(i)(L)

Proof. Let { LT̃i
} denote the sequence {L, φ(1)(L), φ(2)(L), . . . } Define tmaxi = max{ t ∈ T̃i :

r(t) = 0} as the size of the largest non-terminal node (or nodes) in T̃i. Notice that if there
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exists N ∈ N such that tmaxN does not exist, then every node in T̃N is terminal, which means

that for all n > N , T̃n = T̃N , in which case (2.7) holds. Also notice that the sequence
{|tmaxi |} is strictly decreasing for as long as it exists, and further that if tmaxi+1 exists then
|tmaxi+1 | ≤ |tmaxi | − 1. But since 1 is a lower bound for {|tmaxi |} and |tmax1 | = |L|, this means
that tmax|L| cannot exist, so (2.7) always holds with N ≤ |L|.

�

3. The CART Process

The canonical example of a binary tree-structured partition and classification scheme is
the Classification and Regression Trees (CART) process outlined by Breiman et al. in 1984.
Many if not most of the tree-structured classification algorithms available today are variations
on the CART process. For the sake of brevity, we consider a somewhat simplified version of
CART.

For a learning sample L = {(x1, c1), . . . , (xn, cn)} where xi = {xi1, . . . , xip} ∈ χ and
ci ∈ C, CART’s question set SC is the set {sij : 1 ≤ i ≤ n, 1 ≤ j ≤ p} such that if t ⊆ χ is a
node, then sij(t) = (t1, t2) where

(3.1) t1 = {x′ = (x′1, . . . , x
′
p) ∈ χ : x′j < xij}

and

(3.2) t2 = t\t1.

Thus SC is the set of all univariate splits of the measurement space χ which induce distinct
splits of the learning sample L.

CART’s goodness of split criterion is

(3.3) gC(Lt, s) = i(Lt)−
|Ls1(t)|
|Lt|

i(Ls1(t))−
|Ls2(t)|
|Lt|

i(Ls2(t))

where i is some impurity function. This criterion assesses the quality of a split s by
subtracting the average impurity of the child nodes t1, t2 from the impurity of the parent
node t.

An impurity function is a map i from a subset of L induced by a node t to a real number
where for Lt ⊆ L such that  Lt 6= ∅, the following conditions hold: (a) i(Lt) achieves its
maximum only when Lt contains all classes c ∈ C in equal proportions, (b) i(Lt) achieves
its minimum only when Lt contains only one class, and (c) i(Lt) is symmetric, meaning
that if f : C → C is a bijection and L′t = {(xi, f(ci)) : (xi, ci) ∈ Lt}, then i(Lt) = i(L′t).
Such functions provide a reasonable measure of the uniformity of the classes in the points
{(x, c) : x ∈ Lt}.

The most commonly used impurity function for CART is the Gini Index. If we let
Lt,c = {(xi, ci) ∈ Lt : ci = c}, then the Gini Index is defined as

(3.4) igini(t) =
∑
c 6=c′

|Lt,c|
|Lt|

|Lt,c′ |
|Lt|

.

The reader can very easily check that the Gini Index is in fact an impurity function. Another
common impurity function is information entropy,

(3.5) ient(t) = −
∑
c∈C

|Lt,c|
|Lt|

logb(
|Lt,c|
|Lt|

)

where b > 0.
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The stop-splitting rule r for our simplified version of CART is

(3.6) r(t) =



1 if c = c′ for all (x, c), (x′, c′) ∈ Lt
1 if x = x′ for all (x, c), (x′, c′) ∈ Lt
1 if |Lt| < Nstop for some fixed Nstop ∈ N
1 if maxs∈S g(Lt, s) < αstop for some fixed αstop ∈ R
0 otherwise

So CART continues to split a node until either all the points in the induced subset Lt
have the same class, all the points in Lt have the same measurement vectors, the number
of observations in Lt is less than some pre-defined number N , or the goodness of the best
possible split is below some pre-defined threshold α.

The most basic reasonable assignment rule ψ is the plurality rule ψpl(LT̃ ) = d such that
if x ∈ t, then

(3.7) d(x) = arg max
c∈C
|Lc,t|.

The plurality rule classifies each new point in t as belonging to the class most common in Lt.
This rule will be important in the risk consistency discussion in section 5.

Information about more advanced variations of CART is abundant in the literature. In
particular, multivariate question sets as well as more complex assignment rules are discussed
in Lugosi and Nobel (1996), Nobel (2002), and of course Breiman et al.

4. Iris Classification

We now demonstrate a practical use of a binary tree-structured partition and classification
scheme by applying the simplified CART process to the famous Iris Flower data set first
introduced by Fisher in 1936 and now widely used to test pattern recognition. This data set
is available online through the UC Irvine Machine Learning Repository.

The Iris Flower data is a collection of observations regarding 150 iris flowers drawn in
equal proportion from three distinct species: Iris Setosa, Iris Versicolour, and Iris Virginica.
Each observation contains measurements in centimeters of four characteristics of the flower
as well as the flower’s species. We can frame the Iris Flower data set as a learning sample
LIris = {(x1, c1), . . . , (x150, c150)} where xi = {xi1, . . . , xi4} ∈ χ. The measurement variables
are sepal length (x1), sepal width (x2), petal length (x3), and petal width (x4). The set of
classes is C = {Iris Setosa, Iris Versicolour, Iris Virginica}.

Our goal in applying a partition and classification scheme to the Iris Flower data set is
to develop a tree that accurately predicts the species of an iris flower based on the length
and width of its sepal and petals. We use the simplified CART scheme ΦC presented above
and let our minimum number of observations in a node to be split be Nstop = 10 and our
minimum goodness of split be αstop = .025. We find by analyzing the data using Python

that the best initial split is s(1)(χ) = (ta, tb) where ta = {x ∈ t : x4 < .95} and tb = t\ta.
The goodness of the first split is g(LIris, s(1)) = .1667.

We let t2 denote s
(1)
1 (χ) and t2 denote s

(1)
2 (χ). Then the induced node LIrist2 is pure,

consisting entirely of the Setosa class, so we split that node no further. The best split for
node t3 is s(3)(t) = (ta, tb) such that ta = {x ∈ t : x4 < 1.75} and tb = t\ta. This split has
goodness g(LIrist3 , s(3)) = .1948.

Letting t4 = s
(3)
1 (t3) and t5 = s

(3)
2 (t3), we find that for the induced node LIrist5 , the

maximum goodness of split is
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(4.1) max
s∈S

g(LIrist5 , s) = .0068 < αstop,

so we split the node t5 no further. However, we split the node t4 one more time, using the
split s(4)(t) = (ta, tb) such that ta = {x ∈ t : x3 < 4.95} and tb = t\ta. The goodness of this
split is g(LIrist4 , s(4)) = .0412.

We let t6 = s
(4)
1 (t4) and t7 = s

(4)
2 (t4). Then the maximum goodness of split for the induced

node LIrist6 is

(4.2) max
s∈S

g(LIrist6 , s) = .0204 < αstop,

and the number of observations in the induced node LIrist7 is 6 < Nstop, so we are finished
splitting the space.

In terms of the definition of binary-tree structured classification schemes developed in
section 2, we have found that

(4.3) φ(1)(LIris) = LIrisφ1(χ)
= LIris{t2,t3},

(4.4) φ(2)(LIris) = LIris(φ2◦φ1)(χ)
= LIris{t2,t4,t5},

(4.5) lim
n→∞

φ(n)(LIris) = φ(3)(LIris) = LIris(φ3◦φ2◦φ1)(χ)
= LIris{t2,t5,t6,t7},

and

(4.6) ΦC(LIris) = (ν ◦ lim
n→∞

φ(n))(LIris) = dC,Iris

where dC,Iris is the partition classification rule defined by

(4.7) dC,Iris(x) =


Setosa if x4 < .95

Virginica if x4 ≥ 1.75

Virginica if x3 ≥ 4.95 and .95 ≤ x4 < 1.75

Versicolour if x3 < 4.95 and .95 ≤ x4 < 1.75.

The partition classification rule dC,Iris correctly classifies 146 out of the 150 observations in
the learning sample.

One can also display dC,Iris in tree form, as shown below. The inequality at each non-
terminal node is the rule which dictates which observations belong in each of the node’s two
children. Observations satisfying the rule are assigned to the left child node, while those
which do not satisfy the rule are assigned to the right child node. The labels in the terminal
nodes are the classes to which these nodes correspond, and the numbers below the labels
show the number of learning sample observations of each class which dC,Iris assigned to that
node.
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x4 < 0.95

vvllllllllll

,,YYYYYYYYYYYYYYYYYYYYYYYY

Setosa x4 < 1.75

uullllllllllllllll

%%JJJJJJJJJJJ

50/0/0

x3 < 4.95

zzttttttttttt

##HHHHHHHHHH Virginica

0/1/45

Versicolour Virginica

0/47/1 0/2/4

The above tree allows even those without a strong understanding of mathematics or statis-
tics to classify the flowers in the data set quite accurately based on only two easily observable
measurements. A wealth of other examples of applications of CART and its variants can be
found in Breiman et al.

5. Risk Consistency

We now turn to a discussion of risk consistency, an important statistical property of parti-
tion and classification schemes which we will define momentarily. Throughout the remainder
of this paper, consider the learning sample L to be a collection of n independent and identi-
cally distributed random vectors (Xi, Yi) such that Xi takes values in the measurement space
χ and Yi takes values in the class set C.

For a partition classification function d, we say that the misclassification rate of d for
a random vector (X, Y ) is

(5.1) Rd,(X,Y ) =
∑
c∈C

P(Y 6= c | d(X) = c) · P(d(X) = c).

We say that d is a Bayes rule if

(5.2) Rd,(X,Y ) = min
d′∈D

Rd′,(X,Y ).

We denote the Bayes rule d?(X,Y ) and the misclassification rate of the Bayes rule R?(X,Y ). If

we let

(5.3) Pc,(X,Y )(x) = P(Y = c | X = x),

then we can also define the Bayes rule explicitly as

(5.4) d?(X,Y ) = arg max
c∈C

Pc,(X,Y )(x).

Intuitively, the Bayes rule is the most accurate possible predictor of the class given the
measurement variables, the rule one would use if one were to know explicitly the conditional
distribution of Y |X. The reader should note that while the Bayes rule is a partition classifi-
cation function for infinitely many partitions of the measurement space χ, it is usually not a
partition classification function for all partitions of χ because it will not be constant on all
the nodes of some partitions.
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Let Ln = {(X1, Y1), . . . , (Xn, Yn) be a learning sample composed of the first n outcomes
of the random vector (X, Y ). Then we say a partition and classification scheme Φ is risk
consistent if as n→∞,

(5.5) Φ(Ln)→ d?(X,Y )(x) with probability 1.

In words, a partition and classification scheme is risk consistent if the partition classification
function to which it maps the learning sample Ln converges to the Bayes rule as the number
of observations n in the learning sample goes to infinity.

The remainder of this section is dedicated to stating and proving the conditions under
which partition and classification schemes in general and binary-tree structured partition
and classification schemes in particular are risk consistent. For the most part, we follow the
discussion in Lugosi and Nobel, though we use very different terminology and notation.

Before we arrive at our two main results, we need to introduce a bit of notation as well
as some definitions and technical lemmas. For any random variable X and set A, let FX(A)
denote P(X ∈ A), and let

(5.6) F̂n,X(A) =
1

n

n∑
i=1

I(Xi ∈ A)

be the empirical probability that X ∈ A based on n observations. I here is an indicator
function, meaning

(5.7) I(·) =

{
1 if · is true

0 otherwise

Now, let T = {T̃1, T̃2, . . . } be a (possibly infinite) collection of partitions of a measurement
space χ. We define the maximal node count of T as the maximum number of nodes in
any partition T̃ in T . We write the maximal node count as

(5.8) λ(T ) = sup
T̃∈T
|T̃ |

We let ∆(T , Ln) = |{LT̃ : T̃ ∈ T }| be the number of distinct partitions of a learning
sample of size n induced by by partitions in T . We can then define the growth function of
T as

(5.9) ∆n(T ) = sup
{L:|L|=n}

∆(T , L)

Thus the growth function of T is the maximum number of distinct partitions LT̃ which

partitions T̃ in T can induce in any learning sample with n observations.
We now introduce a more general technical concept call the shatter coefficient. For any

class A of subsets of Rp, the shatter coefficient

(5.10) Sn(A) = max
{B⊂Rp:|B|=n}

|{A ∩B : A ∈ A}|

is the maximum number of partitions of B induced by A where B is some n point subset of
Rp.

We take as given the following inequality involving shatter coefficients proven by Vapnik
and Chervonekis in 1971.
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Lemma 5.11. Suppose A is a class of subsets of Rp and X is a random vector taking values
in Rp. Let Sn be as above. Then for any n ≥ 1 and ε > 0,

(5.12) P{ sup
A∈A
|F̂n,X(A)− FX(A)| > ε} ≤ 4S2n(A) exp(−nε2/8)

We use this inequality to prove another inequality more directly applicable to partition
and classification schemes.

Lemma 5.13. Suppose T is a collection of partitions of the measurement space Rp and X
is a random vector taking values in Rp. Then for every n ≥ 1 and ε > 0,

(5.14) P{ sup
T̃∈T

∑
t∈T̃

|F̂n,X(t)− FX(t)| > ε} ≤ 4∆2n(T )2λ(T ) exp(−nε2/32)

Proof. For every partition T̃ ∈ T , let

(5.15) B(T̃ ) = {
⋃
t∈T

t : T ⊆ T̃}

be the collection of the unions of the nodes in any subset T of T̃ . Let B(T ) = {t ∈ B(T̃ ) :

T̃ ∈ T } For a given partition T̃ , let

(5.16) ẗn,T̃ =
⋃

{t∈T̃ :Fn,X(t)≥FX(t)}

t

Then for any partition T̃ ,∑
t∈T̃

|Fn,X(t)− FX(t)| = 2(Fn,X(ẗn,T̃ )− FX(ẗn,T̃ ))

≤ 2 sup
t∈B(T̃ )

|Fn,X(t)− FX(t)|,(5.17)

and therefore

sup
T̃∈T

∑
t∈T̃

|Fn,X(t)− FX(t)| ≤ 2 sup
T̃∈T

sup
t∈B(T̃ )

|Fn,X(t)− FX(t)|

= 2 sup
t∈B(T̃ )

|Fn,X(t)− FX(t)|(5.18)

Then Lemma 5.11 gives us

P{ sup
T̃∈T

∑
t∈T̃

|Fn,X(t)− FX(t)| > ε} ≤ P{ sup
T̃∈B(T )

|Fn,X(t)− FX(t)| > ε/2}

≤ 4∆2n(T )2λ(T ) exp(−nε2/32).(5.19)

because S2n(B(T )) ≤ 2λ(T )∆2n(T ). �

Our interest in Lemma 5.13 is due to following corollary of it, which can be proven using
the Borel-Cantelli lemma.

Corollary 5.20. Let X be a random vector taking values in Rp and let {T1, T2, . . . } be a
sequence of families of partitions of Rp. Suppose that as n→∞, (a) n−1λ(Tn)→ 0, and (b)
n−1log(∆n(Tn))→ 0. Then

(5.21) sup
T̃∈Tn

∑
t∈T̃

|Fn,X(t)− FX(t)| → 0 with probability 1.
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Before stating our first major result, we require one more inequality, proven by Devroye
and Gyorfi in 1985.

Lemma 5.22. Let (X, Y ) be a random vector which takes values in Rp × C, let |C| = M ,
and let β1(x), . . . , βM (x) be real-valued functions on Rp. Define the partition classification
function

(5.23) h(x) = arg max
1≤k≤M

βk(x).

Then

(5.24) Rh,(X,Y ) −R?(X,Y ) ≤
M∑
k=1

∫
|Pk,(X,Y )(x)− βk(x)|FX(dx).

Now we are ready to present a set of regularity conditions under which any partition and
classification scheme Φ is risk consistent. For a partition T̃ of a measurement space χ 3 x,
let T̃ [x] = {t ∈ T̃ : x ∈ t} be the node t in T̃ which contains x. For a set A ⊆ Rp, let

(5.25) D(A) = sup
x,y∈A

‖x− y‖

be the diameter of A. Let a hyperplane split be any binary split function on Rp that splits
a node by dividing it into child nodes consisting of either side of some hyperplane. Then the
follow result holds.

Theorem 5.26. Let (X, Y ) be a random vector taking values in Rp × C and let Ln be the
set of the first n outcomes of (X, Y ). Suppose that Φ is a partition and classification scheme
such that Φ(Ln) = (ψpl ◦φ)(Ln), where ψpl is the plurality rule and φ(Ln) = (Ln)T̃n

for some

T̃n ∈ Tn, where

(5.27) Tn = {φ(ln) : P(Ln = ln) > 0}.
Also suppose that all the binary split functions in the question set associated with Φ are
hyperplane splits. If as n → ∞, (a) n−1λ(Tn) → 0, (b) n−1 log(∆n(Tn)) → 0, and (c) for
every γ > 0 and δ ∈ (0, 1),

(5.28) inf
{S⊆Rp:FX(S)≥1−δ}

FX({x : D(T̃n[x] ∩ S) > γ})→ 0 with probability 1,

then Φ is risk consistent.

Remark 5.29. We refer to condition (c) of Theorem 5.26 as the shrinking cell condition.

Proof. We provide an outline of the proof. The full (and quite long) argument can be found
in Lugosi and Nobel (1984).

Let M = |C|, and for each k = 1, . . . ,M and x ∈ Rp, let mk(x) = Pk,(X,Y )(x). Let

(5.30) mk,n(x) =
|Lk,T̃n[x]

|
FX(T̃n[x])

.

By Lemma 5.22, it suffices to show that as n→∞,

(5.31)

∫
|mk(x)−mk,n(x)|FX(dx)→ 0

for each k. Let ε > 0 and rk : Rp → R be some continuous function with compact support
and the property that

(5.32)

∫
|mk(x)− rk(x)|FX(dx) < ε.
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Define the auxiliary functions uk,n and vk,n as

(5.33) uk,n(x) =
E[I{Y = k}I{X ∈ T̃n[x]} | Ln]

FX(T̃n[x])

(5.34) vk,n(x) =
E[rk(X)I{X ∈ T̃n[x]} | Ln]

FX(T̃n[x])
.

Notice that

|mk(x)−mk,n(x)| ≤ |mk(x)− rk(x)|+ |rk(x)− vk,n(x)|
+|vk,n(x)− uk,n(x)|+ |uk,n(x)−mk,n(x)|,(5.35)

which means∫
|mk(x)−mk,n(x)|FX(dx) ≤

∫
|mk(x)− rk(x)|FX(dx) +

∫
|rk(x)− vk,n(x)|FX(dx)

+

∫
|vk,n(x)− uk,n(x)|FX(dx)

+

∫
|uk,n(x)−mk,n(x)|FX(dx),(5.36)

We will now consider separately each of the integrals on the right hand side of (5.36).The
first integral is less than ε due to (5.32). For the second integral, if we let K ≤ ∞ be a uniform
upper bound for |rk|, it can be shown using Fubini’s theorem and shrinking cell condition
that

(5.37) lim
n→∞

sup

∫
|rk(x)− vk,n(x)|FX(dx) ≤ δ(4K + 1).

For the third integral we have∫
|vk,n(x)− uk,n(x)|FX(dx) =

∑
t∈T̃n

|
∫
t

mk(x)FX(dx)−
∫
t

rk(x)FX(dx)|

≤
∫
|mk(x)− rk(x)|FX(dx) < ε.(5.38)

Finally, it can be shown using Corollary 5.20 and conditions (a) and (b) that

(5.39) lim
n→∞

∫
|uk,n(x)−mk,n(x)|FX(dx) = 0.

Together, these bounds and (5.36) give us that

(5.40) lim
n→∞

sup

∫
|mk(x)−mk,n(x)|FX(dx) ≤ 2ε+ δ(4K + 1).

Since δ and ε can be arbitrarily close to 0, this proves the theorem.
�

If instead of considering partition and classification schemes in general, we insist that our
schemes be binary tree-structured, we can produce a similar result with conditions (a) and
(b) of Theorem 5.26 replaced by a single, simpler condition.
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Theorem 5.41. Suppose (X, Y ) is a random vector taking values in Rp×C and Ln is the set
of the first n outcomes of (X, Y ). Let Φ be a binary tree-structured partition and classification
scheme such that

(5.42) Φ(Ln) = (ψpl ◦ lim
i→∞

φ(i))(Ln)

where ψpl is the plurality rule and

(5.43) lim
i→∞

φ(i)(Ln) = T̃n

for some T̃n ∈ Tn where

(5.44) Tn = { lim
i→∞

φ(i)(ln) : P(Ln = ln) > 0}.

Also suppose that all the binary split functions in the question set associated with Φ are
hyperplane splits. If as n→∞, the shrinking cell condition of Theorem 5.26 is satisfied and
for every n and t ∈ T̃n, the induced subset (Ln)t has cardinality at least kn where

(5.45)
kn

log(n)
→∞,

then Φ is risk consistent.

Proof. Since condition (c) of Theorem 5.26 is assumed, it suffices to show that conditions (a)

and (b) are satisfied. Because |t| ≥ kn for all t ∈ T̃n we have

(5.46) |T̃n| ≤
n

kn

for every T̃n ∈ Tn, in which case

(5.47)
λ(Tn)

n
≤ 1

kn
.

And
1

kn
→ 0 as n → ∞, so condition (a) is satisfied. Now, notice that by (2.2) and (2.3),

every T̃n ∈ Tn can be constructed by splitting Rp using no more than |T̃n| hyperplanes. Also
notice that any hyperplane split of Rp can divide n points in Rp in at most np ways. In
conjunction with (5.46), this shows that ∆n(Tn) ≤ (nP )n/kn , which means

(5.48)
log(∆n(Tn))

n
≤ p log(n)

kn
.

The right hand side of (5.48) goes to 0 as n→∞ by assumption, so condition (b) of Theorem
5.26 is also satisfied. �
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