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ABSTRACT

We examine some results on coloring the unit distance graph
in the plane. In particular, we examine Coulson’s proof that it
cannot be 5-colored by polygons, and Woodall’s result that Q[i] is
2-colorable.

The unit distance graph in the plane is the graph whose vertices are the
points of C, with edges connecting any two points a unit distance apart. The
Hadwiger-Nelson problem asks the chromatic number of this graph. By the
theorem of Erdos and de Bruijn, this is the same as the supremum of the chro-
matic numbers attained by finite subgraphs. It is known that 4 < x(C) < 7.
We obtain the lower bound by noting that in any hypothetical three-coloring of
C, two points at a distance of v/3 would have to be the same color. Thus all
points of {|z| = 3} are the same color as 0, but since this set contains a unit
distance we need a fourth color. (See diagram 0a.) This construction is due to
Moser and Moser. The 7 coloring can be obtained by using regular hexagons
of diameter slightly less than 1 as the coloring base (so the set of points of a
given color consists of a union of regular hexagons.) See diagram Ob.

There are many interesting directions from which to approach the theory,
two of which shall be highlighted: first, Coulson’s proof that we cannot 5-color
the plain using polygons as a coloring base, and then Woodall’s proof that
Q[é] is 2-colorable, which is presented along with a similar proof that Q[w] is 3
colorable, where w is a third root of unity. The natural conjecture is that Q[«]
is 3-colorable for all o quadratic over Q. ”Moser’s extension” for instance (i.e.,
the extension containing w and a where |a —v/3i| = 1 and |a| = v/3 ) is the
”simplest” non 3-colorable number field; its degree is 4.

Theorem 1 (Coulson[2]): at least 6 colors are required to color C if we use
polygons (with convex interior and measure bounded below) as the coloring base.
(Ie., if the set of points of each color is a union of polygons with the desired
properties.)

Proof. There are several lemmas:

Lemma 2 Any path-connected set S of diameter more than 1 contains a unit
distance.

Proof. Take two points x,y in S such that d(x,y) ¢ 1. Let a:[0,1] — S be a
path connecting x and y (i.e., @ continuous, «(0) = z and «(1) = y.)

Then d(z, a(t)) achieves the value 1 for some t € [0, 1] by the intermediate
value theorem. m

Lemma 3 Any coloring by polygons contains a point where (at least) three col-
ors meet (see diagram 1.)



Proof. Assume otherwise. A region is defined to be a "maximal” connected
set whose points are all the same color (again, see diagram 1.) By lemma 0, no
region has diameter greater than 1. By assumption, each region is surrounded
by a region of a different color. By our lower bound on the measure of polygons,
we cannot have a region surrounded by a region surrounded by a region ad
infinitum (since eventually one of these regions will have diameter greater than
1, as it will surround a set of measure greater than 7.) Thus we have a
contradiction (see diagram 2a.)

A tricolor point is one where (at least) three colors meet, i.e., it is a limit
point of regions of three different colors. m

Lemma 4 The circle C of radius 1 around a tricolor point X must pass through
at least two colors (which are neccessarily different from those which meet at X.)
This establishes that a coloring by polygons uses at least 5-colors.

Proof. (see diagram 2b) Say colors a, b, and ¢ meet at X. Let Ry denote the
region a point Y isin. If Y is a point on C, then d(X,Y) = 1. For all but finitely
many such Y, we know Je > 0s.t. d(Y,y) < e = y € Ry (in other words, Y is
an interior point of Ry for all but finitely many Y on C, since the Ry are finite
unions of polygons with measure bounded below, and C is a circle.) But the
ball of radius € around X contains points of colors a, b, and ¢, so Ry requires a
fourth color, d, whenever Y an interior point of Ry (remember, all points of Ry
are the same color.) For such a Y, consider Y’ € Ry N C. For all but finitely
many such Y, the points on C which are at a distance of 1 from Y’ are interior
points of their regions, and thus require a fifth color by the same argument. =

Lemma 5 Say we have a 5-coloring by convex polygons, and say the regions
which cover C are (moving clockwise, in order) Si,S2,...,S,. Then setting Y;
to be the place where S; and S;y1 meet, we have that for' Y on C, d(Y,Y;) =1
=Y =Y for some j. (See diagram 3.)

Proof. For Y on C with d(Y,Y;) = 1, we have Y =Y for some j or Y an
interior point of Ry. In the latter case, a contradiction arises because there
is an € ball around Y contained entirely within Ry, but any e ball around Y;
contains both points of color d and points of color e. This proves the lemma.
]

Note that if d(Y;,Y;) = 1, and Y; is 7/3 radians clockwise of Y; , then
the region clockwise of Y; is the same color as the region clockwise of Y, (by
essentially the same argument.)

With notation as in lemma 3, inscribe a unit hexagon D in C, with Y; a
vertex of D, then the other vertices are Y; as well. Let us label them Z; through
Zg going clockwise, with Y; = Z;. (See diagram 4.)

Lemma 6 From point Z; , draw a ray R perpendicular to the segment Z;Z;1 1.
The region lying clockwise of Z; lies entirely to the right of R.



Proof. (See diagrams 5 and 6.) If we draw a circle C' of radius 1 around Z; 41
, it bounds the region lying clockwise of Z;. But since this region’s boundary is
made up of line segments with length bounded below, the segment which passes
through Z; going outward must lie entirely inside C" and thus entirely to the
right of R. m

Clearly, we also have that the region lying counterclockwise of Z; is bounded
by the ray R’ which starts at Z; and runs perpendicular to Z;_17;.

Thus, we have that the region between R and R’ near Z; is colored with a,
b, or c. We call this region the wedge region at Z;. (Of course, there might be
several such regions, the point is that at least 1 exists, and none is colored with
dore.)

We are now ready to complete the proof. Consider a ray L out of X which
separates colors a and b at X. (Such a ray exists WLOG because we can permute
the labels a, b, and ¢, and X is a tricolor point.) This ray passes through D
between two vertices (or at a vertex, the argument is similar,) say Z; and Z;11.
A point close to Z; in the wedge region cannot be colored a or b, so it must
be ¢, but the same is true of the wedge region at Z;;. Since these regions
contain points at a unit distance from each other, we have obtained the desired
contradiction. m

Now we examine the other side of the theory (succesful colorings) by coloring
numberfields.

Theorem 7 (Woodall[1]): Q[i] (as a subset of C) is 2-colorable.

Proof. There are three steps:

Step 0: show that |z| =1 and z € Q[i] imply z € OJi], where O is the set of
rationals with odd denominator in lowest terms.

Step 1: show that O[i] is 2-colorable.

Step 2: choose a system S of coset representatives of Q[¢]/O[i], then color
Q[é] by coloring s + z the same color as z, where s € S and z € O[i].

Say that |z| = 1, where z € Q[i]. Write z = 1(a + bi) where a,b,c € Z and
¢ positive and minimal, then a? + v = ¢%. If (a,b) # 1, we have that (T(fw’
ﬁ, p € Zand (ﬁ)’l(ﬁ + ﬁi) = z, contradicting our assumption
that ¢ minimal. Thus, at least one of a,b must be odd, but both cannot be
odd because then a? + b? = 2(mod4) and ¢? = 2(mod4) has no solutions. So
exactly one of a,b is odd, thus c is odd, so ¢ and %have odd denominator when
written in lowest terms.

We color Oi] as follows: color 20[i] and 1 + ¢ 4+ 20[¢] with color 0. Color
1+ 20[i] and i+ 20li] with color 1. We showed above that if z = 1(a+ bi) has
norm 1, then exactly one of a, b is odd and c¢ is odd, so we can see that adding z
to something colored with 0 results in something colored with 1 and vice-versa.

Finally, choose a system S of coset representatives of Q[i]/O]i], and color
Q[¢] by making s + z the same color as z, where s € S and z € O[i]. This is
well defined (expression as s + z is unique.) If 21,20 € Q[i] and |21 — 22| = 1,
then z1 — 2o € Oli], so z; and zy are in the same coset, therefore there exists
s € Sand 2,25 € O[i] with z; = s+ 2] and 23 = s+ 2. But then |2} — 25| =1,



so 24 and z} have different colors, so z; and zy have different colors. We have
thus successfully colored Q[i]. m

Theorem 8 Q[w] (as a subset of C) is 2-colorable, where w is a third root of
unaty.

Proof. There are three steps:

Step 0: show that |z| = 1 and z € Q[w] imply z € O[w], where O is the set
of rationals with denominator not divisible by three in lowest terms.

Step 1: show that O[w] is 2-colorable.

Step 2: choose a system S of coset representatives of Q[w]/O]w], then color
Q[w] by coloring s + z the same color as z, where s € S and z € O[w].

Say that |2| = 1, where z € Q[w]. Write z = (a+ bw) where a,b,c € Z and

¢ positive and minimal, then a? +b%> —ab = 2. 1If (a,b) # 1, we have that (COL

ﬁ, pn € Zand ((a—fb))’l(ﬁ + ﬁw) = z, contradicting our assumption
that ¢ minimal. Thus, at least one of a,b must not be divisible by 3. Consider
the following table, whose entries are possible values of a? 4+ b?> — ab mod 3:

ab 0 1 2
0 -1 2
1 1 1 0
2 2 0 1

We see that a® + b — ab can only be divisible by 3 if a = 1 and b = 2 (or
vice-versa.) We compute:

(Bj+1)24+(Bk—1)2—(3j+1)(3k—1) = 952 +65 + 1+ 9k> — 6k +1 — 95k +
3j—3k+1

=952 + 95 + 9k? — 9k — 95k + 3 = 3(mod9) which is impossible, since ¢ =
3(mod9) has no solutions. Thus c is not divisible by 3, as desired. Furthermore,
we can see that we cannot have a =1 and b=2or a =2 and b=1 (mod 3).

For z,y = 0,1,2 we color & 4+ yw + 30[w] as follows:

z,y 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

This coloring works, since if z; and zo have the same color, then they differ
by some 1(a+ bw) where a =1 and b= 2 or a =2 and b = 1(mod3).

The final part of the proof is exactly the same as in the Q[i] case. ®

References:

[1]Woodall, D.R. (1973). Distances Realized by Sets Covering The Plane.
Journal of Combinatorial Theory Series A 14: 187-200.

[2]Coulson, D. (2004). On the chromatic number of plane tilings. Journal
of the Australian Mathematical Society 77: 191-196.

[3]Jensen, T.R. (1995). Graph Coloring Problems. 150-152.



