THE MATHEMATICS OF THE RUBIK’S CUBE

MICHAEL TRAVIS

ABSTRACT. In 1974, the Hungarian architect Erné Rubik invented the familiar
3 x 3 x 3 Rubik’s Cube while teaching at the School for Commercial Artists in
Budapest. The cube quickly became a world phenomenon, and many different
methods to restore a scrambled cube to its initial, pristine state of 6 solid-
color faces were discovered. This paper will not detail such a method; it will,
however, describe the group theory embodied in and by the cube as well as
its combinatorial properties. Additionally, an interesting analogy to modern
physics will shove its head in, as physics so often does.
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1. SOME GROUP THEORY

A group is an ordered pair (G, *) with G a set and * a binary operation satisfy-
ing:
(i) (axb) x c = ax* (bxc). (associativity of x)
(i) 3 element 1 € G such that Va € G, a* 1 = 1% a = a. (existence of identity)
(iii) Va € G, Ja~! € G such that axa™! = a~! *a = 1. (existence of inverse)

For example, the integers Z under the binary operation of addition form an abelian
(meaning the operation is commutative, as well) group, (Z, 4) in which the identity
is the 0 element and the inverse of an element z is —z. Another example of a group
is the set R\{0} under multiplication.
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Denote the top, bottom, right, left, front, and back faces of the Rubik’s Cube by
U,D,R,L,F, B, respectively. Define a move X as a 90 degree clockwise turn of
face X.

Definition 1.1. The set of all sequences of moves under composition forms the
cube group M.

In effect, a sequence of moves is the same as a “scrambling” of the cube.
Associativity holds trivially in this group; the identity is the “move” of doing noth-
ing; the inverse of X, hereforth denoted X', is defined as a 90 degree turn counter-
clockwise of face X, and clearly X X' = 1.

Remark 1.2. To simplify, the middle layer turns will be ignored for the purposes
of this paper, as they are effectively the same as turning the outer two sides in
opposite directions.

Definition 1.3. A direct product of two groups A, B is defined by A x B :=
{(a,b)|la € A,b e B}.

2. PERMUTATIONS

A permutation is a bijection from a set to itself. A cycle is a subset of a per-
mutation which in which the set of affected elements, E can be ordered and every
element of F is sent to another element of E. For example, (1423) is the cycle
whose permutation induces 1 — 4 — 2 — 3 — 1, and this is called a 4-cycle, as
it has 4 elements; this 4-cycle can be written as (14)(42)(23). A cycle of length 2
is called a transposition, and a permutation is called even if it can be decomposed
into an even number of transpositions, and odd if it can be produced by an odd
number of transpositions. For example, the above 4-cycle is odd as it decomposed
into 3 transpositions; in fact, a cycle of length n can be decomposed into n — 1
transpositions. It turns out that any permutation is either even or odd, and the
one refers to the sign of an even permutation as +1, while the sign of an odd per-
mutation as —1. The following theorem about inverses of elements holds true in
any group.

Theorem 2.1. (XY) ! =Yy -1Xx-1

Proof. By the properties of a group, 1 = (XY)~1(XY), so multiplying both sides on
the right by Y !X ! gives the desired equality. Intuitively, if you rotate the front
face then the top face, the way to undo this is to rotate the top face counterclockwise
and then the front face counterclockwise. O

2.1. Even Permutations. Any basic move is a 4-cycle on both corners and edges,
or a double 4-cycle: Then it is a product of two odd transpositions and is thus even.
Now any move composed upon another move is still even since even times even is
even under the group operation of composition. Then only even permutations
on the cube can be reached from the solved state. But how many of the total
permutations are even?

Theorem 2.2. Ezactly half of the even permutations of the cube are even.

1 1

Proof. Let p be an even permutation. Since pp~* = 1, p~ is also even because 1 is
even since p = pl. An even permutation times an even permutation is still even, so
the even permutations form a subgroup of the group of permutations. Now suppose
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p is odd and q is even, then pq is odd. Define r = pq, where r is odd and this is
true for any r. Now let ¢ = p'r and the map ¢ — pq is one-to-one and onto from
even to odd permutations, so either half are even and half are odd, or all are one
or the other. Therefore, half of the total permutations are even. O

3. GROUP ACTIONS

A group action of a group G on a set S is simply a map from G x S to S defined
by gs satisfying:
(1) 91(g925) = (9192)s, V91,92 € G, s € S.
(ii) Is =5, Vs € S.
For example, the group (Z, +) acts on the set of real functions of a real variable
with (gf)(z) = f(z + g) with g an element of (Z, +).

4. ORBITS

As defined in section 1, the cube group M is the set of sequences of moves under
sequence composition. Now consider the construction of the cube. It is made up
of 27 “cubies,” one of which remains hidden in the middle. The 6 center face tiles
are always in the same position relative to each other, so in effect, there are only
20 relevant cubies, consisting of 12 edge pieces and 8 corner pieces. Call the set of
these 20 cubies A, and let M act on A by the traditional face rotation.

Definition 4.1. An orbit of an element, a € S for S an arbitrary set with a group
G acting on it, is the subset of S consisting of the elements of S to which a can be
moved by the group action.

Then A has two orbits: A, the edge pieces, and the corner pieces A.. These
are orbits because a corner piece can only move to another corner piece, and an
edge piece can only be moved to another edge piece by turning a face. Since they
are disjoint, A = A,UA. and |A.| = 12 and |A.| = 8 by a simple counting argument.

Now consider the faces of the cube. There are 54 total tiles of color; The 6 center
tiles only rotate about their respective axes and remain loyal to their faces. This
leaves now 48 tiles. Define the set A to be these tiles, with A, the corners and A,
the edges. Very similarly to A, |A.| = |A.| = 24 where these are the two orbits of
A, and A = A, UA..

5. CYCLES

Recall that for faces X, Y, (XY)~! = Y1 X1 Now consider the move (X 1Y ~1XY)
for X,Y adjacent faces.

Definition 5.1. A commutator in a group G is an element of the form (X 'Y "1 XY),
with X,Y in G, also written as [X ~'Y ~!] for X,Y elements of the group. Clearly
[X~1Y ~1] is also in the group by closure.

This move, [X 1Y 1], acts as a 3-cycle on A.: if the edges are numbered 1-12 in
clockwise descending order with 1 at the top front and X and Y are the top and
right faces, respectively, then [X 1Y ~1] creates the cycle (148). In other words, it
permutes 3 edges around such that if the move is done 3 times it will be the identity
on A. Then this move has order 3. On A., [X 'Y 1] acts as a double transposition
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(two disjoint transpositions): if the edges are numbered 1-8 clockwise descending
with 1 at the top right, then [X 1Y ~1] creates (12)(48).

The commutator acting on A, however, is slightly trickier. Number the elements of
A, from 1-24 clockwise descending such that 1 is on the top face at the front, 5 is on
the front face at the top, 9 is the front face at the right, etc. Then [X 1Y 1] acts
on A, as (14[14])(58[15]). A logical numbering of the elements of A. reveals that
[X71Y 1 acts on A, as (197862)(4[20][12][21]5[13]). Hence the commutator acts
as a double 6-cycle on A, and a double transposition on A.. Logically one might
suppose then that repeating the commutator 6 times might equal the identity on
both A and A, and this, by observation turns out to be true.

Definition 5.2. Consider a permutation, p of the cube. Then the order of the
permutation p is how many times one must repeat it in order to reach the identity.

For instance, ord(R)= 4 because four rotations of the right face return it to the
solved state.

Theorem 5.3. If p can be written as a product of disjoint cycles: p = C1Cs...Cy,
for C; a cycle, then ord(p) is equal to the least common multiple of the orders of
the cycles.

Proof. If p = C1C5...Cy, then p™ = CT"CH..C =1 C" =1foralll1 <i<n
which is iff m is a multiple of the order of each C;. Thus ord(p) is the least common
multiple of (ord(Cy), ord(Cs), ... , ord(Cy)). O

A simple example of the above theorem is the permutation RU. This sequence cy-
cles 7 edges, 5 corners (but twisting in all 3 ways, hence a 15-cycle), and rotates one
corner about itself(a 3-cycle.) Therefore, the order of (RU) is lem(3, 7, 15)= 105.
If you’re not pressed for time, you can check this by doing the move RU 105 times
and seeing if it is the smallest number that returns the cube to its solved state.

Proposition 5.4. The 3-cycles created by [X ~1Y ~1] generate the group A12 (called
the commutative subgroup) of all even permutations of Ae and the group Ag of all
even permutations of A..

Proof. A 3-cycle can be produced by two transpositions, so this is an even per-
mutation. Now number each edge on the cube such that the top layer has edges
1-4 with 1 in front, the middle layer has edges 5-8, and the lower layer has edges
9-12 and the numbers helix down clockwise from 1. Treating Y as the top face
and X as the right face, [X 1Y 71| creates the 3-cycle (184). Redoing the move
to create a 3-cycle with 1 entry in common with (184), such as (398) creates the
5-cycle (13984). This is again an even permutation since it’s a cycle of odd length,
and this 5-cycle over all possible faces X, Y generates the alternating group along
with other combinations of commutator-induced 3-cycles generates As. Similarly,
adding another 3-cycle with one entry in common creates A7 over the edges, an-
other generates Ag, one more generates A;1, and another to permute the final edge
clearly shows that these 3-cycles generate the group Ai;o. This is all keeping in
mind the fact that any 3-cycle of edges can be reached via this commutator and its
variations (rearranging the order of a commutator keeps it a commutator) and an
edge transposition commutator U ! F~!L='B~'R-1URBLF, which is in fact an
extension and combination of the commutator and two variations.
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On A., [X71Y 1] is an even permutation as it is a double transposition. Now
consider adding another double transposition of the same move with 1 corner in
common to generate A7. One more double transposition with the final corner
finishes the generation of Ag. Once again, any cycle of corners on the rubik’s cube
can be achieved via this commutator and its variations. O

From this result it is clear that a cube can not be solved if two corner pieces had
been switched with each other with all other pieces in their solved state, as that
would be an odd permutation. Hence, it is impossible to switch two cubies (keeping
the same rotation) and solve the cube. These ideas will be further discussed in the
following sections.

6. THE PERMUTATION GROUP P

Let P denote the group of all permutations of A induced by M, the cube group.
Then the group P consists of all combinations of all edge permutations Si2 and
corner permutations Sg because one can see that any edge piece or corner piece can
be moved to a neighboring space by some sequence of moves. Hence, P is just a
subgroup of Sg x S1s.

Definition 6.1. The parity of a permutation indicates whether the permutation
is even or odd.

Proposition 6.2. |P| =3 -8!- 12!

Proof. As shown above, P contains Ag X Ajs. Now if a move is odd on both A,
and A, or even on both A, and A., then A is even. However, every move gives an
even permutation of A since any move acts as a 4-cycle on both edges and corners.
So (Ss x S12) N Agg consists of all these even permutations and has Ag x A1 as a
subgroup of order 2. Then we have shown that (Ag x A12) < P < (Sg X S12) N Aso.
Then P must consist of all permutations in which A, and A, have the same parity
and is equal to (Sg x S12) N Agg. Hence, the order of P is % -81. 121 O

7. THE CONSTRUCTION GRoOUP C

Consider taking Rubik’s Cube apart and reconstructing it however you like such
that it stills creates a cube with the familiar 8 corners and 12 edge pieces. Call
this group of all possible constructions of the cube C (with the same sequence
composition as M) and of course M is a subgroup of C'. Now a simple combinatorics
argument shows the order of C: There are 8 corners which can be placed in any
order with 3 possible orientations each, and 12 edges which can be placed in any
order with 2 permutations each. Therefore,

(7.1) |C| =8!-3%.12!. 212
7.1. The Wreath Product.

Definition 7.2. The kernel of an action is the set of elements of C' that act trivially
on every element of A: {c € C|c-a = a}.

Definition 7.3. If groups A, B are groups of permutations of finite sets C, D
respectively, then the wreath product Al B is defined to be the group of permutations
e of the set C' x D which are of the form
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(7.4) e:(¢c,d) — (c-ag,d-b)

where aqg € A and b € B. So e depends on an element of B and a function from
D to A.

Now, observe that C., the corner orbit of the construction group, acts on A., the
corner orbit of the cubies as the symmetric group Sg because one can construct
the corners in any order one likes. Additionally, each corner cubie can be rotated
through angles % for k£ an integer. Hence, in these three rotations each cubie
represents the cyclic group Z3 since every non-identity element has order 3, and
the direct product of all 8 cubies is a direct product of 8 copies of Z3. Call this
octupal direct product K. since it is a kernel of the action of C, on A..

Similarly, C acting on A, is the symmetric group S12 and the kernel group K. is
a direct product of 12 copies of Z5 since each corner can be rotated through angles
km for k an integer and every non-identity element has order 2. Both kernel groups
are abelian.

The wreath product of Z3 by Ss (as a homomorphism from A.) is the semidirect
product of K. by Sg with respect to the aforementioned homomorphism and is
denoted by Z3 1@ Ss. This wreath product is equal to C; and C. = Z5 ! .S12. Since

C. and C, are seperate orbits of C, it follows that

(75) = (Zg ?Sg) X (ZQ 2512)

Intuitively, this makes some sense because we know the order of C, and C,, and
these line up easily with the order of the symmetric and cyclic groups. The wreath
product essentially describes the way that the corners or edges can be arbitrarily
permuted in position and semi-independently oriented.

7.2. The Orientation Group ). Define the group €2 to be the group consisting of
all compound moves that leave the cubes in the original position but not necessarily
the original orientation. For instance, a move that rotates 3 corners 1 turn clockwise
but leaves them in their original locations is in 2. Write ., Q. for the groups of
permutations induced by 2 on A, and A., respectively.

Remark 7.6. Since each of these orientation groups is a subgroup of their corre-
sponding kernel groups (as defined above), it follows that they are abelian of orders
3 and 2, respectively.

8. PARITY

One way to make a cube impossible to solve is to rotate a single corner piece by
21

= radians. We now try to see why this is so.
For any permutation of the cube, add up the clockwise radians each corner cubie
has turned from the cubie that was originally there. This sum is an angle of the

form % where k is 0, 1, or 2 modulo 3.

Theorem 8.1. For any permutation of the cube, k=0
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Proof. Define amap T : C — (Z/3Z)" defined as T(p) = 2 > ©; = kmod3 where
i=1
O; represents the change in angle of the 4t corner cubie from the previous corner
cuble in that position and p is any element of C. Now suppose p and g are elements
8
of C. Then T(pq) = 277 Z Opq, = E(epL +04,) = E Z Op, + % > Og =
j iz i=1 i=1
T(p) +T(q), so T is a homomorphlsm By easy observation, any of the six basic
moves keeps k = 0. Therefore, any series of moves and any permutation from the
solved state will have k = 0. a

A similar proof holds for the edge pieces, which in fact requires that the change in
rotation to be of the form mm where m is 0 or 1 modulo 2.

8.1. Quark Theory. The Rubik’s Cube contains an interesting analog to quark
confinement.

Definition 8.2. Color Confinement states that colored particles, including quarks,
can’t be isolated. They must occur in either pairs or triplets such that their color
(a physical property) remains neutral. As such, no single quark has a neutral color.

Quarks’ “color” is represented by fractional electric charges, elther 5 or 5. An anti-
quark has these same charges but they are negative. Consider a clockwme rotation
of a corner to be a positive charge while a counterclockwise twist a negative charge.
Then the law above that k = 0 is analagous to combinations of quarks. A meson
consists of a quark and an anti-quark pair, while a baryon is a combination of three
quarks. Any particle made up of quarks (or any particle in the universe) must
satisfy the law that its electric charge must be an integral value. Thus, from a
solved cube, one can turn corner 1 one twist clockwise, and in order for it to be
solvable one must either: turn another corner one twist counterclockwise or two
other corners clockwise.

9. THE ORDER OF M

Now finally we arrive at the ultimate question of Rubik’s Magic Cube: How
many possible solvable permutations exist? Keeping in mind what we have gone
over so far, it is not too difficult: The edges can be permuted in 12! ways and the
corners in 8! but the permutation must be even, so there is a factor of % The first
7 corners can each be in 3 different orientations, but the 8th one is restricted to
one position since k = 0; similarly, the first 11 edges can be in any of 2 positions,
but the 12th is restricted to 1 in analog. Hence,

1
(9.1) |M| = 5 -81.37.120- 211 ~ 4.3 x 10"

Notice that |C : M| = |C|/|M| = 12, which means that if the cube is randomly
constructed after being taken apart, there is only a 1 in 12 chance that it will be
solvable.

To get a sense of the size of |M|, consider rotating a face every second. It would
then take 1.4 x 10'2 years to get through every single permutation. The universe,
by comparison, is about 1.4 x 100 years old. So if someone ever tells you that they
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“figured that thing out once; it took forever but [they] finally got it just randomly
turning faces,” you have a right to be skeptical.
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