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Abstract
This paper gives a definition of the determinant and lists many of its well-known properties.

Volumes of parallelepipeds are introduced, and are shown to be related to the determinant by
a simple formula. The reader is assumed to have knowledge of Gaussian elimination and the
Gram-Schmidt orthogonalization process.

Determinant Preliminaries

We will define determinants inductively using “minors.” Given an n × n matrix A, the (r, s)
minor is the determinant of the submatrix Ars of A obtained by crossing out row r and column
s of A. The determinant of an n× n matrix A, written det(A), or sometimes as |A|, is defined
to be the number

n∑
r=1

(−1)r+1ar1Mr1

where Mk1 is the (k, 1) minor of A. This expression is commonly referred to as “expansion along
the first column.” Of course, for this definition to make sense, we need to give the base case:

det
((

a b
c d

))
= ad− bc.

We now go over some easy properties of the determinant function.

Theorem 1. If Ã is obtained from A by interchanging two rows, then det(A) = −det(Ã).

Proof. If we show the result for any two adjacent rows, the general result follows, since the
swapping of any two rows may be written as the composition of an odd number of adjacent row
swaps. We proceed by induction. For the 2× 2 base case, let

A =
(

a11 a12

a21 a22

)
Recall that det(A) = a11a22 − a12a21. Hence, interchanging two rows gives

Ã =
(

a21 a22

a11 a12

)
So det(Ã) = a21a12 − a22a11 = −(a11a22 − a12a21) = −det(A).

For the inductive step, suppose the statement is true for any (n− 1)× (n− 1) matrix. Let A be
any n× n matrix, and let Ã be obtained from A by exchanging rows r and r + 1. We have, by
the definition of the determinant:

det(A) =
n∑

i=1

(−1)i+1ai1Mi1
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From the inductive hypothesis, Mk1 = −Nk1, where Nk1 is the (k, 1) minor of Ã and k 6=
r, r + 1. Therefore, setting Ã = {a′ij},

det Ã =
n∑

i=1

(−1)na′i1Ni1

= −
r−1∑
i=1

(−1)i+1ai1Mi1 + (−1)r+1a′r1M(r+1)1 + (−1)r+2a′(r+1)1Mr1 −
n∑

i=s+1

(−1)i+1ai1Mi1

= −
r−1∑
i=1

(−1)i+1ai1Mi1 − (−1)r+1ar1Mr1 − (−1)r+2a(r+1)1M(r+1)1 −
n∑

i=s+1

(−1)i+1ai1Mi1

= −detA,

as desired.

To set up the next theorem, we first define what it means for the determinant function to
be “multi-linear”. The determinant function is multi-linear if the following two properties hold.
First, for any scalar value q and any row s of an n× n matrix A,

det



a11 . . . a1n

...
qas1 . . . qasn

...
an1 . . . ann

 = q det



a11 . . . a1n

...
as1 . . . asn

...
an1 . . . ann


Second, given two n× n matrices A and B of the form

A =

a11 . . . a1n

...
...

an1 . . . ann

 and B =



a11 . . . a1n

...
...

bs1 . . . bsn

...
...

an1 . . . ann


where all corresponding rows between A and B are equal except for a row s, the sum detA+detB
is equal to the determinant of C, where

C =



a11 . . . a1n

...
as1 + bs1 . . . asn + bsn

...
an1 . . . ann

 .

Theorem 2. The determinant function is multi-linear.

Proof. Given an n× n matrix A, we prove the first condition of multi-linearity by induction on
n. First, for the 2× 2 case,

q det
((

a b
c d

))
= q(ad− bc) = (qa)d− (qb)c = det

(
qa qb
c d

)
= a(qd)− b(qc) = det

(
a b
qc qd

)
.

Now it remains to show that the statement is true for the n×n case, given the (n− 1)× (n− 1)
case. Given an n × n matrix A let Ã = {a′ij} be obtained by multiplying each entry of an
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arbitrary row of A, say row s, by a scalar q. Expand det Ã along the first column as per the
definition:

det(Ã) =
n∑

r=1

(−1)r+1a′r1Nr1,

where Nr1 is the (r, 1) minor of Ã. Let Mr1 be the (r, 1) minor of A. When r 6= s, the
determinant Nr1 will also have a row where each term is multiplied by a scalar q. Hence, by
inductive hypothesis, Nr1 = qMr1. When r = s, the (r, 1) minor Nr1 is not multiplied by q;
hence the (n− 1)× (n− 1) determinant Nr1 is equal to the determinant Mr1. Instead, the (r, 1)
entry of A is multiplied by q. Thus,

det Ã =
n∑

i=1

(−1)r+1qar1Mr1 = q
n∑

i=1

(−1)r+1ar1Mr1 = q detA.

The second condition of multi-linearity follows from a very similar inductive argument, so we
leave it out.

Theorem 3. The determinant of an upper triangular matrix is the product of the diagonal
entries.

Proof. By induction. The base case follows from an easy calculation. Now suppose the result
is true for any (n− 1)× (n− 1) matrix.

Given the n× n upper triangular matrix:

A =


a11 a21 a13 . . . a1n

0 a22 a22 . . . a2n

0 0 a33 . . . a3n

...
0 . . . 0 0 ann


Simply expand along the first column, as per our definition of the determinant. Then we

obtain:

det(A) =
n∑

i=1

ai1Mi1 = a11M11 + a21M21 + . . . + an1Mn1.

Since ai1 = 0 for all i = 2, 3, . . . , n, all that remains is the term a11M11. But M11 is an
(n − 1) × (n − 1) upper triangular matrix comprising the entries in the lower right of the
matrix A. By the inductive hypothesis, this (1,1) minor is the product of its diagonal entries:
M11 = a22 . . . ann Thus, det(A) = a11M11 = a11a22 . . . ann which is the product of the diagonal
entries of A.

The next two theorems will be important in the proof relating volumes and determinants.

Theorem 4. For any matrix A, we have det(A) = det(AT ).

Proof. In order to prove this, we will need a closed form equation for the determinant of a
matrix in terms of its entries that follows easily from observation: Let A = {ai}n

i=1, then

detA =
∑

σ

sgn(σ)aσ1aσ2 · · · aσn ,

where the sum is taken over all possible permutations σ of (1, . . . , n). The sign of the permutation
sgn(σ) is +1 if σ is an even permutation and −1 otherwise. It is obvious from this formula that
detA = det AT , as needed.
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Theorem 4 gives us quite a bit. All the theorems having to do with columns are now true for
rows as well. Further, in the definition of the determinant, we now see how we can “expand”
along other rows or columns and still get the same answer up to a minus sign.

Recall that an elementary matrix is one that adds a multiple of one row to another. Fur-
ther, Gaussian elimination without pivoting is the procedure used to find elementary matrices
E1, . . . , En such that E1 · · ·EnA is an upper-triangular matrix. We will simply refer to this as
Gaussian elimination.

Theorem 5. Let E be an elementary n × n matrix and A an arbitrary n × n matrix. Then
det(A) = det(EA) = det(AE).

Proof. Multiplication by an elementary matrix adds one row to another. We will use Theorem
2. Suppose Ã is obtained from A by adding row i to row j. Let B be the matrix obtained
from A by replacing row i with the elements in row j. By Theorem 1, det(B) = −det(B), so
det(B) = 0. Thus, by multi-linearity of the determinant, det(A) = det(Ã) + det(B) = det(Ã).

Multiplying A on the right by an elementary matrix operates on A by adding a multiple of a
one column to another. Taking transposes and using Theorem 4 finishes the proof: det(AE) =
det((AE)T ) = det(ET AT ) = det(AT ) = det(A).

Theorem 6. For any n× n matrices A and B, we have det(A) det(B) = det(AB).

Proof. If A and B are upper triangular matrices, Theorem 3 gives that det(A) det(B) =
det(AB). We will use this to prove the general case.

By Gaussian elimination we may write A = E1 · · ·EnU and B = LF1 · · ·Fn where Ei and
FT

i are elementary matrices and U and V are upper triangular matrices. Then by successively
applying Theorem 5, det(A) = det(U) and det(B) = det(V ), and so det(AB) = det(UV ) =
det(U) det(V ) = det(A) det(B), as needed.

Remark: Any elementary matrix E has det(E) = 1. Indeed, det(EA) = det(A) = det(E) det(A).

Volumes of Parallelepipeds

We will define the n-dimensional parallelepiped P in vector space Rn, from which we take
any vectors x1, . . . , xk. Take the span of these vectors with the coefficients ti, as follows: Let
P = {t1x1 + · · · + tkxk|0 ≤ ti ≤ 1, i = 1, ..., k}. Then P is a k-dimensional parallelepiped in
vector space Rn, where the vectors x1, ..., xk are edges of P . In order to define volume, we need
the following

Lemma 1. For any vectors v, w1, . . . , wm in Rk, we may find vectors B and C so that v = B+C,
where B is perpendicular to all wi, i = 1, . . . ,m and C is in the span of wi, i = 1, . . . ,m.

Proof. Apply the Gram-Schmidt process to w1, . . . , wm to retrieve vectors a1, . . . , am′ that are
orthonormal and span the same space as wi, i = 1, . . . ,m. Let B = v−

∑m′

i=1 v ·aiai. Then B is
perpendicular to all the ai and hence to the wi, and similarly v−B is in the span of the wi.

We can now define the volume of P by induction on k. The volume is the product of a certain
“base” and “altitude” of P . The base of P is the area of the (k− 1)-dimensional parallelepiped
with edges x2, ..., xk. The Lemma gives x1 = B + C so that B is orthogonal to all of the xi,
i ≥ 2 and C is in the span of the xi, i ≥ 2. The altitude is the length of B. Notice that we
have made specific choices for the base and height of a given parallelepiped that depend on the
ordering of the vertices. As intuition suggests, this ordering does not matter, and we will see
this as a result of the following theorem that relates volume to the determinant function.
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Theorem 7. Given an m-dimensional parallelepiped P in n-dimensional space, the square of
the volume of P is the determinant of the matrix obtained from multiplying A by its transpose
AT , where

A =


α1

α2

...
αm


and the rows of A are the edges of P . More precisely,

vol(P )2 = det(AAT ).

Proof. First note that A may be a rectangular matrix (nowhere is it specified that m must equal
n). Since we may only take determinants of square matrices, we need to make sure that AAT

is a square matrix. Indeed, as P is an m-dimensional parallelepiped in n-dimensional space, A
is an m× n matrix, and hence, AT is an n×m matrix so (AAT ) is an m×m square matrix.

We will prove the theorem by induction on m. The base case m = 1 has AAT equal to the
square of the length of the vector A, and hence is trivially vol(P )2.

Suppose, for the inductive step, that det(DDT ) = vol(P )2 for any (m − 1) × n matrix D.
For the m× n case, let

A =


α1

α2

...
αm

 .

By Lemma 1, we may write α1 = B+C such that B is orthogonal to all of the vectors α2, . . . , αm

and C is in the span of α2, . . . , αm.
Let

Ã =


B
α2

...
αm


As C is in the span of α2, . . . , αm and α1 = B + C we see that there exist elementary matrices
Ei, i = 1, . . . ,m− 1 so that A = E1 · · ·Em−1Ã. Thus, by the product formula,

det(AT A) = det(E1 · · ·Em−1ÃÃT ET
m−1 · · ·ET

1 )

= det(ÃÃT ).

To use the inductive hypothesis, let D =
(
αT

2 · · · αT
m

)T
, the matrix obtained by removing

the first row from A. By the definition of matrix multiplication,

ÃÃT =
(

B
D

) (
BT DT

)
=

(
BBT BDT

DBT DDT

)
Since B is orthogonal to the rows of D, we have BDT and DBT are both filled by zeros.
Hence expanding along the first row of ÃÃT gives det(ÃÃT ) = BBT det(DDT ). By inductive
hypothesis, det(DDT ) is the square of the volume of the base of P . And by choice of B, BBT

is the square of the length of the altitude of P . Hence det(ÃÃT ) = (vol(P ))2, as desired.
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Remarks. It is not necessarily true that vol(P )2 = det(AT A) if A is not square. In fact, in the
case when A is not square, one of det(AT A) and det(AAT ) is always zero! Furthermore, since
vol2(P ) ≥ 0, Theorem 7 shows that the determinant of any matrix multiplied by its transpose
is nonnegative. Lastly, as swapping rows only changes the sign of the determinant, we see that
in the definition of the volume of a parallelepiped, a different choice of base would result in the
same value for volume.

Corollary 1. Given an m-dimensional parallelepiped P in m-dimensional space, we have vol(P ) =
|det(A)|.

Proof. If A is a square matrix, applying the product formula gives det(AAT ) = det(A)2.

As an application of this relation between volume and the determinant we have the following:

Corollary 2. Let T be a triangle with vertices (x1, y1), (x1, y2) and (x3, y3). Then

Area(T ) =
1
2

∣∣∣∣∣∣det

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
Proof. Subtracting the last row from each of the others gives

det

x1 y1 1
x2 y2 1
x3 y3 1

 = det

x1 − x3 y1 − x3 0
x2 − x3 y2 − x3 0

x3 y3 1


Now expanding the determinant along the last row gives

det

x1 − x3 y1 − x3 0
x2 − x3 y2 − x3 0

x3 y3 1

 = det
(

x1 − x3 y1 − x3

x2 − x3 y2 − x3

)
= det

(
x1 y1

x2 y2

)
.

The absolute value of this last quantity is, by Corollary 1, exactly 2×Area(T ).
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