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Abstract. “Quasirandomness” will be described and the Quasirandomness

Theorem will be used to prove Gowers’ Theorem. This article assumes some
familiarity with linear algebra and elementary probability theory.
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1. Lindsey’s Lemma: An Illustration of quasirandomness

Definition 1.1. A is a Hadamard matrix of size n if it is an n × n matrix with
each entry (aij) either +1 or -1. Moreover, its rows are orthogonal, i.e. any two
row vectors have inner product = 0.

Remark 1.2. If A is a n × n matrix with orthogonal rows, then AAT = nI, so
( 1√

n
A)( 1√

n
A)T = I ⇔ ( 1√

n
A)T = ( 1√

n
A)−1 ⇔ ATA = nI, so the colums of A are

also orthogonal.

Notation 1.3. ~1 denotes the column vector that has 1 as every component and
~1T denotes the row vector with 1 as every component.

Remark 1.4. For any matrix A, ~1TA~1 is the sum of the entries of A. 1

Definition 1.5. Given a matrix A and a submatrix T of A, let X be the set of
rows of T and let Y be the set of columns of T . Let xi be any component of ~x and
let yi be any component of ~y. ~x is an incidence vector of X when xi = 1 if the
ith row vector of A is a row vector of T and xi = 0 otherwise. ~y is an incidence

1~1 selects columns of A and sums their corresponding components. ~1T selects rows of A,

selecting and adding together certain component sums. Replacing the ith component of ~1 with a

0 would deselect the ith column of A and replacing the ith component of ~1T with 0 would deselect
the ith row of A.

1
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vector of Y when yi = 1 if the ith column vector of A is a column vector of T and
yi = 0 otherwise.

Lemma 1.6. (Lindsey’s Lemma) If A = (aij) is an n×n Hadamard matrix and T
is a k×l-submatrix, then |

∑
(i,j)∈T aij | ≤

√
kln

Proof. Let X be the set of rows of T and let Y be the set of columns of T . Note
that |X| = k and |Y | = l. Let −→x be the incidence vector of X and let ~y be the
incidence vector of Y .
~xTA~y is

∑
(i,j)εT aij , which is the sum of all entries of T , so

∣∣~xTA~y∣∣ =
∣∣∣∑(i,j)εT aij

∣∣∣.
By the Cauchy-Schwarz inequality,

∣∣~xTA~y∣∣ ≤ ‖~x‖ ‖A~y‖.
∥∥∥ 1√

n
A~y
∥∥∥ = ~yT ( 1√

n
A)T ( 1√

n
A)~y = ~yT~y = ‖~y‖

‖A~y‖ =
∥∥∥√n( 1√

n
A~y)

∥∥∥ =
√
n
∥∥∥ 1√

n
A~y
∥∥∥ =
√
n ‖~y‖

Substituting for ‖A~y‖ in the Cauchy-Schwarz inequality and noting that ‖~x‖ =
√
k

and ‖~y‖ =
√
l,
∣∣~xTA~y∣∣ ≤ ‖~x‖ (

√
n ‖~y‖) =

√
kln. �

1.1. How Lindsey’s Lemma is a Quasirandomness result. The following
corollary illustrates how Lindsey’s Lemma is a “quasirandomness” result. It says
that if T is a sufficiently large submatrix, then the number of +1’s and the number
of -1’s in T are about equal.

Corollary 1.7. Let T be a k×l submatrix of an n×n Hadamard matrix A. If
kl ≥ 100n, then the number of +1’s and the number of -1’s each occupy at least
45% and at most 55% of the cells of T.

Proof. Let x be the number of +1’s in T and let y be the number of -1’s in T .
Suppose kl ≥ 100n. We want to show that (0.45)kl ≤ x ≤ (0.55)kl and (0.45)kl ≤
y ≤ (0.55)kl.

By Lindsey’s Lemma, |
∑

(i,j)εT aij | ≤
√
kln. Note that x − y =

∑
(i,j)εT aij , so∣∣∣∑(i,j)εT aij

∣∣∣ = |x− y| ≤
√
kln. We know that k > 0 and l > 0, so kl > 0.

|x− y|
kl

≤

√
kln

(kl)2
=
√
n

kl
≤
√

n

100n
=

1
10

where the last inequality holds because kl ≥ 100n. Since all entries of T are either
+1 or -1, the sum of the number of +1’s and the number of -1’s is the number of
entries in T, so x+ y = kl, hence y = kl − x. Substituting in for y,



QUASIRANDOMNESS AND GOWERS’ THEOREM 3

|x− (kl − x)|
kl

≤ 1
10

|2x− kl| ≤ kl

10
−kl
10

≤ 2x− kl ≤ kl

10
9kl
20

≤ x ≤ 11kl
20

9kl
20

≤ kl − x ≤ 11kl
20

9kl
20

≤ y ≤ 11kl
20

�

Definition 1.8. A random matrix is a matrix whose entries are randomly as-
signed values. Entries’ assignments are independent of each other.

To see how Corollary 1.7 shows Hadamard matrix A to be like a random matrix
but not a random matrix, consider a random n × n matrix B whose entries are
assigned either +1 or -1 with probability p and 1 − p respectively. Consider U , a
k × l submatrix of B. U has kl entries, and w, the number of entries of the kl
entries that are +1, would be a random variable.

Considering U ’s entries’ assignments independent trials that result in either suc-
cess or failure and calling the occurrence of +1 a “success,” P (w = s) is the proba-
bility of s successes in kl independent trials, which is the product of the probability
of a particular sequence of s successes, ps(1 − p)kl−s, and the number of such se-
quences,

(
kl
s

)
, so P (w = s) =

(
kl
s

)
ps(1−p)kl−s. In other words, w has a binomial

probability distribution. Hence, w has expected value klp. If each entry has equal
probability of being assigned +1 or -1, p = 1

2 so E(w) = kl( 1
2 ). Note that w can

take values far from E(w), since P (w = s) shows w has nonzero probability of being
any integer s where 0 ≤ s ≤ kl.

Now consider n × n Hadamard matrix A, its k × l submatrix T , and x, the
number of +1’s in T . Corollary 1.7 shows that x must take values close to E(w).
More precisely, if kl > 100n, x must be within 5% of E(w). x is like random w
in that we can expect x to take values close to the expected value of w. However,
x is not random because it must be within 5% of E(w), while random w can take
values farther from E(w), any value ranging from 0 to kl. 2

The above argument is symmetrical: It can be used to compare y, the number
of -1’s in T , and z, the number of -1’s in U . In deriving P (w = s), we called the
occurrence of +1 a “success.” We could have arbitrarily called the occurrence of -1
a “success.” Then P (z = s) =

(
kl
s

)
ps(1− p), E(z) = kl( 1

2 ) if p = 1
2 , and y would

be like random z, but not random, in the same way that x would be like random
w, but not random.

2If kl ≥ 100n, x must be within 5% of E(w). 100 was used in the hypothesis of 1.7 for the
sake of concreteness. Any arbitrary constant c could have replaced 100, so that kl ≥ cn. So long

as c > 1, x is more limited than w in the values it can take.
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In short, n×n Hadamard matrix A is ”quasirandom” because it is like a random
matrix B, but not itself a random matrix. Characteristics (x and y) of k × l T , a
sufficiently large 3 submatrix of A, are similar to characteristics (w and z) of k × l
U , a submatrix of B. A is like, but not, a random matrix B because submatrices
of A have properties similar to, but not the same as, submatrices of B.

2. The Quasirandomness Theorem

Definition 2.1. A graph G = (V,E) is a pair of sets. Elements of V are called
vertices and elements of E are called edges. E consists of unordered pairs of vertices
such that no vertex forms an edge with itself: ∀v ∈ V,E ⊂ V ×V \{v, v}. v1, v2 ∈ V
are adjacent when {v1, v2} ∈ E, denoted v1 ∼ v2. The degree of a vertex is the
number of vertices with which it forms an edge.

Notation 2.2. If x is a vertex, deg(x) denotes its degree.

Remark 2.3. Vertices can be visualized as points and an edge can be visualized as
a line segment connecting two points.

Definition 2.4. Consider a graph G = (V,E) and let n denote G’s maximum
number of possible edges, i.e. the number of edges there would be if every vertex

were connected with every other vertex, so that n =
(
|V |
2

)
. |E| is the number

of edges in the graph. The density p of G is |E|n .

Definition 2.5. A bipartite graph Γ(L,R,E) is a graph consisting of two sets
of vertices L and R such that an edge can only exist between a vertex in L and a
vertex in R. Call L the ”left set” and R the ”right set.”

Notation 2.6. Given two sets of vertices V1 and V2, E(V1, V2) denotes the set of
edges between vertices in V1 and vertices in V2. |E(V1, V2)| denotes the number of
elements in E(V1, V2).

Definition 2.7. A bipartite adjacency matrix of a bipartite graph that has k
vertices in the left set and l vertices in the right set is a k × l matrix such that

aij =
{

1 if i ∼ j,where i ∈ L and j ∈ R
0 otherwise

Remark 2.8. Let A be a k x l bipartite adjacency matrix. (ATA)T = AT (AT )T =
ATA. Since ATA is symmetric, it has l real eigenvalues, denoted λ1, ..., λl in
decreasing order. ATA is positive semidefinite because ∀x ∈ Rl, xTATAx =
‖Ax‖2 ≥ 0. Since ATA is positive semidefinite, its eigenvalues are nonnegative.

Definition 2.9. A biregular bipartite graph Γ(L,R,E) is a bipartite graph
where every vertex in L has the same degree sr and every vertex in R has the same
degree sc.

Remark 2.10. |E| = |L| sr = |R| sc.
Fact 2.11. (Rayleigh Principle) Let n × n symmetric matrix A have eigenvalues
λ1, ..., λn in decreasing order. Define the Rayleigh quotient RA(x) = ~xTA~x

~xT ~x
. Then

λ1 = max
~x∈Rn,~x6=~0

RA(x).

3kl > n
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Notation 2.12. Subscripts of the form m × n on matrices and vectors give their
dimensions: m rows and n columns. (x1, .., xn)1×n, denotes a 1 × n row vector
where the xi are components of ~x. ~1 denotes a vector with 1 for every component.

Lemma 2.13. Let Γ(L,R,E) be a biregular bipartite graph with |L| = k and |R| =
l. Let each vertex in L have degree sr and let each vertex in R have degree sc. Let
A be the k × l adjacency matrix of Γ, and let λ1 be the largest eigenvalue of ATA.
Then λ1 = srsc.

Proof. Let ~r1, ..., ~rk be the row vectors of A. Recall that A has only 1 or 0 for entries
and that each ~ri contains sr 1’s, so dotting ~ri with some vector adds together sr
components of that vector.∥∥∥A~1l×1

∥∥∥2

∥∥∥~1l×1

∥∥∥2 =

∥∥∥(~r1 ·~1l×1, ..., ~rk ·~1l×1)
∥∥∥2

l
=
‖(sr, ..., sr)1×k‖2

l
=
ks2r
l

= (
ksr
l

)sr = scsr

where the last equality follows from srk = scl 2.10.
We have that ‖A~x‖

2

‖~x‖2 = scsr when ~x = ~1l×l. If we could show that ∀~x ∈

Rl, ‖A~x‖
2

‖~x‖2 ≤ scsr, then we would have that ‖A~x‖
2

‖~x‖2 reaches its upper bound scsr,
so its max must be scsr, and by 2.11,

λ1 = max
~x∈Rl,~x6=~0

~xTATA~x

~xT~x
= max
~x∈Rl,~x6=~0

‖A~x‖2

‖~x‖2
= scsr

It remains to show that ∀~x ∈ Rl, ‖A~x‖
2

‖~x‖2 ≤ scsr.
Let x1, ...xl denote the components of ~x. A~x = (~r1 · ~x, ..., ~rk · ~x)T , so

(2.14) ‖A~x‖2 =
k∑
i=1

(~ri · ~x)2

~ri · ~x is the sum of sr components of ~x. Let xi1, ..., xisr be the sr components of

~x that ~ri selects to sum. Then ~ri · ~x =
sr∑
j=1

xij .

~ri · ~x =
sr∑
j=1

xij = (xi1, ..., xisr ) ·~1sr×1 ≤
∥∥∥~1sr×1

∥∥∥ ‖(xi1, ..., xisr )‖ =
√
sr

√√√√ sr∑
j=1

(xij)2

where the inequality follows from the Cauchy-Schwarz Inequality, so we have that

(~ri · ~x)2 ≤ sr
sr∑
j=1

(xij)2. Substituting into 2.14,

(2.15) ‖A~x‖2 ≤ sr
k∑
i=1

sr∑
j=1

(xij)2

Observe that the first summation cycles through all the row vectors and, for each
row vector ~ri, the second summation cycles through the components of ~x chosen
by ~ri. Recall that A has sc 1’s in every column, so in multiplying A and ~x, every
component of ~x is selected by exactly sc row vectors. Hence,
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k∑
i=1

sr∑
j=1

(xij)2 = sc

l∑
i=1

(xi)2 = sc ‖~x‖2

Substituting into 2.15, ‖A~x‖2 ≤ srsc ‖~x‖2, so ∀~x ∈ Rl, ‖A~x‖
2

‖~x‖2 ≤ scsr. �

Lemma 2.16. Under the assumptions of 2.13, ~1l×l is an eigenvector of ATA cor-
responding to eigenvalue λ1.

Proof. Each entry of A~1l×1 is the sum of a row of A, which is sr, so A~1l×1 = sr~1k×1.
Similarly, AT~1k×1 = sc~1l×1. Hence, ATA~1l×1 = AT (sr~1k×1) = sr(AT~1k×1) =
srsc~1l×1 = λ1

~1l, where the last equality follows by 2.13. We have that ATA~1l×1 =
λ1
~1l×1, so ~1l×1 is an eigenvector of ATA corresponding to eigenvalue λ1. �

Notation 2.17. J denotes a matrix with 1 for every entry.

Theorem 2.18. (Quasirandomness Theorem) Suppose Γ(L,R,E) is a biregular
bipartite graph with |L| = k and |R| = l. Let the degree of every vertex in L be
sr and the degree of every vertex in R be sc. Let X ⊆ L and Z ⊆ R, let p be the
density of Γ, let A be the k×l adjacency matrix of Γ, and let λi be the ith eigenvalue
of ATA in decreasing order. Then

||E(X,Z)| − p |X| |Z|| ≤
√
λ2 |X| |Z|

Proof. Let ~x be the incidence vector of X and let ~z be the incidence vector of Z.
|E(X,Z)| = ~xTA~z. Consider the subgraph Γ(X,Z,E(X,Z)). If all vertices in X
were connected with all vertices in Z, the number of edges in the subgraph would
be |X| |Z| = ~xTJk×l~z.

||E(X,Z)| − p |X| |Z|| =
∣∣~xTA~z − p(~xTJk×l~z)∣∣ =

∣∣~xT (A− pJk×l)~z
∣∣

≤
∥∥~xT∥∥ ‖(A− pJk×l)~z‖ =

√
|X| ‖(A− pJk×l)~z‖

where the inequality follows by the Cauchy-Schwarz inequality. It remains to show
that ‖(A− pJk×l)~z‖ ≤

√
λ2 |Z| i.e. ‖(A− pJk×l)~z‖2 ≤ λ2 |Z| = λ2 ‖~z‖2.

‖(A− pJk×l)~z‖2 = ~zT (A− pJk×l)T (A− pJk×l)~z
= ~zT (AT − pJTk×l)(A− pJk×l)~z
= ~zT (ATA− pATJk×l − pJTk×lA+ p2JTk×lJk×l)~z

We will simplify ATA− pATJk×l − pJTk×lA+ p2JTk×lJk×l term-by-term.
(Simplifying JTk×lA) Γ is biregular: Every vertex in R is connected to sc vertices

in L, so sc = |E|
l , and every vertex in L is connected to sr vertices in R, so sr = |E|

k .
Put another way, the entries of each column of A sum to sc and the entries of each
row of A sum to sr. p = |E|

kl , so:

sc =
|E|
l

=
|E|
kl (kl)
l

=
pkl

l
= pk

sr =
|E|
k

=
|E|
kl (kl)
k

=
pkl

k
= pl
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Notice that each entry of JTk×lA is sc, which is pk, so JTk×lA = pkJl×l.
(Simplifying ATJk×l) ATJk×l = (JTk×lA)T = (pkJl×l)T = pkJl×l, where the last

equality holds because Jl×l is symmetric.
(Simplifying JTk×lJk×l) Each entry of JTk×lJk×l is the sum of a column of Jk×l,

which is k, so JTk×lJk×l = kJl×l.
Substituting in for JTk×lA, ATJk×l, and JTk×lJk×l:

ATA− pATJk×l − pJTk×lA+ p2JTk×lJk×l = ATA− p(pkJl×l)− p(pkJl×l) + p2(kJl×l)

= ATA− p2kJl×l ≡M

By 2.16, ~1 is an eigenvector of ATA to eigenvalue λ1 = srsc = (pk)(pl) = p2kl.
Since Jl×l~1 = l~1, (p2kJl×l)~1 = p2k(Jl×l~1) = p2k(l~1) = (p2kl)~1 = λ1

~1. Now consider
M = ATA− p2kJl×l.

M~1 = ATA~1− p2kJl×l~1 = λ1
~1− λ1

~1 = ~0 = 0~1

so ~1 is an eigenvector of M corresponding to eigenvalue 0. Also, M = ATA −
p2kJl×l = (ATA)T − (p2kJl×l)T = (ATA − p2kJl×l)T = MT . Since M is a sym-
metric matrix, by the Spectral Theorem, there exists an orthogonal eigenbasis to M.
Let ~ei be a vector in this orthogonal eigenbasis, so M~ei = ui~ei, where ui ∈ R is an
eigenvalue of M . Let ~e1 ≡ ~1l, so u1 = 0. Since the ~ei are orthogonal, ~1 is orthogonal
to ~ei, i ≥ 2. Notice that for i ≥ 2, each entry of Jl×l~ei is ~1 · ~ei = 0, so Jl×l~ei = ~0.
Hence, for i ≥ 2, M~ei = (ATA− p2kJl×l)~ei = ATA~ei − p2k(Jl×l~ei) = ATA~ei. For
i ≥ 2, ui~ei = M~ei = ATA~ei = λi~ei so ui = λi for i ≥ 2.

This implies that the largest eigenvalue of M is λ2, NOT λ1: Since λi’s are
ordered by size and no ui = λ1 for i ≥ 2 and u1 = 0, which is not generally equal
to λ1 = srsc ≥ 0, no ui ever is λ1. The next largest value that a ui can be is λ2.
(In particular, the largest eigenvalue of M is u2 = λ2.)

By 2.11, the largest eigenvalue of M is max~z ~z
TM~z
~zT ~z

. ~zTM~z
~zT ~z

≤ max~z ~z
TM~z
~zT ~z

= λ2 ⇒
~zTM~z ≤ λ2~z

T~z, and ~zT~z = ~z~z = ‖z‖2, so ~zTM~z ≤ λ2 ‖z‖2. Recall,

‖(A− pJ)~z‖2 = ~zT (A− pJ)T (A− pJ)~z

= ~zT (ATA− pATJk×l − pJTk×lA+ p2JTk×lJk×l)~z

= ~zTM~z

≤ λ2 ‖z‖2

which is what we needed to finish the proof. �

The smaller λ2 is, the closer |E(X,Z)| is to p |X| |Z|, so the closer |E(X,Z)|
|X||Z| is to

p|X||Z|
|X||Z| = p. Notice that |E(X,Z)|

|X||Z| is the density of the bipartite subgraph formed
by X and Z, Γ(X ⊆ L,Z ⊆ R,E(X,Z)). Hence, the Quasirandomness Theorem
says that the density of Γ(X,Z,E(X,Z)) is approximately the density of the larger
graph Γ(L,R,E).

Corollary 2.19. Under the same hypotheses as Theorem 2.18, if p2 |X| |Z| > λ2,
then |E(X,Z)| > 0.
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Proof.

p2 |X| |Z| > λ2 ⇔ p2 (|X| |Z|)2 > λ2 |X| |Z|
⇔ p |X| |Z| >

√
λ2 |X| |Z|

⇔ p |X| |Z| −
√
λ2 |X| |Z| > 0

By 2.18,

||E(X,Z)| − p |X| |Z|| ≤
√
λ2 |X| |Z| ⇒ −

√
λ2 |X| |Z| ≤ |E(X,Z)| − p |X| |Z|

⇔ p |X| |Z| −
√
λ2 |X| |Z| ≤ |E(X,Z)|

Combining the above results,
0 < p |X| |Z| −

√
λ2 |X| |Z| ≤ |E(X,Z)| ⇔ 0 < |E(X,Z)| �

2.1. How the Quasirandomness Theorem is a quasirandomness result.

Definition 2.20. A random graph is a graph whose every pair of vertices is
randomly assigned an edge. Pairs’ assignments are independent of each other.

Remark 2.21. A random bipartite graph is a random graph such that any two
vertices in the same set have 0 probability of forming an edge.

Consider a random situation. Let G(L′, R′, E′) be a random bipartite graph,
and let each pair {l, r}, l ∈ L′ and r ∈ R′, have probability p of being an edge. Let
X ′ ⊆ L′ and let Z ′ ⊆ R′. Consider the subgraph g(X ′, Z ′, E(X ′, Z ′)). The number
of pairs of vertices of g that can form edges is |X ′| |Z ′|.

Considering the designation of edge a “success,” |E(X ′, Z ′)|, the number of
“successes” in |X ′| |Z ′| independent trials, would follow a binomial distribution:
P (|E(X ′, Z ′)| = s) =

(
|X′||Z′|

s

)
ps(1 − p)|X

′||Z′|−s. |E(X ′, Z ′)| would have ex-

pected value p |X ′| |Z ′|, so the density of g, E(X′,Z′)
|X′|| Z′| , would have expected value

p|X′||Z′|
|X′||Z′| = p. By the same argument, P (|E′| = s) =

(
|L′||R′|

s

)
ps(1 − p)|L

′||R′|−s,

the expected value of |E′| would be p |L′| |R′|, so the density of G, E(L′,R′)
|L′|| R′| , would

have expected value p. The density of G and the density of g have the same ex-
pected value, but there is no guarantee that the densities be within some range of
each other. The probability that the densities are wildly different, say a density of
0 and a density of 1, is nonzero.

Now consider biregular bipartite graph Γ(L,R,E) described in the hypotheses
of 2.18. The Quasirandomness Theorem says that the density of subgraph Γ(X ⊆
L,Z ⊆ R,E(X,Z)) must be within some range 4 of the density of Γ(L,R,E), so in
this sense one can expect the density of Γ(X,Z,E(X,Z)) to be approximately the
density of Γ(L,R,E). Similarly, one can expect the density of G and the density of
g to be close to each other (in the sense that their expected values are the same), but
unlike the density of Γ(L,R,E) and the density of Γ(X,Z,E(X,Z)), the density
of G and the density of g are not necessarily within some range (other than 1) of
each other.

4The range is controlled by λ2 and the sizes of X and Z, and could be less than 1. The larger
X and Z are and the smaller λ2 is, the closer the density of the subgraph is to the density of the

larger graph.
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Γ(L,R,E) is a quasirandom graph because it is like a random graphG(L′, R′, E′).
One can expect sufficiently large subgraphs of Γ(L,R,E) to have characteristics
(namely densities) similar to characteristics of subgraphs of a random graph.

3. Gowers theorem

Theorem 3.1. (Gowers’ Theorem - GT) Let G be a group of order |G| and let
m be the minimum degree of nontrivial representations of G over the reals. If
X,Y, Z ⊆ G and |X| |Y | |Z| ≥ |G|

3

m , then ∃x ∈ X, y ∈ Y, z ∈ Z s.t. xy = z.

Corollary 3.2. 3.1 would still be true if its conclusion were replaced by XY Z = G

Proof. Take X,Y, Z ⊆ G such that |X| |Y | |Z| ≥ |G|
3

m .
XY Z = G means ∀x ∈ X, y ∈ Y, z ∈ Z, ∃g ∈ Gs.t. xyz = g and ∀g ∈ G, ∃x ∈
X, y ∈ Y, z ∈ Z, s.t. xyz = g. The first statement holds by closure of G, so it
remains to show the second statement. Take g ∈ G. Let Z ′ = gZ−1. By closure
of G, Z ′ ∈ G. Since |Z ′| = |Z|, |X| |Y | |Z ′| ≥ |G|3

m . By 3.1, ∃x ∈ X, y ∈ Y, z′ ∈
Z ′ s.t. xy = z′ ⇔ xy(z′−1) = z′(z′−1) = 1⇔ xy(z′−1g) = g ⇔ xyz = g. �

3.1. Translating Gowers Theorem: Proving m2 ≥ m Proves Gowers’ The-
orem.

Variables in this subsection refer to those defined in the context of
Γ(G2, G2, E):

To prove 3.1, we take a graph theoretic view of it. Let G be a group. Let
Γ(G1, G2, E) be a bipartite graph with two sets of vertices G1 and G2, which
are copies of G. Let there be an edge between g1 ∈ G1 and g2 ∈ G2 only if
∃y ∈ Y ⊆ Gs.t. g1y = g2, let A be the |G| × |G| adjacency matrix of Γ, let λ2 be
the second largest eigenvalue of ATA, let p be the density of Γ, let X ⊆ G1, and
let Z ⊆ G2.

3.1 says that, for sufficiently large X and Z, there is at least one edge between a
member of X and a member of Z, i.e. |E(X,Z)| > 0. Curiously, which particular
vertices are chosen to constitute X and Z is irrelevant to guaranteeing an edge
between them. Rather, the sizes of X and Z are all that matter.

In this graph theoretic view of Gowers’ Theorem, the hypotheses of the Quasir-
andomness Thrm hold. If, in addition, p2 |X| |Z| > λ2 were to hold, then by 2.19,
|E(X,Z)| > 0, proving Gowers’ Theorem. To translate proving GT into proving
some other statement, we use the following results:

Notation 3.3. g1 denotes any vertex in G1 and g2 denotes any vertex in G2.

Lemma 3.4. The degree of every vertex of Γ(G1, G2, E) is |Y |

Proof. We will show that every vertex in G1 has degree |Y | and every vertex in G2

has degree |Y |, so every vertex of Γ has degree |Y |.
Claim: Every g1 ∈ G1 has degree |Y |. Since G is a group, ∀g, y ∈ G, gy ∈ G so

∀g1 ∈ G1 = G and y ∈ Y ⊆ G, g1y ∈ G = G2 so g1y = g2 ∈ G2. Every g1 can be
multiplied by every element in Y to get a g2.
∀g1, multiplying g1 by different y leads to distinct products. Take distinct

y1, y2 ∈ Y and suppose, for a contradiction, that g1y1 = h and g1y2 = h. Then
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y1 = g−1
1 h and y2 = g−1

1 h, so y1 = y2, contradicting the assumption that y1 and y2
are distinct, so g1y1 6= g1y2.

Hence, for each g1, multiplying by every y yields |Y | distinct products in G2.
Since {g1, g2} ∈ E iff ∃y ∈ Y s.t. g1y = g2, g1 can form no other edges, so the degree
of every g1 is |Y |.

Claim: Every g2 has degree |Y |. Every g2 has |Y | preimages in G1: ∀y ∈
Y, ∃ unique g1 ∈ G1 s.t. g1y = g2. Take y ∈ Y ⊆ G so y ∈ G. Since G is a group,
y−1 ∈ G. Take g2 ∈ G2 = G. By closure, g2y−1 ∈ G = G1 so g1 = g2y

−1.
To count the number of g1’s that form an edge with a g2, it suffices to count the

number of y’s, which is |Y |. �

Corollary 3.5. |E| = |G| |Y |

Proof. Every g1 ∈ G1 forms |Y | edges, and there are |G| g1’s, so |E| = |G| |Y | �

Fact 3.6. If A is an n×n real matrix with eigenvalues λ1, ..., λn, then Tr(A) =
n∑
i=1

λi

Notation 3.7. λi denotes one of the |G| eigenvalues of ATA:
{
λ1, ..., λ|G|

}
, listed

in decreasing order. mi denotes the multiplicity of λi.

Corollary 3.8. λ2 <
Tr(ATA)

m2

Proof. By 3.6, Tr(ATA) =
|G|∑
i=1

λi = m1λ1 + m2λ2 + ... > m2λ2, where the last

inequality follows from ATA having nonnegative eigenvalues (by 2.8). �

Lemma 3.9. Tr(ATA) = |E(X,Z)|

Proof. Let ~c1, ..., ~c|G| be the column vectors of A.

Tr(ATA) =
|G|∑
j=1

~cj · ~cj =
|G|∑
j=1

(
|G|∑
i=1

cij)

This double summation adds all the entries of A, hence counts the number of
edges of Γ(G1, G2, E).

An alternative view: The second summation gives the degree of a particular g2.
The first summation cycles through all vertices in G2. Hence, the double summation
counts all the edges that vertices in G2 are members of, so it counts all the edges
of Γ. �

Corollary 3.10. λ2 <
|G||Y |
m2

Proof. λ2 <
Tr(ATA)

m2
= |E(X,Z)|

m2
= |G||Y |

m2
. The first inequality holds by 3.8, the

second equality holds by 3.9, and the third equality holds by 3.5. �

Remark 3.11. p = |G||Y |
|G||G| = |Y |

|G| , where the first equality follows from 3.5 and 2.4.

Proposition 3.12. To prove Gowers’ Theorem, it remains to show that m2 ≥ m.

Proof. From 3.10, we have that λ2 < |G||Y |
m2

. If we could show that |G||Y |m2
≤

p2 |X| |Z|, then λ2 < p2 |X| |Z|, fulfilling the hypothesis of 2.19 and reaching the
conclusion of Gowers’ Theorem. In other words, to prove GT, it remains to prove
|G||Y |
m2

≤ p2 |X| |Z|.
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|G||Y |
m2

≤ p2 |X| |Z| ⇔ |G||Y |
m2

≤
(
|Y |
|G|

)2

|X| |Z| ⇔ |G|3
m2
≤ |X| |Y | |Z|, where the

first iff follows from 3.11. To prove GT it remains to prove |G|
3

m2
≤ |X| |Y | |Z|.

Given GT’s hypothesis |X| |Y | |Z| ≥ |G|3
m , if we could show m2 ≥ m, then

|X| |Y | |Z| ≥ |G|
3

m2
. Hence, all we need to prove GT is m2 ≥ m. �

3.2. Proving m2 ≥ m.

Recall that m2 is the multiplicity of λ2 and m is the minimum dimension of
nontrivial representations of G over R i.e. the smallest dimension of a real vector
space in which G has nontrivial representation. To show that m2 ≥ m, we will need
some preliminary definitions and results.

Definition 3.13. For a group G and an integer d ≥ 1, a d-dimensional rep-
resentation of G is a homomorphic map ϕ : G → GL(V ), where V is a d-
dimensional vector space, so V ∼= F d, where F is a field. GL(V ) ∼= GLd(F ),
which is the general linear group, the set of d x d invertible matrices whose en-
tries are elements of F ; the set forms a group under matrix multiplication. Since
GL(V ) ∼= GLd(F ), ϕ is a mapping G→ GLd(F ), so we say ϕ is a representation
of G over F. d is the dimension of ϕ.

Remark 3.14. A representation of G over R is a representation of G, ϕ : G →
GLd(R). To clarify, such a ϕ maps elements of G to d× d invertible matrices with
entries from R. Such matrices correspond to invertible mappings from Rd to Rd.

Definition 3.15. Let V be a d-dimensional vector space. U ⊆ V is invariant
under ϕ : G → GL(V ) if ∀g ∈ G, U is invariant under ϕ(g), i.e. ∀u ∈ U, g ∈
G, ϕ(g)u ∈ U . In other words, every mapping that ϕ associates with an element of
G maps U to U . The trivial invariant subspaces are the zero subspace (whose
only element is ~0 ∈ Rd) and V .

Definition 3.16. ϕ : G → GLd(R) is a trivial representation if it maps every
element of G to the identity transformation.

Definition 3.17. If λ ∈ F and A is an n x n matrix over F , then the eigenspace
to eigenvalue λ is Uλ = {~x ∈ Fn s.t. A~x = λ~x}. A member of the eigenspace is
called an eigenvector corresponding to λ.

Lemma 3.18. If AB = BA, then every eigenspace of A is invariant under B.

Proof. Let Uλ be an eigenspace of A. We want to show that ∀~x ∈ Uλ, B~x ∈ Uλ.
Since ~x ∈ Uλ, A~x = λ~x, so AB~x = BA~x = B(λ~x) = λB~x. �

Definition 3.19. An eigenbasis of a matrix A is a set of eigenvectors of A that
forms a basis for the domain of the linear transformation corresponding to A.

Theorem 3.20. (Spectral Theorem) Every real symmetric matrix has an orthogonal
eigenbasis.

Notation 3.21. Given mapping f : A→ B and C ⊆ A, f |C denotes the mapping
that is the same as f, except with domain restricted to C. Hom(A,B) denotes the
set of homomorphisms from A to B.
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Proposition 3.22. Let A = AT be a real d × d matrix, and G a group. Let
m = min{s : ∃φ ∈ nontrivial Hom(G,GLs(R))}, i.e. m is the minimum dimension
of nontrivial representations of G over the reals. Let ϕ ∈ Hom(G,GLd(R)) be
nontrivial. Suppose that A commutes with all matrices in GLd(R). Then there is
an eigenvalue of A with multiplicity at least m.

Proof. By 3.20, we can choose a particular eigenbasis of A. Call this basis BA =
{~e1, ..., ~ed}. Pick g0 ∈ G, such that ϕ(g0) is not the identity matrix. Let ψ : Rd →
Rd be the unique linear map whose transformation matrix with respect to BA is
ϕ(g0). ϕ(g0) is not the identity matrix, so ψ is not the identity map on Rd.

Since A commutes with every element of GLd(R), in particular it commutes
with ϕ(g0), so by 3.18, ψ sends each eigenspace of A to itself. ψ cannot act as the
identity on every Uλ, because if it did, then ∀~v ∈ Rd, ~v =

∑d
i=1 αi~ei where αi ∈ R,

and

ψ(~v) = ψ(
d∑
i=1

αi~ei) =
d∑
i=1

αiψ(~ei) =
d∑
i=1

αi~ei = ~v

so ψ would act as the identity on Rd, which is contrary to the choice of ψ.
We’ve shown by contradiction that there must be an eigenspace Uλ such that

ψ : Uλ → Uλ is not the identity map. Because ψ|Uλ is not the identity map, ϕ(g0)|Uλ
is not the identity matrix, so ϕ : g 7→ ϕ(g)|Uλ is a nontrivial representation of G.
Note that ϕ : g 7→ ϕ(g)|Uλ means ϕ : G→ GL(Uλ) ∼= GLdim(Uλ)R so the dimension
of ϕ is the dimension of Uλ.

By definition, m is the minimum dimension of nontrivial representations of G,
so the dimension of ϕ (which is the dimension of Uλ) is at least m. Since A is
symmetric, the dimension of Uλ is the multipliticy of λ, so the multiplicity of λ is
at least m as desired. �

Definition 3.23. σ : V → V is a permutation on set V if it is a bijection from
V to V .

Definition 3.24. Consider a graph G = (V,E). A graph automorphism is a
mapping σ : V → V that preserves adjacency, i.e. ∀i, j ∈ V, i ∼ j ⇔ σ(i) ∼ σ(j)

Remark 3.25. A graph automorphism of a bipartite graph Γ(V1, V2, E) consists
of permutations σ1 : V1 → V1 and σ2 : V2 → V2 s.t. ∀v1 ∈ V1 and v2 ∈ V2,
v1 ∼ v2 ⇔ σ1(v1) ∼ σ2(v2).

Definition 3.26. P (σ) is a permutation matrix of permutation σ if

P (σ)ij =
{

1 if σ(i) = j
0 otherwise.

Lemma 3.27. Let Γ(V1, V2, E) be a biregular bipartite graph, let A be its adjacency
matrix, let σ1 be a permutation of V1, and let σ2 be a permutation of V2. Then σ1

and σ2 constitute a bipartite graph automorphism iff P (σ1)A = AP (σ2)

Proof. The claim is that

∀iεV1, jεV2, i ∼ j ⇔ σ1(i) ∼ σ2(j)⇐⇒ P (σ1)A = AP (σ2)

We will translate the right-hand side into some other statement.
By definition, P (σ1)A = AP (σ2)⇔ ∀i, j, [P (σ1)A]ij = [AP (σ2)]ij .
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For all i, j, [AP (σ2)]ij =
∑L
l=1AilP (σ2)lj . Notice that cells of A and cells of

P only take values 1 or 0, so terms of the sum are either 1 or 0. The summation
is equivalent to summing only the terms that are 1. For a term to be 1, Ail and
P (σ2)lj must both be 1. By definition, Ail = 1 iff i ∼ l, and P (σ2)lj = 1 iff
σ2(l) = j. Hence, AilP (σ2)lj = 1 iff i ∼ l and σ2(l) = j, so

L∑
l=1

AilP (σ2)lj =
∑

l s.t. i∼l=σ−1
2 (j)

AilP (σ2)lj .

Multiple l’s can be adjacent to i, but since σ2 is one-to-one, only one l can equal
σ−1

2 (j), so

[AP (σ2)]ij =
∑

l s.t. i∼l=σ−1
2 (j)

AilP (σ2)lj =
{

1 if i ∼ σ−1
2 (j)

0 otherwise

For all i,j,[P (σ1)A]ij =
K∑
k=1

P (σ1)ikAkj . The terms of this sum are either 1 or

0, so the sum is equivalent to summing only the terms that are 1. For a term to
be 1, P (σ1)ik = 1 iff σ1(i) = k, and Akj = 1 iff k ∼ j. Hence, P (σ1)ikAkj = 1 iff
σ1(i) = k and k ∼ j, so

K∑
k=1

P (σ1)ikAkj =
∑

k s.t. σ1(i)=k∼j

P (σ1)ikAkj

.
Multiple k could be adjacent to j, but since σ1 is one-to-one, only one k = σ1(i).
Hence, the summation can have only one term that is 1, so

[P (σ1)A]ij =
∑

k s.t.σ1(i)=k∼j

P (σ1)ikAkj =
{

1 if σ1(i) ∼ j
0 otherwise

For all i,j [P (σ1)A]ij = [AP (σ2)]ij iff the cells are both 1 or both 0 iff
(
σ1(i) ∼ j and i ∼ σ−1

2 (j)
)

or ¬
(
σ1(i) ∼ j and i ∼ σ−1

2 (j)
)

Hence, σ1(i) ∼ j is equivalent to i ∼ σ−1
2 (j).

To summarize, P (σ1)A = AP (σ2) means ∀i, j, σ1(i) ∼ j iff i ∼ σ−1
2 (j), so the

lemma says:

∀i ∈ V1, j ∈ V2, i ∼ j ⇔ σ1(i) ∼ σ2(j)⇐⇒ ∀i ∈ V1, j ∈ V2, σ1(i) ∼ j ⇔ i ∼ σ−1
2 (j)

(⇒)Suppose

(3.28) i ∈ V1, j ∈ V2, i ∼ j ⇔ σ1(i) ∼ σ2(j).

We want to show σ1(i) ∼ j ⇔ i ∼ σ−1
2 (j).

(3.29) σ1(i) ∼ j ⇔ σ1(i) ∼ σ2(σ−1
2 (j))⇔ i ∼ σ−1

2 (j)

where the last equivalence comes from the ⇐ direction of 3.28
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(⇐)Suppose

(3.30) i ∈ V1, j ∈ V2, σ1(i) ∼ j ⇔ i ∼ σ−1
2 (j)

We want to show i ∼ j ⇔ σ1(i) ∼ σ2(j).

(3.31) i ∼ j ⇔ i ∼ σ−1
2 (σ2(j))⇔ σ1(i) ∼ σ2(j)

where the last equivalence comes from the ⇐ of 3.30 �

Claim 3.32. Let σ be a permutation and let P be its n × n permutation matrix.
PT = P−1.

Proof. The claim is that PPT = PTP = In×n.
Recall that P (σ)ij is 1 if σ(i) = j and is 0 otherwise. Since σ is a function, every

row vector of P has only one entry that is 1. Since σ is bijective, every column
vector of P has only one entry that is 1. No two row vectors can have same the
same component be 1, because if there were two such row vectors, there would
be a column vector with more than one 1-entry, contradicting that every column
vector has only one 1-entry. Similarly, no two column vectors can have the same
component be 1. Hence, every pair of distinct row vectors of P is orthogonal and
every pair of distinct column vectors of P is orthogonal.

Let the rows of P be ~r1, ..., ~rn. (PPT )ii = ~ri · ~ri =
n∑
j=1

rij = 1, since every row

vector has only one entry that is 1. For i 6= j, (PPT )ij = ~ri · ~rj = 0 since row
vectors are orthogonal. Hence, PPT = I.

Let the columns of P be ~c1, ..., ~cn. (PTP )ii = ~ci · ~ci =
n∑
j=1

cij = 1, since every

column vector has only one entry that is 1. For i 6= j, (PPT )ij = ~ci · ~cj = 0, since
column vectors are orthogonal. Hence, PTP = I. �

Lemma 3.33. Let σ1, σ2 constitute a graph automorphism. Then P (σ2) commutes
with ATA.

Proof.

P (σ2)−1ATAP (σ2) = P (σ2)TAT (Ik×k)AP (σ2)

= P (σ2)TAT (P (σ1)P (σ1)−1)AP (σ2)

= P (σ2)TAT (P (σ1)P (σ1)T )AP (σ2)

= (P (σ2)TATP (σ1))(P (σ1)TAP (σ2))

= (P (σ2)−1ATP (σ1))(P (σ1)−1AP (σ2)) = ATA

We have P (σ2)−1ATAP (σ2) = ATA, so ATAP (σ2) = P (σ2)ATA. �

Now consider the particular bipartite graph Γ(G2, G2, E) involved in the proof
of Gowers’ Theorem. A is its bipartite adjacency matrix, which is a |G|x|G| real
matrix, so ATA is a |G|x|G| real matrix. Let λ2 denote the second largest eigenvalue
of ATA. Choose σ1, σ2 that constitute a graph automorphism. Let ϕ : g 7→ P (σ2)
be a nontrivial representation of G, i.e. let ϕ map some g to a P (σ2) that is not the
identity matrix. Let ψ be the linear transformation corresponding to this P (σ2).
Using an argument similar to that in the proof of Proposition 3.27, we will show
that m2 ≥ m.



QUASIRANDOMNESS AND GOWERS’ THEOREM 15

Remark 3.34. Recall definition 3.23. Uλ2(ATA) ≡
{
~x ∈ R|G| s.t. ATA~x = λ2~x

}
Proposition 3.35. m2 ≥ m

Proof. P (σ2) is not the identity matrix, so ψ does not act as the identity on R|G|.
Suppose we could show that ψ does not act as the identity on Uλ2(ATA).

Then P (σ2)|Uλ2 (ATA) would not be the identity matrix. Hence, ϕ|Uλ2 (ATA) :
G → P (σ2)|Uλ2 (ATA) would be a nontrivial representation of G, so its dimension
would be at least the minimum dimension of a nontrivial representation of G i.e.
m.

By 3.33, P (σ2) commutes with ATA, so by 3.18, Uλ2(ATA) is invariant under
P (σ2), so P (σ2)|Uλ2 (ATA) = GL(Uλ2(ATA)), so ϕ|Uλ2 (ATA) : G→ GL(Uλ2(ATA)),
so dim(Uλ2(ATA)) = the dimension of ϕ|Uλ2 (ATA), which we already showed is at
least m. Since ATA is symmetric, the m2 = dim(Uλ2(ATA)), which is at least m,
so m2 ≥ m.

It remains to show that ψ does not act as the identity on Uλ2(ATA). The only
way a ψ that is not the identity transformation can act as the identity on Uλ2(ATA)
is if each vector in Uλ2(ATA) has identical components, i.e. is a multiple of ~1. (To
see this, note that ψ does not act as the identity on Uλ2(ATA) iff P (σ2)|Uλ2 (ATA)

is not the identity matrix.) By 2.16, ATA~1 = λ1
~1 6= λ2

~1, so for c ∈ R, ATA(c~1) 6=
λ2(c~1) so no multiple of ~1 is in Uλ2(ATA), so ψ cannot act as the identity on
Uλ2(ATA). �

3.35 finishes the proof of Gowers’ Theorem.
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