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ABSTRACT

We examine some results on coloring the unit distance graph
in the plane. In particular, we examine Coulson’s proof that it
cannot be 5-colored by polygons, and Woodall’s result that Q[i] is
2-colorable.

The unit distance graph in the plane is the graph whose vertices are the
points of C, with edges connecting any two points a unit distance apart. The
Hadwiger-Nelson problem asks the chromatic number of this graph. By the
theorem of Erdos and de Bruijn, this is the same as the supremum of the chro-
matic numbers attained by finite subgraphs. It is known that 4 ≤ χ(C) ≤ 7.
We obtain the lower bound by noting that in any hypothetical three-coloring of
C, two points at a distance of

√
3 would have to be the same color. Thus all

points of {|z| = 3} are the same color as 0, but since this set contains a unit
distance we need a fourth color. (See diagram 0a.) This construction is due to
Moser and Moser. The 7 coloring can be obtained by using regular hexagons
of diameter slightly less than 1 as the coloring base (so the set of points of a
given color consists of a union of regular hexagons.) See diagram 0b.

There are many interesting directions from which to approach the theory,
two of which shall be highlighted: first, Coulson’s proof that we cannot 5-color
the plain using polygons as a coloring base, and then Woodall’s proof that
Q[i] is 2-colorable, which is presented along with a similar proof that Q[ω] is 3
colorable, where ω is a third root of unity. The natural conjecture is that Q[α]
is 3-colorable for all α quadratic over Q. ”Moser’s extension” for instance (i.e.,
the extension containing ω and α where |α −

√
3i| = 1 and |α| =

√
3 ) is the

”simplest” non 3-colorable number field; its degree is 4.

Theorem 1 (Coulson[2]): at least 6 colors are required to color C if we use
polygons (with convex interior and measure bounded below) as the coloring base.
(I.e., if the set of points of each color is a union of polygons with the desired
properties.)

Proof. There are several lemmas:

Lemma 2 Any path-connected set S of diameter more than 1 contains a unit
distance.

Proof. Take two points x,y in S such that d(x,y) ¿ 1. Let α : [0, 1] −→ S be a
path connecting x and y (i.e., α continuous, α(0) = x and α(1) = y.)

Then d(x, α(t)) achieves the value 1 for some t ∈ [0, 1] by the intermediate
value theorem.

Lemma 3 Any coloring by polygons contains a point where (at least) three col-
ors meet (see diagram 1.)

1



Proof. Assume otherwise. A region is defined to be a ”maximal” connected
set whose points are all the same color (again, see diagram 1.) By lemma 0, no
region has diameter greater than 1. By assumption, each region is surrounded
by a region of a different color. By our lower bound on the measure of polygons,
we cannot have a region surrounded by a region surrounded by a region ad
infinitum (since eventually one of these regions will have diameter greater than
1, as it will surround a set of measure greater than π.) Thus we have a
contradiction (see diagram 2a.)

A tricolor point is one where (at least) three colors meet, i.e., it is a limit
point of regions of three different colors.

Lemma 4 The circle C of radius 1 around a tricolor point X must pass through
at least two colors (which are neccessarily different from those which meet at X.)
This establishes that a coloring by polygons uses at least 5-colors.

Proof. (see diagram 2b) Say colors a, b, and c meet at X. Let RY denote the
region a point Y is in. If Y is a point on C, then d(X,Y) = 1. For all but finitely
many such Y, we know ∃ε > 0 s.t. d(Y, y) < ε =⇒ y ∈ RY (in other words, Y is
an interior point of RY for all but finitely many Y on C, since the RY are finite
unions of polygons with measure bounded below, and C is a circle.) But the
ball of radius ε around X contains points of colors a, b, and c, so RY requires a
fourth color, d, whenever Y an interior point of RY (remember, all points of RY

are the same color.) For such a Y, consider Y ′ ∈ RY ∩ C. For all but finitely
many such Y ′, the points on C which are at a distance of 1 from Y’ are interior
points of their regions, and thus require a fifth color by the same argument.

Lemma 5 Say we have a 5-coloring by convex polygons, and say the regions
which cover C are (moving clockwise, in order) S1, S2, ..., Sn. Then setting Yi

to be the place where Si and Si+1 meet, we have that for Y on C, d(Y, Yi) = 1
=⇒ Y = Yj for some j. (See diagram 3.)

Proof. For Y on C with d(Y, Yi) = 1, we have Y = Yj for some j or Y an
interior point of RY . In the latter case, a contradiction arises because there
is an ε ball around Y contained entirely within RY , but any ε ball around Yi

contains both points of color d and points of color e. This proves the lemma.

Note that if d(Yi, Yj) = 1, and Yj is π/3 radians clockwise of Yi , then
the region clockwise of Yi is the same color as the region clockwise of Yj (by
essentially the same argument.)

With notation as in lemma 3, inscribe a unit hexagon D in C, with Y1 a
vertex of D, then the other vertices are Yj as well. Let us label them Z1 through
Z6 going clockwise, with Y1 = Z1. (See diagram 4.)

Lemma 6 From point Zi , draw a ray R perpendicular to the segment ZiZi+1.
The region lying clockwise of Zi lies entirely to the right of R.
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Proof. (See diagrams 5 and 6.) If we draw a circle C
′

of radius 1 around Zi+1

, it bounds the region lying clockwise of Zi. But since this region’s boundary is
made up of line segments with length bounded below, the segment which passes
through Zi going outward must lie entirely inside C

′
and thus entirely to the

right of R.
Clearly, we also have that the region lying counterclockwise of Zi is bounded

by the ray R
′

which starts at Zi and runs perpendicular to Zi−1Zi.
Thus, we have that the region between R and R

′
near Zi is colored with a,

b, or c. We call this region the wedge region at Zi. (Of course, there might be
several such regions, the point is that at least 1 exists, and none is colored with
d or e.)

We are now ready to complete the proof. Consider a ray L out of X which
separates colors a and b at X. (Such a ray exists WLOG because we can permute
the labels a, b, and c, and X is a tricolor point.) This ray passes through D
between two vertices (or at a vertex, the argument is similar,) say Zi and Zi+1.
A point close to Zi in the wedge region cannot be colored a or b, so it must
be c, but the same is true of the wedge region at Zi+1. Since these regions
contain points at a unit distance from each other, we have obtained the desired
contradiction.

Now we examine the other side of the theory (succesful colorings) by coloring
numberfields.

Theorem 7 (Woodall[1]): Q[i] (as a subset of C) is 2-colorable.

Proof. There are three steps:
Step 0: show that |z| = 1 and z ∈ Q[i] imply z ∈ O[i], where O is the set of

rationals with odd denominator in lowest terms.
Step 1: show that O[i] is 2-colorable.
Step 2: choose a system S of coset representatives of Q[i]/O[i], then color

Q[i] by coloring s+ z the same color as z, where s ∈ S and z ∈ O[i].
Say that |z| = 1, where z ∈ Q[i]. Write z = 1

c (a+ bi) where a, b, c ∈ Z and
c positive and minimal, then a2 + b2 = c2. If (a, b) 6= 1, we have that a

(a,b) ,
b

(a,b) , c
(a,b) ∈ Z and ( c

(a,b) )−1( a
(a,b) + b

(a,b) i) = z, contradicting our assumption
that c minimal. Thus, at least one of a, b must be odd, but both cannot be
odd because then a2 + b2 ≡ 2(mod4) and c2 ≡ 2(mod4) has no solutions. So
exactly one of a, b is odd, thus c is odd, so a

c and b
chave odd denominator when

written in lowest terms.
We color O[i] as follows: color 2O[i] and 1 + i + 2O[i] with color 0. Color

1 + 2O[i] and i+ 2O[i] with color 1. We showed above that if z = 1
c (a+ bi) has

norm 1, then exactly one of a, b is odd and c is odd, so we can see that adding z
to something colored with 0 results in something colored with 1 and vice-versa.

Finally, choose a system S of coset representatives of Q[i]/O[i], and color
Q[i] by making s + z the same color as z, where s ∈ S and z ∈ O[i]. This is
well defined (expression as s + z is unique.) If z1, z2 ∈ Q[i] and |z1 − z2| = 1,
then z1 − z2 ∈ O[i], so z1 and z2 are in the same coset, therefore there exists
s ∈ S and z′1, z

′
2 ∈ O[i] with z1 = s+z′1 and z2 = s+z′2. But then |z′1−z′2| = 1,
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so z′1 and z′2 have different colors, so z1 and z2 have different colors. We have
thus successfully colored Q[i].

Theorem 8 Q[ω] (as a subset of C) is 2-colorable, where ω is a third root of
unity.

Proof. There are three steps:
Step 0: show that |z| = 1 and z ∈ Q[ω] imply z ∈ O[ω], where O is the set

of rationals with denominator not divisible by three in lowest terms.
Step 1: show that O[ω] is 2-colorable.
Step 2: choose a system S of coset representatives of Q[ω]/O[ω], then color

Q[ω] by coloring s+ z the same color as z, where s ∈ S and z ∈ O[ω].
Say that |z| = 1, where z ∈ Q[ω]. Write z = 1

c (a+ bω) where a, b, c ∈ Z and
c positive and minimal, then a2 + b2−ab = c2. If (a, b) 6= 1, we have that a

(a,b) ,
b

(a,b) , c
(a,b) ∈ Z and ( c

(a,b) )−1( a
(a,b) + b

(a,b)ω) = z, contradicting our assumption
that c minimal. Thus, at least one of a, b must not be divisible by 3. Consider
the following table, whose entries are possible values of a2 + b2 − ab mod 3:

a,b 0 1 2
0 - 1 2
1 1 1 0
2 2 0 1

We see that a2 + b2 − ab can only be divisible by 3 if a ≡ 1 and b ≡ 2 (or
vice-versa.) We compute:

(3j+ 1)2 + (3k− 1)2− (3j+ 1)(3k− 1) = 9j2 + 6j+ 1 + 9k2− 6k+ 1− 9jk+
3j − 3k + 1

= 9j2 + 9j + 9k2 − 9k − 9jk + 3 ≡ 3(mod9) which is impossible, since c2 ≡
3(mod9) has no solutions. Thus c is not divisible by 3, as desired. Furthermore,
we can see that we cannot have a ≡ 1 and b ≡ 2 or a ≡ 2 and b ≡ 1 (mod 3).

For x, y = 0, 1, 2 we color x+ yω + 3O[ω] as follows:

x, y 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

This coloring works, since if z1 and z2 have the same color, then they differ
by some 1

c (a+ bω) where a ≡ 1 and b ≡ 2 or a ≡ 2 and b ≡ 1(mod3).
The final part of the proof is exactly the same as in the Q[i] case.
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