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Abstract. This paper will analyze an insurer’s susceptibility to losing all of

its capital given an incoming cashflow gained from premiums and an outgoing

cashflow caused by claims. First, we discuss the model and give a detailed
justification for the distributions of outgoing cashflows. Then, we solve the

the model to obtain a closed form solution for the probability of insolvency.
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1. Introduction

Ruin theory, a subset of actuarial science, is the study of an insurance company’s
vulnerability to losing all of its capital due to a large number of claims in a short
period of time, a particularly large set of claims, or, more likely, a combination of
the two. This topic is interesting not only in theory, but also in practice as it gives
insurers an idea of how to price their premiums in order to secure the company’s
survival. Ruin theory arose around 1900 through the Swedish actuary Filip Lund-
berg whose ideas were developed and spread by Harald Cramér. He introduced
the topic by assuming claims arrived according to a Poisson process and based his
model from there, which became known as the “classical risk model.” Since his in-
troduction, much work has been done to better model risk through complications of
the model such as including interest, operating costs, and generalizing Lundberg’s
assumptions. The biggest advancement to ruin theory after Lundberg and Cramér
was achieved by Powers in 1995 and Gerber and Shiu in 1998 who created the ex-
pected penalty discount function, which will not be discussed in this paper. Since
this advancement, numerous papers have been written generalizing and tweaking
the model with different assumptions.

This paper will use a very intuitive, basic model to explain an insurer’s total
capital, denoted M(t) at a given time t. We let the insurer’s initial capital, i.e. at
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t = 0, be denoted by u ≥ 0, we assume that premiums are recovered at a continuous,
constant rate c > 0, and we also assume that the insurer has lost money at time t
equal to the total amount claimed up until that time, denoted S(t). We can express
the insurer’s available capital at time t as his starting capital plus the money the
company has accumulated from premiums minus the total amount claimed:

(1.1) M(t) = u+ ct− S(t)

Furthermore, it is clear that S(t), the total amount claimed at time t, can be
written as the sum of Xi, i = 1, . . . , n, where each Xi is the size a particular
customer claims up until time t and N(t) is the number of customers making claims
by time t. Therefore

(1.2) M(t) = u+ ct−
N(t)∑
i=1

Xi

In this paper, we are interested in the chance M(t) < 0 for any t > 0, the event
in which the insurer has negative capital. In this case we say the insurer is “ruined”
even though he is not ruined in a practical sense of bankruptcy, but rather that the
insurer needs to have more money if he wishes to pay off the claims.

In Section 2, the details of the model are discussed. In particular, the assump-
tions are stated and then it is shown how the model follows from these assumptions.
In Section 3, it is shown why these assumptions are logical and their potential weak-
nesses. In Section 4, a general solution for the probability of ruin is derived. In
Section 5, a particular claim size distribution is assumed, and we use the derivation
of Section 4 to find a closed form expression of an insurance company’s probability
of ruin.

2. The Model

Let S(t) be the total amount claimed by time t, so that S(t) is dependent on
two random variables, the number of claims by time t, denoted N(t), and the claim
sizes, denoted X1, X2, .... As stated before,

S(t) =

N(t)∑
i=1

Xi

In this section we derive an appropriate distribution for N(t) and hypothesize
an approximate distribution for the Xis. We first make the following justifiable
assumptions about the claims.

(1) The Xis are independent.
(2) Each Xi occurs with some probability p with 0 < p < 1.

Condition (1) simply states that no client has an influence on a different client.
Condition (2) states that whether or not there is some claim amount by a given
client occurs with the same probability p for each client. These Xi will all take dif-
ferent values, but they are each independent and have the same chance of occurring.
The effect of changing assumption (2) will be considered later in the paper.

Given these assumptions, we can derive a distribution for N(t). Recall that
given n independently distributed events X1, X2, ..., Xn, each with probability p of
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happening, the number N < n of total occurrences has a binomial distribution.
This means that for all k such that 0 < k < n, P{N = k} =

(
n
k

)
(p)k(1 − p)n−k.

Insurance companies tend to have a large number of clients n, each with a small
probability p of making a claim. Unfortunately, the binomial theorem is difficult
to work with for large n and small p as one ends up with large factorials and very
small exponents. Therefore, we use the following proposition, frequently known as
the law of rare events.

Proposition 2.1. If the random variable X follows a binomial distribution with
parameter p = λ

n , where n is the number of trials of X, then as n tends to infinity,
X follows a Poisson distribution with mean λ.

Proof. We compute the following limit:

lim
n→∞

P{Xn = k} = lim
n→∞

n!

(n− k)!k!

(
λ

n

)k (
1− λ

n

)n−k
= lim
n→∞

n!

nk(n− k)!

λk

k!

(
1− λ

n

)n(
1− λ

n

)−k
= (1)

λk

k!
e−λ

=
λke−λ

k!
,

which is exactly the Poisson distribution. �

This proposition allows for the conclusion that the number of claims to occur in
each unit of time follows a Poisson process with parameter λ = np. By scaling, the
number of occurrences in any time interval of length t follows a Poisson distribution
with parameter λt. Another random variable of interest is the time between claims,
which leads to the following proposition.

Proposition 2.2. Suppose the number of events X to occur in any time interval
of length t follows a Poisson distribution with mean λt, and the number of events to
have occurred at time 0 is 0. Suppose further that each event occurs independently
of every other event. Then the times between claims are independent identically
distributed exponential random variables with parameter 1

λ .

Proof. First let’s show the distribution for the waiting time of the first arrival is
exponential and then conclude by showing the waiting time for each arrival follows
the same distribution. Let Tk denote the time until the kth arrival. For k = 1,

P{T1 ≤ t} = 1− P{T1 > t} = 1− P{N(t) = 0} = 1− (λt)0e−λt

0!
= 1− e−λt,
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which is exactly the cumulative distribution function for an exponential random
variable. In general,

P{Tk − Tk−1 ≤ t|Tk−1 = s} = 1− P{Tk − Tk−1 > t|Tk−1 = s}
= 1− P{Tk > t+ Tk−1|Tk−1 = s}
= 1− P{Tk > t+ s|Tk−1 = s}
= 1− P{no events in (s, s+ t)|Tk = s}
= 1− P{no events in (s, s+ t)}

= 1− (λt)0e−λt

0!
= 1− e−λt,

where the last line holds by the assumption that number of events X to occur in
any time interval of length t follows a Poisson distribution with mean λt. �

Definition 2.3. If the number of occurrences of a random variable X by time t
satisfy the assumptions of Proposition 2.2 then we say X follows a Poisson process.

Consider our assumptions, and write p for the probability of a claim happening
and n for the number of clients. Then the number of claims by time t follows a
Poisson distribution with parameter λt, where λ is approximated by np, and the
time between claims follows an exponential distribution with parameter 1

λ . The
distribution of claim sizes Xi comes next in the analysis. In order to assign a
logical distribution to the claim sizes, a few assumptions about the claim sizes are
necessary:

(1) Insuring a client is profitable for the insurer.
(2) The Xis are identically distributed.
(3) There exist constants C and α such that P{Xi > x} ≤ Ce−αx, i = 1, 2, . . .

This condition is called the “small claims condition.”

Assumption (1) is only used in deriving the density of the probability of ruin given
in Section 5 of the paper. Assumption (2) is analyzed in Section 3, and it is used
in both Section 4 and 5 to derive the probability of ruin. Assumption (3), the
“small claims condition,” simply says that claim sizes decrease to zero at least
exponentially fast. This implies that most claims are relatively small, and then
larger sized claims are exponentially unlikely. This condition is used in Section 4
to derive a general formula for the probability or ruin. Furthermore, this condition
motivates using P{Xi > x} = Ce−kx for the distribution of the claim sizes. In
fact, in Section 5 we take C = 1, implying each Xi is explained by the exponential
distribution, and then we solve for a closed form expression of ψ(u), the probability
of ruin starting with initial capital u.

3. Justifying the Assumptions of the Model

In order to conclude that the claim arrival followed a Poisson process, it was
necessary to assume the following

(1) Claim arrivals are independent.
(2) Each Xi occurs with some probability p with 0 < p < 1.

Furthermore, to proceed into sections (4) and (5) it is necessary to assume the
following about the claim sizes;

(1) Insuring a client is profitable for the insurer.



THE CLASSICAL RISK MODEL WITH EXPONENTIALLY DISTRIBUTED CLAIMS 5

(2) The Xis are identically distributed.
(3) There exist constants C and α such that P{Xi > x} ≤ Ce−αx, i = 1, 2, . . .

In this section we will analyze the effects of eliminating the assumption that each
Xi occurs with some probability p with 0 < p < 1, and the assumption that the
Xis are identically distributed. First, we proceed with the following lemma.

Lemma 3.1. Suppose S = X1 +X2 + . . .+XN , where X1, X2, . . . are independent
identically distributed random variables, N is a random variable taking positive
integer values, and N is independent of Xi for all i, then

(1) E[S] = E[N ]E[X1]
(2) var[S] = E[N ]var[X1]+var[N ]E2[X1]

Proof. To prove (1), we condition on the value of N

E[S] = E[

N∑
i=1

Xi] =

∞∑
i=1

E[

i∑
j=1

Xj ]P[N = i]

=

∞∑
i=1

i∑
j=1

E[Xj ]P[N = i] =

∞∑
i=1

i∑
j=1

E[X1]P[N = i]

=

∞∑
i=1

iE[X1]P[N = i] = E[X1]

∞∑
i=1

iP[N = i]

= E[X1]E[N ]

To prove (2), we again condition on the value of N

var[S] = var[

N∑
i=1

Xi]

= E[(

N∑
i=1

Xi)
2]− E2[

N∑
i=1

Xi]

=

∞∑
i=1

E[(

i∑
j=1

Xj)
2]P[N = i]− E2[X1]E2[N ]

=

∞∑
i=1

(

i∑
j=1

E[X2
j ]P[N = i] +

i∑
k 6=j

E[XjXk]P[N = i])− E2[X1]E2[N ]

=

∞∑
i=1

(iE[X2
1 ]P[N = i] + (i)(i− 1)E2(X1)P[N = i]− E2[X1]E2[N ]

= E[N ]E[X2
1 ] + E[N2]E2[X1]− E[N ]E2[X1]− E2[X1]E2[N ]

= E[N ](E[X2
1 ]− E2[X1]) + (E[N2]− E2[N ])E2[X]

= E[N ]var[X1] + var[N ]E2[X1] �

With this lemma in hand it is now possible to analyze the justifiability of assum-
ing all claims have the same probability of arriving in a given time interval and that
each claim has the same size distribution. Consider the following generalization of
the model, where each claim has a different chance of occurring or not occurring,
and each claim has a different distribution for its claim size.
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Proposition 3.2. Let n be the number of clients, Xi be independent random vari-
ables denoting the total amount claimed by the ith client, and S be the total amount
claimed in a year so that S =

∑n
i=1Xi. Suppose that

Xi =

{
0 : with probability 1− pi
Yi : with probability pi

where 0 < pi < 1 and Yi has distribution function fi, mean µi, and variance σ2
i .

Then the expected value and variance of S, is as follows

E[S] =

n∑
i=1

piµi

var[S] =

n∑
i=1

(
(σ2
i + µ2

i )pi − p2iµ2
i

)
Proof. To show that E[S] =

∑n
i=1 piµi simply note that

E[S] = E[

n∑
i=1

Si] =

n∑
i=1

E[Si] =

n∑
i=1

(piµi + (1− pi)0) =

n∑
i=1

piµi

To show that var(S) =
∑n
i=1

(
(σ2
i + µ2

i )pi − p2iµ2
i

)
write,

var[S] = var[X1 + . . .+Xn]

=

n∑
i=1

var[Xi] + 2

n∑
i<j

cov[Xi, Xj ]

=

n∑
i=1

var[Xi] + 0

=

n∑
i=1

(E[X2
i ]− E2[Xi])

To find E[X2
i ] define a new indicator random variable Zi as follows:

Zi =

{
0 : Xi 6= Yi
1 : Xi = Yi

We now have

E[X2
i ] = E[Z2

i Y
2
i ] = E[Z2

i ]E[Y 2
i ] = pi(var[Yi] + E2[Yi]) = (σ2

i + µ2
i )pi

Thus we have the following relationship as desired;

var[S] =

n∑
i=1

(E[X2
i ]− E2[Xi]) =

n∑
i=1

(
(σ2
i + µ2

i )pi − p2iµ2
i

)
�

Above is the case where our assumptions are generally discarded, the claims
have different size densities and different chances of occurring. Let’s consider how
this compares to the case where we derived a Poisson arrival time, based off the
assumption that all claims have the same chance of occurring. Also, we will consider
the effect of assuming all the claims have the same distribution.



THE CLASSICAL RISK MODEL WITH EXPONENTIALLY DISTRIBUTED CLAIMS 7

Proposition 3.3. Consider our model S =
∑N(t)
i=1 Xi, where N(t) follows the

Poisson distribution with mean λt = npt. Let f(x) be the density of each Xi, let
µ be the mean of the Xis, and let σ2 be the variance, then for a time span of one
year, i.e. t = 1, the mean and variance of S is as follows;

E[S] = npµ

var[S] = np(σ2 + µ2)

Proof. Apply lemma 3.1 to obtain the following:

E[S] = E[N ]E[X1] = npµ

var[S] = E[N ]var[X1] + var[N ]E2[X1]

= npσ2 + npµ2 = np(σ2 + µ2) �

Comparing Proposition 3.2 with Proposition 3.3, it is clear that not much has
changed. When finding the mean, the only difference is that in Proposition 3.2 we
add up each individual claim instead of multiplying by the number of claims as we
do in Proposition 3.3. When finding the variance, we have the same summation
versus multiplication difference as well as an additional p2iµ

2
i term in Proposition

3.2. Fortunately, by the small claims condition, each pi is very small for any µi big
enough to make a significant contribution to the model, which makes this additional
p2i term so small it is almost irrelevant to the calculation. Thus, by taking our value
of p and X in Proposition 3.3 to be the average of all the pis and Xis respectively in
Proposition 3.2, we would get a very similar result. This implies that it is possible
to pick a value for p and a distribution for X which would make our mean and
variances to Proposition 3.3 and Proposition 3.2 very similar, which demonstrates
that making these assumptions is something we can do without drastically changing
the result.

4. Probability of Ruin with Unknown Claim Distribution

Definition 4.1. The probability of ruin ψ(u) is given by

ψ(u) = P{M(t) < 0|M(0) = u}.

The survival probability φ(u) is given by

φ(u) = 1− ψ(u).

Given our assumptions about N(t) and the conclusion that N(t) followed a
Poisson distribution, it is possible to solve for φ(u). In order to find φ(u) one must
know that φ(∞) = 1, and thus arises the following lemma.

Lemma 4.2. We have

lim
u→∞

φ(u) = 1.

The proof of this lemma is outside the level of this paper; however, we give
some intuition for the lemma. First, consider the model as a random walk with
jump size equivilant to the claim size X and exponentially distributed waiting
times. Furthermore, the random walk has a linear drift c. By the law of iterated
logarithm, this random walk will only decrease in the limit at a rate of

√
t and

increase at a linear rate t. Therefore, as we take the random walk out to infinite
time, we never get back to zero. Although this lemma may appear confusing, it
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simply states that as one’s starting captial tends to infinity, the chance of survival
goes to one.

Remark 4.3. Clearly if

lim
u→∞

φ(u) = 1 then lim
u→∞

ψ(u) = 0.

This simply states that as one’s starting capital goes to infinity, the probability of
being ruined tends to zero.

The following lemma is included to smooth out the computation involved in the
proof of the theorem of this section.

Lemma 4.4. Given d
dxF (x) = f(x) then the following equality holds;∫ t

0

∫ u

0

φ(u− x)f(x) dx du =− φ(0)

∫ t

0

(1− F (u)) du+

∫ t

0

φ(u) du

−
∫ t

0

(1− F (x))(φ(t− x)− φ(0)) dx

Proof. Note that −d(1 − F (X)) = f(x)dx and integrate by parts to obtain the
following;∫ u

0

φ(u− x)f(x) dx = −
∫ u

0

φ(u− x)d(1− F (x))

= −φ(u− x)(1− F (x))|u0 −
∫ u

0

φ′(u− x)(1− F (x)) dx

= −φ(0)(1− F (u)) + φ(u)(1− F (0))

−
∫ u

0

φ′(u− x)(1− F (x)) dx

Now integrate with respect to u from 0 to t to obtain∫ t

0

∫ u

0

φ(u− x)f(x) dx du =

∫ t

0

[−φ(0)(1− F (u)) + φ(u)(1− F (0))

−
∫ u

0

φ′(u− x)(1− F (x)) dx] du

= −φ(0)

∫ t

0

(1− F (u)) du+

∫ t

0

φ(u)(1− F (0)) du

−
∫ t

0

∫ u

0

φ′(u− x)(1− F (x)) dx du

= −φ(0)

∫ t

0

(1− F (u)) du

−
∫ t

0

(1− F (x))(φ(t− x)− φ(0)) dx �

Theorem 4.5. Consider the model M(t) = u+ ct−
∑N(t)
i=1 Xi, where N(t) follows

the Poisson distribution. Let f(x) be the density of each Xi, let F(x) be the cumu-
lative distribution function, and let µ be the mean. Then the probability of survival
φ(u) is given by the following equation;

(4.6) φ(u) = 1− λµ

c
+
λ

c

∫ t

0

φ(t− x)(1− F (x)) dx
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Proof. We use the independence of events Xi from each other and from N(t) along
with Proposition 2.2 to compute as follows:

φ(u) =

∫ ∞
s=0

∫ ∞
x=0

P[M(t) ≥ 0|X1 = x, T1 = s]P[X1 = x]P[T1 = s] dx ds

=

∫ ∞
s=0

∫ u+cs

x=0

φ(u+ cs− x)f(x)λe−λs dx ds

let z = u+ cs

=

∫ ∞
z=u

∫ z

x=0

λ

c
e
z−u
c φ(z − x)f(x) dx dz.

Take the derivative with respect to u,

(4.7) φ′(u) =
λ

c
φ(u)− λ

c

∫ u

0

φ(u− x)f(x) dx.

Integrate (4.7) from 0 to t and apply Lemma 4.2 to obtain

φ(t) = φ(0) +
λ

c

∫ t

0

φ(u) du− λ

c

∫ t

0

∫ u

0

φ(u− x)f(x) dx du

= φ(0) +
λ

c

∫ t

0

φ(u) du+
λ

c
φ(0)

∫ t

0

(1− F (u)) du− λ

c

∫ t

0

φ(u) du

+
λ

c

∫ t

0

φ(t− x)(1− F (x)) dx− λ

c
φ(0)

∫ t

0

(1− F (x)) dx

= φ(0) +
λ

c

∫ t

0

φ(t− x)(1− F (x)) dx.

To find φ(0), let t tend to infinity, giving

φ(∞) = φ(0) +
λ

c
φ(∞)

∫ ∞
0

(1− F (x)) dx

= φ(0) +
λµ

c
φ(∞).

We are able to take the limit as t goes to infinity in this manner because our function
is bounded, demonstrated below:∫ t

0

φ(t− x)(1− F (x)) dx =

∫ t

0

φ(t− x)(1− F (x))I[0,1] dx

≤
∫ t

0

(1− F (x)) dx

≤
∫ t

0

Ce−αx dx ≤ ∞

where the last line holds by the small claims condition. So 1 = φ(0) + λµ
c which

implies φ(0) = 1− λµ
c . Thus, the desired conclusion follows

φ(u) = 1− λµ

c
+
λ

c

∫ t

0

φ(t− x)(1− F (x)) dx. �

Corollary 4.8. We have

(4.9)
c

λ
ψ′(u) = ψ(u)−

∫ u

0

f(u− x)ψ(x) dx−
∫ ∞
u

f(x) dx
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Proof. We know ψ(u) = 1 − φ(u) which implies ψ′(u) = −φ′(u). Therefore, by
plugging −ψ′(u) into (4.7) and multiplying through by − c

λ :

c

λ
ψ′(u) = −φ(u) +

∫ u

0

φ(u− x)f(x) dx

= ψ(u)− 1 +

∫ u

0

(1− ψ(u− x))f(x) dx

= ψ(u)−
∫ u

0

ψ(u− x)f(x) dx+

∫ u

0

f(x) dx− 1

= ψ(u)−
∫ u

0

ψ(x)f(u− x) dx−
∫ ∞
u

f(x) dx.

In the last step, we use the fact that
∫ u
0
f(x) dx +

∫∞
u
f(x) dx = 1 since f(x) is a

probability distribution. This implies that
∫ u
0
f(x) dx − 1 = −

∫∞
u
f(x) dx as used

in the proof. �

Definition 4.10. The conditions and assumptions in Theorem 4.5 form what is
known as the classical risk model.

5. Probability of Ruin with Exponential Claims

From the assumption that insuring a client is profitable for the insurer, we get

0 < E[u+ ct−
N(t)∑
i=1

Xi] = E[u] + E[ct]− E[

N(t)∑
i=1

Xi] = u+ ct− λtµ.

This equation implies c > λµ − u
t , but since this holds for all t, we obtain c > λµ

so there exists a positive ρ such that c(1 + ρ) = λµ. In this case, the value of ρ
is known as the premium loading factor. Ideally the insurance company wishes to
maximize ρ, but obviously competition gets in the way.

In the following theorem we use the exponential distribution to explain the claim
sizes, motivated by the small claims condition.

Theorem 5.1. Assuming the classical risk model with claim size density f(x) =
αe−αx for x > 0, ρ the premium loading factor, and µ the mean of f(x), then

(5.2) ψ(u) =
1

1 + ρ
e−

ρ
(1+ρ)µ

u

Proof. First, (4.9) is used to show that

(5.3) ψ′′(u) +

(
α− λ

c

)
ψ′(u) = 0

and then (5.3) will be solved to find ψ(u). In order to show (5.3), note that by
taking the derivative with respect to u of ψ′(u)

ψ′′(u) =
λ

c
ψ′(u)−

(
λ

c

∫ u

0

ψ(x)f(u− x) dx−
∫ ∞
u

f(x) dx

)′
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which implies that (5.3) holds if and only if

cα

λ
ψ′(u) =

(∫ u

0

ψ(x)f(u− x) dx−
∫ ∞
u

f(x) dx

)′
=

(∫ u

0

αe−α(u−x)ψ(x) dx−
∫ ∞
u

αe−αx dx

)′
=

(
αe−αu

∫ u

0

eαxψ(x)dx

)′
− αe−αu

= −α2e−αu
∫ u

0

eαxψ(x)dx+ αe−αu
(∫ u

0

eαxψ(x)dx

)′
− αe−αu

= −α2e−αu
∫ u

0

eαxψ(x)dx+ αe−αu
(∫ u

0

0 dx+ eαuψ(u)

)
− αe−αu

= −α2e−αu
∫ u

0

eαxψ(x)dx+ αψ(u)− αe−αu

= α

(
ψ(u)−

∫ u

0

αe−α(u−x)ψ(x) dx−
∫ ∞
u

αe−αu
)

= α

(
ψ(u)−

∫ u

0

f(u− x)ψ(x) dx−
∫ ∞
u

f(x) dx

)
=
cα

λ
ψ′(u)

where the last two steps come from (4.9). To find ψ(u), we are only left to solve
(5.3). The solution will be in the form

ψ(u) = k1e
γ1u + k2e

γ2u

where γ1 and γ2 solve for r

(5.4) r2 +

(
α− λ

c

)
r = 0

which implies γ1 = 0 and γ2 = −α+ λ
c . So

(5.5) ψ(u) = k1 + k2e
(−α+λ

c )u

Letting u tend to infinity we get ψ(∞) = k1 + k2e
(−α+λ

c )∞. By the profitability
assumption we know c > λµ which is equivalent to saying −α+ λ

c < 0. This implies

0 = ψ(∞) = k1+0 which implies k1 = 0. To solve for k2 use the fact that ψ(0) = λ
αc

which implies that k2 = λ
αc . So our solution for ψ(u) is as follows

(5.6) ψ(u) =
λ

αc
e(−α+

λ
c )u

Now use the fact that α = 1
µ and that c = (1 + ρ)λµ and substitute into (5.6) to

achieve

(5.7) ψ(u) =
1

1 + ρ
e−

ρ
(1+ρ)µ

u

�
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