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Abstract

In this paper I provide a quick overview of Stochastic processes and

then quickly delve into a discussion of Markov Chains. There is some as-

sumed knowledge of basic calculus, probability, and matrix theory. I build

up Markov Chain theory towards a limit theorem. I prove the Fundamen-

tal Theorem of Markov Chains relating the stationary distribution to the

limiting distribution. I then employ this limiting theorem in a Markov

Chain Monte Carlo example.1
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1 Introduction

In a deterministic world, it is good to know that sometimes randomness can still
occur. A stochastic process is the exact opposite of a deterministic one, and
is a random process that can have multiple outcomes as time progresses. This
means that if we know an initial condition for the process and the function by
which it is de�ned, we can speak of likely outcomes of the process. One of the
most commonly discussed stochastic processes is the Markov chain. Section 2
de�nes Markov chains and goes through their main properties as well as some
interesting examples of the actions that can be performed with Markov chains.
The conclusion of this section is the proof of a fundamental central limit theorem
for Markov chains. We conclude the dicussion in this paper by drawing on an
important aspect of Markov chains: the Markov chain Monte Carlo (MCMC)
methods of integration. While we provide an overview of several commonly used
algorithms that fall under the title of MCMC, Section 3 employs importance
sampling in order to demonstrate the power of MCMC.

2 Markov Chains

Markov chains are stochastic processes that have the Markov Property, named
after Russian mathematician Andrey Markov.

De�nition of Markov Property Informally it is the condition that given a
state, the past and future states are independent of it. Formally we can de�ne
it as follows:

P (Xn = x|X0, . . . , Xn−1) = P (Xn = x|Xn−1) ∀n∀x.

We now present some important theorems and lemmas regarding Markov
Chains.

2.1 Theorems and lemmas

First some notation: P always represents a transition matrix, while pij repre-
sents an element of it. Xj is always a random variable.

De�nition State i is recurrent if

P (Xn = i for somen ≥ 1|X0 = i) = 1.

Otherwise it is transient.

De�nition A chain is irreducible if every state can be reached from any other
one. That is pij (1) > 0∀i, j
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We state without proof the following results:
A state is recurrent if and only if

∑
n pii (n) = ∞ and it is transient if and

only if
∑

n pii (n) < ∞.2

We delve right in with a lemma that connects the notions of reccurence and
irreducibility.

Lemma 2.1 In an irreducible chain, all the states are either transient or re-
current.

Proof We take the shortest path from state i to state j (let it have n steps), and
the shortest path from j to i (let it have m steps). Thus we have pij (n) = a > 0
and pji (m) = b > 0 and so we have

pii (l + n + m) ≥ pij (n) pjj (l) pji (m)
= abpjj (l)

pjj (l + n + m) ≥ pji (m) pii (l) pij (n)
= abpii (l) .

So it is obvious that either
∑

n pii (n) and
∑

n pjj (n) are both �nite or are both
in�nite. Thus from the above results we note that all the states of an irreducible
chain are either transient or recurrent, as desired.

Lemma 2.2 Facts about reccurrence.

1. If state i is recurrent and i ↔ j, then j is reccurent.

2. If state i is transient and i ↔ j, then j is transient.

3. The states of a �nite, irreducible Markov chain are all recurrent.

Proof 1. We employ the de�nition of reccurrence. Thus ∃n, m ≥ 0 st
pij (n) > 0 and pji (m) > 0. Thus we have

∞∑
l=1

pjj (l) ≥
∞∑

l=n+m+1

pjj (l)

≥
∞∑

k=1

pji (m) pii (k) pij (n)

= pji (m)

( ∞∑
k=1

pii (k)

)
pij (n)

= ∞

where the last part follows from the recurrence of i.

2I hope that at this point the reader realizes a fundamental truth about transient states
(as it becomes relevant soon). We have that given a nonzero probability p of returning to
transient state i after starting from it, the distribution of the number of times that we return
to that state is geometric. This requires only a little justi�cation in one's mind.
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2. We apply similar logic as above. Since i ↔ j ∃n > 0 st pij (n) > 0 so for
m > n we have pii (m) ≥ pij (n) pji (m− n) and thus we have:

∞∑
k=1

pii (k) ≥
∞∑

k=n+1

pii (k)

≥ pij (n)

( ∞∑
k=n+1

pji (k − n)

)

= pij (n)

( ∞∑
l=1

pji (l)

)

which implies that
∑∞

l=1 pji (l) ≤ 1
pij(n) (

∑∞
l=1 pji (l)) < ∞ as desired.

3. We know from Lemma 2.1 that since the chain is irreducible, all the states
are either recurrent or transient. First assume that all states are transient.
Now, �x a state i and consider the number of times that we pass state j
after starting at i. Since we only have �nitely many states, the expectation
for the number of times that we pass state j for some state j would be
in�nite. So this implies that the expected number of returns to state j
after starting at state j would also be in�nite. But that contradicts the
geometric distribution of the number of returns, which has the expectation
be at one over the probability of returning.

De�nition Mean recurrence time for a recurrent state i is mi =
∑

n nfii (n)
where fii (n) is the probability of getting from i to i in exactly n steps. A state
is null recurrent if mi = ∞ and non-null otherwise.

We should note that we used exactly this value in the proof of (3) in lemma
2.1 so the above result can easily be extended to the fact that a �nite state
Markov chain has all its recurrent states be non-null.

De�nition The period of state i, d (i) = d if pii (n) = 0 for d - n and d =
gcd {n|pii (n) > 0} . Thus a state is periodic if d (i) > 1 and aperiodic otherwise.

De�nition For πi = limn→∞ pij (n× d (i)), if greater than zero then non-null
recurrent otherwise, null recurrent.

Lemma 2.3 If i ↔ j then d (i) = d (j)

Proof We consider m,n st pij (n) > 0 and pji (m) > 0 thus we can note that
from the Kolmogorov Chapman equations we have 3

pii (m + n) =
N∑

k=1

pik (n) pki (m) ≥ pij (n) pji (m) .

3The proof of the Kolmogorov Chapman Equations is provided in the Appendix
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Now by de�nition pii (n + m) > 0 and d (i) | (n + m). Now we can consider
pii (m + l + n) and apply the same reasoning as above to arrive at:

pii (m + l + n) =
N∑

k=1

pir (n)
N∑

t=1

prk (l) pki (m)

≥ pij (n) pjj (l) pji (m)

So if we have that pjj (l) > 0 then d (j) |l implying as desired that pii (m + l + n) >
0 and so d (i) | (n + m + l) but combining this with d (i) | (m + n) we get that
d (i) |l and so since d (j) = gcd {l|pjj (l) > 0} we get that d (j) ≥ d (i) . We can
apply the same logic going from j to i and so we arrive at the conclusion that
d (i) = d (j) as desired.

De�nition A chain is ergodic if all of its states are non-null recurent and ape-
riodic.

De�nition Let π be a probability mass function, then we say that π is a sta-
tionary probability distribution if π = πP (that is, if πis an eighenvector of the
transition probability matrix P )

De�nition A limiting distribution exists if Pn →

 π
...
π

 for some π

Theorem 2.4 (Fundamental theorem for Markov Chains) An irreducible,
ergodic Markov chain has a unique stationary distribution π. The limiting dis-
tribution exists and is equal to π.

Proof Since the chain is ergodic, it is non-null recurrent which implies from
above that πj = limn→∞ pij (n) > 0∀i and

∑
πj = 1. Now we consident for

any M
∑M

i=0 pij (n) ≤
∑∞

i=0 pij (n) = 1. Now, letting n → ∞ we get that∑M
i=0 πi ≤ 1∀M which implies from above that the same is true for the ini�nte

case
∑∞

i=0 πi ≤ 1. Now we consider the probability of moving from i to j in

n + 1 steps so pij (n + 1) =
∑∞

k=0 pik (n) pkj ≥
∑M

k=0 pik (n) pkj ∀M. Now we

again can let n → ∞ which implies that πi ≥
∑M

k=0 πkpkj ∀M which implies
that πi ≥

∑∞
k=0 πkpkj . Now we assume the inequality is strict for some i which

leads to the following contradiction:

∞∑
i=0

πi ≥
∞∑

i=0

∞∑
k=0

πkpki

=
∞∑

k=0

πk

∞∑
i=0

pki

=
∞∑

k=0

πk.
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Thus we come to the conclusion that πi =
∑∞

k=0 πkpki ∀i. Now we can consider
π̃i = πi/

∑∞
k=0 πk to be a stationary distribution. So we have shown existence.

Now to show uniqueness we consider the following:

π̃i = P (Xn = i) =
∞∑

j=0

P (Xn = i|X0 = j) P (X0 = j) =
∞∑

j=0

pji (n) π̃j .

So we have that π̃i ≥
∑M

j=0 pji (n) π̃jand taking M,n → ∞ we get that π̃i ≥∑∞
j=0 π̃jπi = πi but we know that from the transition matrix that pji (n) ≤ 1

and so π̃i ≤
∑M

j=0 pji (n) π̃j +
∑∞

j=M+1 π̃j ∀M and so taking n →∞we get π̃i ≤∑M
j=0 πiπ̃j +

∑∞
j=M+1 π̃j ∀M. Now we know that π̃is a stationary distribution

so it sums up to 1, and so we let M → ∞ and we get π̃i ≤
∑∞

j=0 πiπ̃j = πi

which implies that the stationary distribution is unique.
The above process thus shows the existence of a limiting distribution and so

we now know that an ergodic chain converges to its stationary distribution.

This proof allows us to take any bounded function g and say with probability
1 that

lim
N→∞

1
N

N∑
n=1

g (Xn) → Eπ (g) ≡
∑

j

g (j) πj

which is a very strong result that we use constantly in Markov chain Monte
Carlo.

We conclude this section of lemmas and theorems with a useful de�nition
and a small lemma.

De�nition π satis�es detailed balance if πipij = pjiπj

Lemma 2.5 If π satis�es detailed balance then it is a stationary distribution.

Proof We consider the jth element of πP which is
∑

i πipij =
∑

i πjpji =
πj

∑
i pji = πj as desired.

2.2 Applications

In this section I provide a few basic examples of Markov chains to illustrate the
points made above. All the examples come from Chapter 23 of Larry Wasser-
man's book (provided there as exercises rather than as solved examples).

Example Consider a two-state Markov chain with state χ = {1, 2} and transi-
tion matrix

P =
[

1− a a
b 1− b

]
where 0 < a, b < 1. Prove that

lim
n→∞

Pn =
[ b

a+b
a

a+b
b

a+b
a

a+b

]
.
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Solution To verify this we need to �rst show that the chain is irreducible and
ergodic. Irreducible is easy since all states communicate with nonzero probabil-
ities. To show that it is ergodic we need to show that all states are reccurent,
non-null and aperiodic. Since pii (1) > 0 we have that this chain is aperi-
odic. Now at time n we must be at some location so

∑
j∈S pij (n) = 1 for

any i. Since this is true for every n we can take the limit as n → ∞ to get
limn→∞

∑
j∈S pij (n) = 1 but in our case S is �nite so we can move the limit

under the sum. Now, if every state in our MC is transient or null reccurent we
would have that limn→∞ pij (n) = 0 thus contradicting the above statement, so
at least one state must be positive reccurent. Now, since we are in a �nite state
MC we have that all states are positive reccurent (due to question (7) below)
since all the states communicate. Thus it is clear that our state is irreducible
and ergodic and so it has a unique stationary distribution. Now we can solve:[

π1 π2

] [ 1− a a
b 1− b

]
=

[
π1 (1− a) + π2b π1a + π2 (1− b)

]
and now we can solve this system of equations with the added restriction π1 +
π2 = 1. So we get [

π1 π2

]
=
[

b
a+b

a
a+b

]
as desired. And now we can easily note that the limiting distribution is limn Pn =[

π
π

]
as desired.

Example Let

P =
[

0 1
1 0

]
Show that π = (0.5, 0.5)is a stationary distribution. Does this chain converge?

Solution All we are asked to show is that π =
[

0.5 0.5
]
is a stationary

distribution so:[
0.5 0.5

] [ 0 1
1 0

]
=

[
0 + 0.5 0.5 + 0

]
=

[
0.5 0.5

]
as desired. However, the chain does not converge as it is clear that if we start
with π we will have an equal probability of being in either state. This means
that the period of each of the states is 2 and so the chain does not converge.

3 Markov Chain Monte Carlo

Markov chain Monte Carlo integration is a method for integrating function that
might not have a closed form using estimation.

We demonstrate a very basic example of MCMC processes through Impor-
tance Sampling. Importance sampling is used in statistics as a variance re-
duction method. While the standard method that we describe below does not
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necessarily optimize the variance, we will state the condition for minimal vari-
ance. Importance sampling allows us to estimate the distribution of a random
variable using a di�erent random variable. The idea behind the process is that
during the simulation, due to weighing of the random variable from which we
have the observations, we get a better, less biased idea of the parameter we
are estimating. Thus the choice of the weight is very important. We will not
go through the derivation of the �best� (in terms of minimizing the variance)
weight, but just state the result here.

In an importance sampling problem we are trying to estimate the distribution

of I using Î = 1
N

∑ h(Xi)f(Xi)
g(Xi)

.The optimal choise of g in this case is g (x) =
|h(x)|f(x)∫
|h(s)|f(s)ds

.

The problem is from Larry Wasserman's All of Statistics: A Concise Course
in Statistical Inference.

3.1 Statement

(From Larry Wasserman's All of Statistics, 24.7.2)
Let fX,Y (x, y)be a bivariate density and let (X1, Y1) , . . . , (XN , YN ) ∼ fX,Y .

1. Let w (x) be an arbitrary probability density function. Let

f̂X (x) =
1
N

N∑
i=1

fX,Y (x, Yi) w (x)
fX,Y (Xi, Yi)

.

Show that, for each x, f̂X (x)
p→ fX (x) . Find an expression for the vari-

ance.

2. Let Y ∼ N (0, 1) and X|Y = y ∼ N
(
y, 1 + y2

)
. Use the method in (1) to

estimate fX (x) .

3.2 Solution

1. We consider each part of the sum to be its own random variable, and we
note that they are all identically and independently distributed. Due to
this we can consider just one of them for the following:

E

[
fX,Y (x, Yi) w (x)

fX,Y (Xi, Yi)

]
=

∫
fX,Y (x, y) w (z)

fX,Y (z, y)
fX,Y (z, y) dzdy

=
∫

fX,Y (x, y) w (z) dzdy

=
∫

fX,Y (x, y) dy

= fX (x)
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and so we can apply the law of large numbers to note that

1
N

N∑
i=1

fX,Y (x, Yi) w (x)
fX,Y (Xi, Yi)

p→ E

[
fX,Y (x, Yi) w (x)

fX,Y (Xi, Yi)

]

which is the same as f̂X (x)
p→ fX (x) , as desired.

The variance calculation is fairly simple and we do not dwell on it, pro-
viding simply the easily veri�able answer:

varf̂X (x) =
1
N

[∫
f2

X,Y (x, y) w2 (z)
fX,Y (z, y)

dzdy − f2
X (x)

]
.

2. We note that the marginal density of X is hard to evaluate:

fX (x) =
∫

fX|Y (x) fY (y) dy

=
∫

1√
2π (1 + y2)

e
− (x−y)2

2(1+y2)
1√
2π

e−
y2

2 dy.

Thus it makes sense to employ importance sampling as in (1) in order to
estimate fX (x) . So we take the distribution of w (x) to be the Standard
Normal as it seems like a reasonable one in this case. So we have:

f̂X (x) =
1
N

N∑
i=1

fX,Y (x, Yi) w (x)
fX,Y (Xi, Yi)

=
1
N

N∑
i=1

fX|Y (x|Yi) w (Xi)
fX|Y (X|Yi)

=
1
N

N∑
i=1

1√
2π

exp
{
− 1

2 (1 + y2)

[
(x− Yi)

2 − (Xi − Yi)
2 +

(
x
(
1 + y2

))2]}
using the above knowledge.

3.3 Further Discussion

We see above a very basic application of Markov chain Monte Carlo methods
which allows us to use a biased sampling distribution in order to estimate a
random variable of interest. The above discussed method is a very basic and
introductory one. We actually have multiple possible algorithms that we can
apply in order to arrive at the best possible estimate, however they are a topic
for another paper and will only be brie�y mentioned here.

The most commonly used algorithms for MCMC are the Metropolis Hastings
algorithms which use a conditional proposal distribution in order to construct
a Markov chain with a stationary distribution f. It supposes that X0 was cho-
sen arbitrarily and then proceeds to use the proposal distribution in order to
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generate candidates that are either added to the chain or are overlooked based
on a speci�ed probability distribution.4 There are several di�erent incarnations
of this algorithm, with di�erent suggested proposal distributions: the random-
walk M-H algorithm is the one that was described above (as if we do not accept
or reject the generated value, all we are doing is simulating a random walk on
the real line). In independence M-H we change the proposal distribution to a
�xed distribution which we believe to be an approximation of f.

Another method that gets a lot of use is the Gibbs sampling algorithm which
is simply an emblishment of the M-H algorithm. What this method does is take a
multi-dimensional problem and turns it into several one-dimensional problems
that can be easily estimated using the above method. So instead of simply

getting Xi+1, Gibbs sampling allows for the estimation of
(
X

(1)
i+1, . . . , X

(n)
i+1

)
for

an n-dimensional model.
This process works due to detailed balance of Markov Chains, which was

brie�y mentioned in the previos section. For further information consult Wasser-
man's book.

4For basic Metropolis-Hastings, we have the probability be r (x, y) =

min
{

f(y)
f(x)

q(x|y)
q(y|x)

, 1
}
where q is the proposal distribution. In the case that we have, we

can easily choose a q such that q (x|y) = q (y|x) so obviously one part of the multiplication
cancels out.
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4 Appendix

Theorem 4.1 Chapman Kolmogorov Equations. The n-step probabilities sat-
isfy

pij (n + m) =
∑

k

pik (m) pkj (n) .

(We thus get Pm+n = PmPn which is standard matrix multiplication)

Proof We employ the law of conditional probability and the law of total prob-
ability to arrive at the following:

pij (m + n) = P (Xm+n = j|X0 = i)

=
∑

k

P (Xm+n = j, Xm = k|X0 = i)

=
∑

k

P (Xm+n = j|Xm = k,X0 = i) P (Xm = k|X0 = i)

=
∑

k

P (Xm+n = j|Xm = k) P (Xm = k|X0 = i)

=
∑

k

pik (m) pkj (n)

by de�nition, as desired.
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