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A projective plane Π consists of a set of points Πp, a set of lines ΠL, and a
relation between them, denoted ∈ and read “on”, satisfying the following three
requirements:

(1) Any two distinct points P and Q, there is a unique line on which they both
lie, denoted [P ·Q].

(2) Given any two distinct lines l and m, there is a unique point which lies on
both, denoted l ∩m.

(3) There are four distinct points, no three of which have a line on which they
all lie.

Since the points of a line uniquely determine the line, it is safe to talk about
lines as sets of points, but for convenience we will often regard them separately.
We will talk about projective planes using the usual language of points and lines -
“lies on”, “passes through”, “collinear”, “concurrent”, etc.

The third requirement implies its dual, that there are four lines, no three of
which are concurrent (consider all the lines determined by the four points), and
vice versa, so for any plane we can form the dual plane by swapping the points and
lines. Thus for any statement true for all projective planes, the dual statement is
also true.

A system satisfying the first two requirements but not the third is called a
degenerate projective plane. We will not prove this here, but by case analysis it is
can be seen that all degenerate projective planes are as follows[1]:

(1) No points, no lines
(2) 1 point, no lines
(3) 1 line, no points
(4) n points, m lines. There is a point P and a line l such that every line passes

through P , every point lies on l, while every non-P point lies only on l and
every non-l line passes only through P .

(5) n points, n lines. There is a point P and a line l such that every line except
l passes through P , every point except P lies on l, while every non-P point
Q lies only on l and [P ·Q], and every non-l line m passes only through P
and l ∩m.

A non-degenerate projective plane must have the same number of points n + 1
on every line, and furthermore n+1 lines through every point; n is called the order
of the plane. We can set up a bijection between the points of l and the points of m
by picking a point P not on either and mapping Q ∈ l to [Q · P ] ∩m; similarly for
the lines between any two points. We can set up a bijection between the points of
l and the lines through P by mapping Q ∈ l to Q · P , as long as P /∈ l; otherwise,
we can simply note that P has the same number of lines through it as any other
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point, at least one of which is not on l. In addition, given a point P , there are n+1
lines through it, each of which contains n non-P points, all distinct; every non-P
point lies on one, so there are n2 + n + 1 points total; by the dual argument, there
are n2 + n + 1 lines total. Note that a projective plane must have at least 4 points,
hence order at least 2 (and hence at least 7 points).

A function f : Π → Σ will refer to a function fp : Πp → Σp along with a function
fL : ΠL → ΣL. We say a bijection f : Π → Σ is a collineation if f(P ) ∈ f(l) ⇔
P ∈ l for all P ∈ Πp, l ∈ ΠL.

If we have a collineation f from a plane Π to itself, we can consider the set of
fixed points and lines and the induced incidence relation on them; note that these
fit the first and second requirements for a projective plane (if P and Q fixed, then
f [P · Q] = [f(P ) · f(Q)] = [P · Q], and dually for the lines), and so either form a
subplane or a degenerate subplane.

We say a collineation f : Π → Π is (P, l)-central for a point P and a line l if
every line passing through P is fixed and every point on l is fixed. P is called the
center of f and l is called the axis.

Theorem 0.1. Let f : Π → Π be a central collinneation. Then if f is not the
identity, the center and axis are unique.

Proof. Let f be both (P, l)-central and (Q,m)-central, P 6= Q. Then for any point
R /∈ [P ·Q], f(R) = f([R · P ]∩ [R ·Q]) = f [R · P ]∩ f [R ·Q] = [R · P ]∩ [R ·Q] = R
as P and Q are both centers. So any line containing at least two points not on
[P ·Q] is fixed, but this includes every line not equal to [P ·Q], while [P ·Q] is fixed
as it is the line between two fixed points. So every line is fixed, and intersecting
these, every point is fixed, and so f is the identity. If instead l 6= m, then f is the
identity by the dual argument, and so if f is not the identity, the center and axis
are unique. �

Theorem 0.2. Let f : Π → Π be a central collineation, not the identity. Then
every fixed point is P or lies on l, and every fixed line is l or passes through P .

Proof. Let Q a fixed point not on l, then for any line m through Q, m ∩ l is fixed,
and as Q is fixed, m is fixed; hence Q is the center and equals P . By the dual
argument, if m is a fixed line not through P , m is the axis and equals l. �

Theorem 0.3. Let f : Π → Π be a collineation of order 2; then every point lies on
a fixed line, and every line contains a fixed point.

Proof. Again, we will only prove the first, as the second follows by duality. If P is
not fixed, then f [P ·f(P )] = [f(P ) ·P ], and P lies on a fixed line. If P is fixed, and
any other point Q is also fixed, then [P · Q] is fixed. Finally, if P is fixed but no
other point is fixed, take another point Q and take another point R /∈ [Q · f(Q)].
Then [R · f(R)] 6= [Q · f(Q)], so their intersection is fixed; as no other points are
fixed, this intersection must be P , lying on both these fixed lines. So every point
lies on a fixed line, and dually, every line contains a fixed point. �

While not really relevant to the rest of the paper, this useful property allows us
to say a bit more about involutive collineations, if they don’t fix a proper subplane.

Theorem 0.4. Let f : Π → Π be a collineation of order 2; then if f does not fix a
proper subplane, f is central.
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Proof. Consider the system Σ of fixed points and fixed lines; it is not all of Π nor
a proper subplane and so must be a degenerate projective plane. Furthermore it
must contain at least one point and at least one line as f an involution, so there is
a point P and a line l of Σ such that all points of Σ except possibly P line on l,
and all lines of Σ except possibly l pass through P . We will show f is (P, l)-central.
Take any line m passing through P . If m = l, m is fixed. Otherwise, take a point
Q of m not equal to P and not on l. As f is an involution, Q must lie on some
fixed line. However, every fixed line either is l or pass through P , and Q does not
lie on l, so the line m = [Q · P ] is fixed. Thus any line passing through P is fixed.
By duality, any point lying on l is fixed. Thus f is (P, l)-central. �

As a side note, which we will not prove, if Π has order n, f an involutive
collineation fixes a proper subplane, the subplane of fixed points and lines must
have order

√
n[1].

We can introduce coordinates to a projective plane as follows: Let n be the order
of a projective plane Π. Pick four distinct points, no three of which are collinear,
called X, Y,O, and I. These will be called the “coordinatizing quadrangle”. Take a
set R of n symbols, two of which will be called 0 and 1 (0 and 1 are not equal.) Each
point will be assigned a name of the form (x, y) for x, y ∈ R, (m) for m ∈ R, or ().
Each line will be assigned a name of the form [m, k] for m ∈ R, [x] for x ∈ R, or
[]. We do this as follows: [X · Y ] is the line []. Arbitrarily assign names of the form
(x, x) to the points of [O ·I] other than [O ·I]∩[], requiring O = (0, 0) and I = (1, 1).
Assign names to every other point not on [] by (x, y) = [Y · (x, x)] ∩ [X · (y, y)]. Y
gets the name (); assign names to the other points of [] by (m) = [(0, 0) · (1,m)]∩ [].
Then let [m, k] = (0, k) · (m), [x] = [(x, 0) · ()]. Note that [0, k] consists of the points
of the form (x, k) along with 0; [x] consists of the points of the form (x, y) along
with (); and [1, 0] = [O · I] and consists of points of the form (x, x) along with (1).

We define a ternary operation F on R by F (x,m, k) = y ⇔ (x, y) ∈ [m, k]. This
has the following properties:

(1) F (a, 0, b) = F (0, a, b) = b for all a, b ∈ R.
(2) F (a, 1, 0) = F (1, a, 0) = a for all a ∈.
(3) Given a, b, c ∈ R, there is a unique x ∈ R such that F (a, b, x) = c.
(4) Given a, b, c, d ∈ R with a 6= c, there is a unique x ∈ R such that F (x, a, b) =

F (x, c, d)
(5) Give a, b, c, d ∈ R with a 6= c, there are unique x, y ∈ R such that

F (a, x, y) = b, F (c, x, y) = d

Any such system (R,F ) is called a planar ternary ring (abbreviated “PTR”); we
can also turn a planar ternary ring into a projective plane by taking points (x, y),
(m), and (), lines [m, k], [x], [], and defining the incidence relation as follows[1]:

(1) (x, y) ∈ [m, k] ⇔ y = F (x, m, k)
(2) (x, y) ∈ [a] ⇔ x = a
(3) (x, y) /∈ []
(4) (a) ∈ [m, k] ⇔ a = m
(5) (m) /∈ [x]
(6) (m) ∈ []
(7) () /∈ [m, k]
(8) () ∈ [x]
(9) () ∈ []
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Note that the PTR we get from a given plane can depend on the coordinatizing
quadrangle and not just on the PTR itself. With this, we can relate geometric
properties of the plane to algebraic properties of the PTR.

We define addition and multiplication on a PTR by a + b = F (a, 1, b) and
ab = (a, b, 0). This gives us that 0 is an additive identity, 1 is a multiplicative
identity, a0 = 0a = 0, and a + x = b, x + a = b, xa = b, ax = b all have unique
solutions x (the latter two only if a 6= 0). However, addition and multiplication are
not necessarily commutative, associative, or related in any way. Things are slightly
easier if the PTR is linear, meaning it satisfies F (a, b, c) = ab + c.

Finally, the main theorems.

Definition 0.5. A projective plane Π is (P, l)-transitive for a point P and a line l
if for every point Q of Π not equal to P or lying on l, and any point R ∈ [Q · P ]
other than P and not lying on l, there is a (P, l)-central collineation taking Q to P .

We will need the following theorem:

Theorem 0.6. Let Π a projective plane, P a point of Π and l a line of Π; then if
there is a line m through P such that for any Q,R ∈ m, not equal to P and not on
l there is a (P, l)-central collineation taking Q to R, then Π is (P, l)-transitive.[1]

Of course, to use this theorem, it suffices to show this for a fixed Q, as then for
we R0, R1 ∈ m not on l and not P , we can take the inverse of a collineation taking
Q to R0 followed by a collineation taking Q to R1.

Theorem 0.7. Let Π be a coordinatized projective plane with PTR R. Then R is
linear with associative multiplication if and only if Π is ((0), [0])-transitive.

Proof. First, let R linear with associative multiplication. (Note then that (R −
0, ·) forms a group.) Then for a 6= 0 in R, define G : Π → Π by G(x, y) =
(xa, y), G(m) = (a−1m), G() = (), G[m, k] = [a−1m, k], G[k] = [ka], G[] = []. That
this is a collineation can be seen as if (x, y) ∈ [m, k], y = xm+k, y = (xa)(a−1m)+
k, (xa, y) ∈ [a−1m, k]; the other cases are obvious. This collineation is ((0), [0])-
central as lines through (0) are of the form [0, k] or [] and so are fixed, while points
on [0] are of the form (0, y) or () and so are fixed. It takes (1, 0) to (a, 0), that
is, to any point of [0, 0] = [(1, 0) · (0)] other than (0) or (0, 0) = [0, 0] ∩ [0]. So Π
is ((0), [0])-transitive. Now let Π be ((0), [0])-transitive, and let G be a ((0), [0])-
central collineation taking (1, 0) to (a, 0). Then [] passes through (0) and so is fixed,
while () lies on [0] and so is fixed. Thus points of the form (m) go to other points of
[], but not to (), and we can define g0 : R → R by G(m) = (g0(m)). Similarly lines
of the form [x] go to other lines of the same form, and we can define g1 : R → R by
G[x] = [g1(x)]. It then follows that G(x, y) = (g1(x), y) as (x, y) ∈ [x] so G(x, y) ∈
G[x], as well as (x, y) ∈ [0, y], which is fixed, passing through (0). (Note therefore
g1(1) = a.) Similarly, G[m, k] = [g0(m), k], as G(m) = (g0(m)) and G(0, k) = (0, k).
Now F (x, m, k) = y ⇔ F (g1(x), g0(m), k) = y, i.e., F (g1(x), g0(m), k) = F (x, m, k).
Letting k = 0, xm = g1(x)g0(m); letting x = 1, we get m = ag0(m) for any
m ∈ R. Letting m = a, a = ag0(a), so cancelling, 1 = g0(a). Consider again
xm = g1(x)g0(m), and let m = a, then we get xa = g1(x) for any x ∈ R. So for
any x, m ∈ R, xm = (xa)g0(m). Letting m = ay, x(ay) = (xa)g0(ay) = (xa)y for
any x, a, y ∈ R with a 6= 0; of course, if a = 0, associativity follows immediately as
both sides equal 0. Thus associativity holds. For linearity, note that we now have
F (x,m, k) = (xa, a−1m, k); letting m = a, F (x, m, k) = F (xm, 1, k) = xm + k. �
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Theorem 0.8. Let Π be a coordinatized projective plane with PTR R. Then Π is
((), [0, 0])-transitive and ((0), [0])-transitive if and only if R is linear, has associative
multiplication, and is right-distributive.

Proof. If R meets the conditions above, Π is ((0), [0])-transitive by the above the-
orem. For a 6= 0 define a collineation G of Π by G(x, y) = (x, ya), G(m) =
(ma), G() = (), G[m, k] = [ma, ka], G[x] = [x], G[] = []. That this is a collineation
can be seen as if (x, y) ∈ [m, k], y = xm + k, ya = (xm + k)a = (xm)a + ka =
x(ma) + ka, (x, ya) ∈ [ma, ka]; the other cases are obvious. This collineation is
((), [0, 0])-central as lines through () are of the form [x] or [] and are fixed, while
points on [0, 0] are of the form (0, y) or (0) and are fixed (as a0 = 0 for any a ∈ R).
Furthermore, G(0, 1) = (0, a), so (0, 1) can go to any point of [0] other than () (the
center) or (0, 0) (the intersection with the axis), and so Π is ((), [0, 0])-transitive.
For the converse, let Π be ((), [0, 0])-transitive and ((0), [0])-transitive. Thus R is
linear and multiplication is associative. For any a ∈ R, a 6= 0, there is a ((), [0, 0])-
central collineation G such that G(0, 1) = (0, a). Lines through () are fixed and so
G[] = [], G[x] = [x] for all x ∈ R; also G() = (). As [] is a fixed line, and () is a fixed
point, G(m) = (g0(m)) for some function g0 : R → R. As [0] is a fixed line and ()
is a fixed point, we must have G(0, y) = (0, g1(y)) for some g1 : R → R. As [x] is
fixed, we must have G(x, y) ∈ [x], and G(x, y) ∈ [0, g1(y)], so G(x, y) = (x, g1(y)).
Also, G(m) = (g0(m)) ∈ G[m, k], and G(0, k) = (0, g1(k)) ∈ G[m, k], so G[m, k] =
[g0(m), g1(k)]. Now, F (x, m, k) = y ⇔ F (x, g0(m), g1(k)) = g1(y); by linearity,
xm + k = y ⇔ xg0(m) + g1(k) = g1(y). Letting k = 0 and noting g1(0) = 0 as
(0, 0), lying on the axis, is fixed, we get xm = y ⇔ xg0(m) = g1(y); letting x = 1,
we see g0 = g1. Finally, g1(1) = a by definition, so letting m = 1, k = 0 in the
equations above, we get x = y ⇔ xa = g0(y), or g0(x) = xa for all x ∈ R. So if
xm + k = y, x(ma) + ka = ya = (xm + k)a; letting m = 1, xa + ka = (x + k)a. �

Left distributivity is similar, but we will include the proof anyway.

Theorem 0.9. Let Π be a coordinatized projective plane with PTR R. Then Π is
((0, 0), [])-transitive and ((0), [0])-transitive if and only if R is linear, has associative
multiplication, and is left-distributive.

Proof. If R meets the conditions above, Π is ((0), [0])-transitive by the above the-
orem. For a 6= 0 define a collineation G of Π by G(x, y) = (ax, ay), G(m) =
(m), G() = (), G[m, k] = [m,ak], G[ax] = [ax], G[] = []. That this is a collineation
can be seen as if (x, y) ∈ [m, k], y = xm + k, ay = a(xm + k) = a(xm) + ak =
(ax)m + k, (ax, ay) ∈ [m,ak]; the other cases are obvious. This collineation is
((0, 0), [])-central as points on [] are of the form (m) or () and are fixed, while lines
through (0, 0) are of the form [0, k] or [0] and are fixed (as a0 = 0 for any a ∈ R).
Furthermore, G(1, 0) = (a, 0), so (1, 0) can go to any point of [0, 0] other than (0)
(on the axis) or (0, 0) (the center), and so Π is ((), [0, 0])-transitive. For the con-
verse, let Π be ((0, 0), [])-transitive and ((0), [0])-transitive. Thus R is linear and
multiplication is associative. For any a ∈ R, a 6= 0, there is a ((0, 0), [])-central
collineation G such that G(1, 0) = (a, 0). Points on [] are fixed and so G() = (),
G(m) = (m) for all m ∈ R; also G[] = []. As () is a fixed point, and [] is a fixed
line, G[x] = [g0(x)] for some function g0 : R → R. As (0) is a fixed point and [] is a
fixed line, we must have G[0, k] = [0, g1(y)] for some g1 : R → R. As (m) is fixed,
we must have (m) ∈ G[m, k], and (0, g1(k)) ∈ G[m, k], so G[m, k] = [m, g1(k)].
Also, G(x, y) ∈ G[x] = [g0(x)], and G(x, y) ∈ G[0, y] = [0, g1(y)], so G(x, y) =
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[g0(x), g1(y)]. Now, F (x,m, k) = y ⇔ F (g0(x),m, g1(k)) = g1(y); by linearity,
xm+k = y ⇔ g0(x)m+g1(k) = g1(y). Letting k = 0 and noting g1(0) = 0 as [0, 0],
passing through the center, is fixed, we get xm = y ⇔ g0(x)m = g1(y); letting
m = 1, we see g0 = g1. Finally, g0(1) = a as G(1, 0) = (a, 0), so letting x = 1, k = 0
in the equations above, we get x = y ⇔ ax = g0(y), or g0(x) = ax for all x ∈ R. So
if xm+k = y, (ax)m)+ak = ay = a(xm+k); letting m = 1, ax+ak = a(x+k). �
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