
MARCINKIEWICZ INTERPOLATION

GUO CHEN

Abstract. In this paper I present some interpolation theorems used in real
analysis. Such results allow one to bound the norms of linear or non-linear

operators acting on Lp spaces. One such estimate, the Marcinkiewicz inter-

polation theorem, is effective in establishing bounds for non-linear operators
such as the important Hardy-Littlewood maximal operator. Marcinkiewicz’s

theorem can also be applied to the Hilbert transform, a widely used linear
operator in Fourier analysis. Such operators are important, for instance, in

proving Carleson’s theorem on the almost everywhere convergence of Fourier

series of Lp functions.
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1. Introduction

The use of interpolation theorems is the first step in proving Carleson’s theorem.
Carleson’s theorem states that if f is an Lp periodic function for some p ∈ (1,∞)
with Fourier coefficients f̂(n), then

lim
N→∞

∑
|n|≤N

f̂(n)einx = f(x)

for almost every x. Understanding the estimates involved in various interpolation
theorems is crucial in establishing the properties of several important operators
used in the proof the Carleson’s theorem.

2. Basic Setting

We take f to be a real-valued function defined on the closed interval [−A,A] and
suppose that f ∈ L1([−A,A]). The Lebesgue measure on R is denoted by m.
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Definition 2.1. Suppose y ∈ R+. The function λf : R+ → [0, 2A] defined by

λf (y) = m({x ∈ [−A,A] | |f(x)| > y})
is called the distribution function of f .

It is immediate that 0 ≤ λf (y) ≤ 2A for any y ∈ R+ and λf (y) → 0 as y → 0.
Since {x ∈ [−A,A] | |f(x)| > a} ⊂ {x ∈ [−A,A] | |f(x)| > b} if a > b > 0, λf is a
decreasing function. Moreover λf is continuous from the right because

∪∞n=1{x ∈ [−A,A] | |f(x)| > y +
1
n
} = {x ∈ [−A,A] | |f(x)| > y}

for y ∈ R+. Therefore λf is a measurable function.

We consider an operator T from L1([−A,A]) into the set of all measurable functions
on [−A,A]. The operator T will not necessarily be defined on all of L1([−A,A]). At
the very least, we assume that T is defined on all simple functions and all continuous
functions. This ensures that the domain of T is dense in L1([−A,A]).

In the following, T will either be a linear operator or a sublinear operator.

Definition 2.2. An operator T is sublinear if it satisfies

|T (αf)| = |α||Tf | for anyα ∈ R
|T (f + g)| ≤ |Tf |+ |Tg|.

Here f and g are any functions in the domain of T .

We now classify operators by the type of bounds they satisfy.

Definition 2.3. The operator T is of (strong) type p, where p ∈ [1,∞] if there
exists a constant Ap ∈ R+ such that

||Tf ||p ≤ Ap||f ||p
for all f in the domain of T .

Note that if the operator T is of type p with p ∈ [1,∞], then T can be extended to
all of Lp([−A,A]) by continuity because the domain of T is dense in Lp([−A,A]).
Thus T is a bounded operator defined on all of Lp([−A,A]).

Definition 2.4. The operator T is of weak type p , where p ∈ [1,∞) if there exists
a constant Ap ∈ R+ such that

λTf (y) ≤
(
Ap
y

)p
||f ||pp

for all f in the domain of T and y ∈ R+.

If the operator T is of type p then T is of weak type p. To see this, suppose T is of
type p for p ∈ [1,∞), and note that for y ∈ R+ we have

||Tf ||pp =
∫ ∞
−∞
|Tf(x)|pdx ≥ ypλTf (y)

by the definition of the distribution function of Tf. Upon rearranging the last
inequality and using the type p bound, we have

λTf (y) ≤ 1
yp
||Tf ||pp ≤

(
Ap
y

)p
||f ||pp

so T is of weak type p, as required. We also introduce the following related concepts:
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Definition 2.5. The operator T is of restricted type p , where p ∈ [1,∞), if there
exists a constant Ap ∈ R+ such that

||TχE ||p ≤ Ap||χE ||p = Ap[m(E)]
1
p

for all measurable sets E ⊂ [−A,A].

Definition 2.6. The operator T is of restricted weak type p , where p ∈ [1,∞), if
there exists a constant Ap ∈ R+ such that

λTχE
(y) ≤ Ap

y

p

||χE ||pp =
(
Ap
y

)p
m(E)

for all measurable sets E ⊂ [−A,A].

Of course an operator of type p is also of restricted type p, and the same is true
for an operator of weak type p. In the same way that we showed why an operator
being of weak type p is weaker than an operator being of strong type p, we can
show that an operator of restricted type p is also of restricted weak type p.

3. Marcinkiewicz Interpolation

Our aim is to prove a result, the Marcinkiewicz Interpolation Theorem, that allows
one to bound the norms of operators acting on Lp spaces. We first need to relate
the distrbution function λf to the p-norm ||f ||p of f via the following lemma.

Lemma 3.1. If f ∈ L1([−A,A]) then for p ∈ [1,∞)

||f ||pp =
∫ ∞
−∞
|f(x)|p dx =

∫ ∞
0

pyp−1λf (y) dy,

and in particular

||f ||1 =
∫ ∞

0

λf (y) dy

Proof. We may rewrite ||f ||pp as∫ ∞
−∞
|f(x)|p dx =

∫ ∞
−∞

(∫ |f(x)|

0

pyp−1 dy

)
dx.

Applying Fubini’s theorem to the expression on the right, we obtain∫ ∞
−∞

(∫ |f(x)|

0

pyp−1 dy

)
dx =

∫ ∞
0

pyp−1λf (y) dy,

as required. �

We now prove the first interpolation result.

Theorem 3.2. Suppose that T is of restricted weak type p and q, where 1 ≤ p ≤
q <∞. Then T is of restricted type r for all r ∈ (p, q).

Proof. Fix a measurable E ⊂ [−A,A]; let λ(y) denote the distribution function of
TχE . By hypothesis there exist constants Cp and Cq such that

λ(y) ≤
(
Cp
y

)p
m(E) and λ(y) ≤

(
Cq
y

)q
m(E)
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for all measurable sets E and all y ∈ R+. By the previous lemma, we have

||TχE ||rr = r

∫ ∞
0

yr−1λ(y) dy = r

∫ 1

0

yr−1λ(y) dy + r

∫ ∞
1

yr−1λ(y) dy

≤ r ·m(E)
{∫ 1

0

yr−p−1Cpp dy +
∫ ∞

1

yr−q−1Cqq dy

}
= r ·m(E)

{
Cpp ·

1
r − p

+ Cqq ·
1

q − r

}
,

where the inequality follows from the hypotheses and the last line follows by eval-
uating the integrals in the second line (note that r − q − 1 < −1). Put

Cr = r
1
r ·
{
Cpp ·

1
r − p

+ Cqq ·
1

q − r

}
for r ∈ (p, q). Then

||TχE ||r ≤ Cr[m(E)]
1
r ,

so T is of restricted type r, as desired. �

Note that Cr is bounded as long as r ∈ (p, q). Informally, this result tells us that
having weak boundedness at the extremes p and q is enough to obtain strong
boundedness inside the interval. The Marcinkiewicz result, which we prove now, is
of similar flavor. Note that Theorem 2.2 is not a consequence of Marcinkiewicz’s
theorem. An operator being of restricted weak type p and q does not imply it is of
weak type p and q, so if an operator T is of restricted weak type p and q but not
of weak type p and q, Theorem 2.2 applies but Marcinkiewicz does not.

Theorem 3.3. (Marcinkiewicz) Suppose that T is a sublinear operator of weak type
p and q, where 1 ≤ p ≤ q <∞. Then T is of type r for all r ∈ (p, q).

Proof. By hypothesis there exist constants Cp and Cq such that

λTf (y) ≤
(
Cp
y

)p
||f ||pp and λTf (y) ≤

(
Cq
y

)q
||p||qq.

Put C = C
p

q−p
p C

−q
q−p
q . We introduce the functions fy and fy for a fixed y ∈ R+ by

fy(x) =

{
f(x) if |f(x)| ≤ Cy
0 if |f(x)| > Cy

, fy(x) =

{
0 if |f(x)| ≤ Cy
f(x) if |f(x)| > Cy

Clearly f(x) = fy(x) + fy(x) and the sublinearity of T gives

λTf (2y) ≤ λTfy (y) + λTfy (y).

The right-hand side of the above is, by assumption, smaller than

Cppy
−p
∫ ∞
−∞
|fy(x)|pdx+ Cqqy

−q
∫ ∞
−∞
|fy(x)|qdx.

Then by Lemma 2.1,

||Tf ||pp =
∫ ∞

0

p(2y)p−1λTf (2y) d(2y) = p · 2p
∫ ∞

0

yp−1λTf (2y) dy.



MARCINKIEWICZ INTERPOLATION 5

By the inequality just established, the last quantity is smaller than

p·2p
{∫ ∞

0

Cppy
−pyp−1

(∫
|f(x)|>Cy

|f(x)|p dx

)
dy +

∫ ∞
0

Cqqy
−qyp−1

(∫
|f(x)|≤Cy

|f(x)|q dx

)
dy

}
Using Fubini’s theorem to interchange the order of integration, this expression is
equal to

p·2p
{
Cpp

∫ ∞
−∞
|f(x)|p

(∫ |f(x)|
C

y=0

yr−p−1 dy

)
dx+ Cqq

∫ ∞
−∞
|f(x)|q

(∫ ∞
|f(x)|

C

yr−q−1 dy

)
dx

}

= p · 2p
{
CppC

r−p · 1
r − p

∫ ∞
−∞
|f(x)|r dx+ CqqC

q−r · 1
q − r

∫ ∞
−∞
|f(x)|r dx

}
.

Since CppC
p−r = CqqC

q−r = C
p q−r

q−p
p · Cq

r−p
q−p

q , the above expression is equal to

p · 2p · Cp
q−r
q−p

p · Cq
r−p
q−p

q ·
{

1
r − p

+
1

q − r

}
||f ||rr.

Thus we have shown ||Tf ||rr ≤ Kr||f ||rr, where

Kr = p · 2p · Cp
q−r
q−p

p · Cq
r−p
q−p

q ·
{

1
r − p

+
1

q − r

}
,

so T is of strong type r for all r ∈ (p, q), as desired. �

In a similar way we obtain a result that will be useful in further applications.

Theorem 3.4. Suppose that T is a sublinear operator of weak type p and of strong
type ∞, where p ∈ [1,∞] Then T is of type r for all r ∈ (p,∞).

Proof. We use the same notation as in the proof of the last theorem. By hypothesis
we have

λTf (y) ≤
(
Cp
y

)p
||f ||pp

and ||Tf ||∞ ≤ C∞||f ||∞. Choose the constant C = 1
C∞

. Then ||fy||∞ ≤ 1
C∞

y and
||Tfy||∞ ≤ y, and consequently λTfy (y) = 0. Then

λTf (2y) ≤ λTfy
(y) ≤ Cppy−p

∫ ∞
−∞
|fy(x)|p dx,

and exactly as in the proof of the last theorem,

||Tf ||rr ≤ p · 2p · Cpp ·
(

1
C∞

)p−r
· 1
r − p

||f ||rr.

Thus T is of type r for all r ∈ (p,∞), as desired. �

4. Hardy-Littlewood maximal function

We now consider the Hardy-Littlewood maximal function and derive estimates for
this function via Theorem 2.4.

Let f ∈ L1(R). We define the maximal function θ by

θf(x) = sup
t∈R+

1
2t

∫ x+t

x−t
|f(y)| dy, x ∈ R.
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The function θf is measurable for each f ∈ L1(R). To see this, first note that θf is
lower semicontinuous because it is the supremum of continuous functions. Moreover
the operator θ is a sublinear operator defined on L1(R).

Theorem 4.1. The operator θ is of type ∞ and of weak type 1.

Proof. It is clear that θ is of type ∞ since the average of a function is no larger
than its essential supremum. For the weak type 1 bound, we may assume that f
is of compact support. We can do this because functions of compact support are
dense in Lp and so we may approximate any function in the domain of T with a
function of compact support. We may also assume f is nonnegative. Let y ∈ R+.
Take x ∈ {t | θf(t) > y}. By the definition of the least upper bound, there exists
r ∈ R+ such that

1
2r

∫ x+r

x−r
|f(t)| dt > y.

Thus to each x ∈ {t | θf(t) > y} we can find an interval Ix centered at x such that∫
Ix

f(t) dt > y ·m(Ix).

As f has compact support, the set {θf > y} is bounded, and we may suppose that
all the intervals Ix are contained in the interval [−B,B]. By the Vitali covering
lemma, there exists a sequence {In} of pairwise disjoint intervals such that

m (∪∞n=1In) ≥ 1
4
m (∪xIx)

Then

λθf (y) ≤ m({x | θf(x) > y}) ≤ m (∪xIx) ≤ 4m (∪∞n=1In) ≤ 4
∞∑
n=1

m(In)

≤ 4
y

∞∑
n=1

∫
In

f(y) dy =
4
y

∫
∪nIn

f(y) dy ≤ 4
y
||f ||1,

so f is of weak type 1. �

Note that θ is not of type 1. If we let f(x) = χ(0,1)(x), then θ is not even integrable.
Thus an operator of weak type p is not necessarily of type p as well.

Corollary 4.2. The operator θ is of type p for all p ∈ (1,∞).

Proof. Since θ is of type ∞ and of weak type 1, a direct application of Theorem
2.4 gives the desired result. �

5. Conclusion

As demonstrated by the application in the previous section, Marcinkiewicz’s the-
orem allows one to derive rather strong estimates from a basic hypothesis. Often
times it takes some work to establish the basic hypothesis, but once this is done,
Marcinkiewicz is used to reveal an entire range of estimates for the operator under
consideration. The advantage of using Marcinkiewicz is that it can be applied to
non-linear operators such as the maximal operator in the previous section as well
as linear operators. Consequently, Marcinkiewicz’s theorem can tell us something
about any of the important operators used throughout Fourier analyis. This makes
it an invaluable tool.
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