
TEICHMÜLLER SPACE
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Abstract. It is a well-known fact that every Riemann surface with negative

Euler characteristic admits a hyperbolic metric. But this metric is by no means

unique – indeed, there are uncountably many such metrics. In this paper, we
study the space of all such hyperbolic structures on a Riemann surface, called

the Teichmüller space of the surface. We will show that it is a complete metric

space, and that it is homeomorphic to Euclidean space.
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1. Introduction

Much of the theory of Riemann surfaces boils down to the following theorem,
the two-dimensional equivalent of Thurston’s geometrization conjecture:

Proposition 1.1 (Uniformization theorem). Every simply connected Riemann sur-
face is isomorphic either to the complex plane C, the Riemann sphere P1, or the
unit disk, D.

By considering universal covers of Riemann surfaces, we can see that every sur-
face admits a spherical, Euclidean, or (this is the case for all but a few surfaces)
hyperbolic metric. Since almost all surfaces are hyperbolic, we will restrict our
attention in the following material to them. The natural question to ask next is
whether this metric is unique. We see almost immediately that the answer is no
(almost any change of the fundamental region of a surface will give rise to a new
metric), but this answer gives rise to a new question. Does the set of such hyper-
bolic structures of a given surface have any structure itself? It turns out that the
answer is yes – in fact, in some ways, the structure of this set (called the Teichmüller
space of the surface) is more interesting than that of the Riemann surface itself.

The culmination of our paper describes the Fenchel-Nielsen coordinatization of
Teichmüller space, which give a very nice description of the space for certain Rie-
mann surfaces:
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Definition 1.2 (Riemann surfaces of finite type). A Riemann surface is of finite
type if it is isomorphic to a compact Riemann surface with a finite (possibly zero)
number of points removed.

The Fenchel-Nielsen coordinatization shows that for these Riemann surfaces of
finite type, the corresponding Teichmüller space is homeomorphic to Euclidean
space! However, before we can get to such topologically interesting results, we need
to go through some analytic background.

Remark 1.3. There is a simpler way of defining Teichmüller space, but this way
has the advantage of being generalizable to more types of Riemann surfaces, where
Teichmüller spaces turn out to be infinite dimensional.

2. Quasiconformal maps

Conformal structures provide a valuable tool for understanding surfaces. How-
ever, sometimes the requirement that infinitesimal circles are mapped to infinitesi-
mal circles can be too strong. For this reason, we define quasiconformal maps. The
derivatives of quasiconformal maps map infinitesimal circles to infinitesimal ellipses
of bounded eccentricity, though this is not a priori obvious from either of the def-
initions below. By measuring how eccentric these ellipses are, we can see how far
from conformal a map is, which will give us a way to measure how “different” two
surfaces are.

Definition 2.1 (Quasiconformal maps). K ≥ 1, f is K-quasiconformal if it is a
homeomorphism, its partial derivatives are in L2

loc, and it satisfies the following
equation in almost everywhere:

(2.2) Jac f ≥ 1
K
‖ Df ‖2 .

If ∃K such that f is K-quasiconformal, then we say that f is quasiconformal.

Definition 2.3 (Quasiconformal maps (alternate definition)). Given K ≥ 1, let
k ≡ (K − 1)/(K + 1). f is K-quasiconformal if it is a homeomorphism with distri-
butional partial derivatives in L2

loc which satisfy the following almost everywhere:

(2.4)
∣∣∣∣∂f∂z̄

∣∣∣∣ ≤ k ∣∣∣∣∂f∂z
∣∣∣∣

Note that a 1-quasiconformal map is conformal by this definition.

Proposition 2.5. These two definitions are equivalent.

Definition 2.6 (Quasiconformal constant). f quasiconformal, the quasiconfor-
mal constant of f (denoted K(f)), is the infimum of all K such that f is K-
quasiconformal.

Proposition 2.7 (Quasiconformal maps form a group). . If f is a K1-quasiconformal
map and g is a K2-quasiconformal map, then f−1 is a K1-quasiconformal map and
f ◦ g is a (K1K2)-quasiconformal map.

Note that we can topologize the set of quasiconformal functions by the topology
of uniform convergence on compact sets. An important result about quasiconformal
maps is that given this topology, the set of K-quasiconformal homeomorphisms
homotopic to a given K-quasiconformal homeomorphism is in fact compact.
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Proposition 2.8. Let g be a quasiconformal homeomorphism between hyperbolic
Riemann surfaces of finite type X and Y . Then ∀K ≥ 1, FK(X, g), the set of
K-quasiconformal homeomorphisms f : X → Y homotopic to g.

Recall that if we have a conformal map between two cylinders of circumference
one, then the two cylinders must have the same height. The following theorem
generalizes this fact to quasiconformal maps.

Proposition 2.9 (Grötzsch’s theorem). Let Am and Am′ be cylinders of circumfer-
ence 1 and heights m and m′ respectively. Let f : Am → Am′ be K-quasiconformal.
Then the following inequality holds:

(2.10)
1
K
≤ m

m′
≤ K.

3. Beltrami Forms

Closely related to quasiconformal maps are Beltrami forms. They can be thought
of as representing the infinitesimal ellipses in the tangent space of a Riemann surface
which the derivative of the quasiconformal function acts on. They will prove useful
in constructing “limits” of sequences of Riemann surfaces.

Definition 3.1 (Beltrami forms). X a Riemann surface, L∞∗ (TX, TX) is the set of
essentially bounded C-antilinear bundle maps with the corresponding norm. The
open unit ball in this space is denotedM(X), and its elements are called Beltrami
forms.

Proposition 3.2. There is a unique pullback of Beltrami forms by R-linear maps.

The measurable Riemann mapping theorem ties together Beltrami forms and
quasiconformal maps.

Theorem 3.3 (Measurable Riemann mapping theorem). Let U ⊂ C open, µ ∈
L∞(U) with ‖ µ ‖∞< 1. Then ∃f : U → C quasiconformal which satisfies the
Beltrami equation,

(3.4)
∂f

∂z̄
= µ

∂f

∂z
.

Proof. First, we consider the case µ real analytic. ∀z ∈ U , there is a neighborhood
in which µ is an analytic function of two variables. We get

(3.5)
∂f

∂x
= −i1 + µ

1− µ
∂f

∂y

directly from the Beltrami equation by simple algebraic manipulations. But we
can then find the solution, because any function which is constant on the solutions
to

(3.6)
dy

dx
= −i1 + µ

1− µ
will satisfy the Beltrami equation.
We can convolve arbitrary µ with a sequence of standard mollifiers (i.e. ϕ a non-

negative real analytic function with integral 1, and ϕε defined to be εϕ(xε ) with ε
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tending to 0). Note that the new sequence will consist of real analytic functions
converging pointwise almost everywhere to µ. This sequence of real analytic func-
tions will therefore converge to µ in the L1 norm and will also be bounded in the
L∞ norm. Each such µε defines a new Riemann surface on C by the solutions in
each neighborhood of the differential equation for µε. D in this Riemann surface
is simply connected, relatively compact, and contained in a non-compact, simply
connected surface, so it must by the uniformization theorem be isomorphic to D.
This gives us a sequence of K-quasiconformal maps by selecting such isomorphisms,
but by 2.8 above, we can select a convergent subsequence, fn. The derivatives must
converge weakly in L2 to the derivatives of the solution, f , of the Beltrami equa-
tion, so by a theorem of functional analysis, the fn converge to the solution of the
differential equation. �

The relationship between Beltrami forms and the measurable Riemann map-
ping theorem seems unclear until we recognize that the Beltrami equation can be
rewritten as follows:

(3.7) ∂̄f = ∂f ◦ µ.
From the linearity and antilinearity of ∂ and ∂̄ respectively, we see that for µ

a Beltrami form, the conditions of the measurable Riemann mapping theorem are
satisfied. Conversely, f a quasiconformal map, ∂̄f/∂f will be a Beltrami form.
There is thus a correspondence between quasiconformal maps and Beltrami forms.

We now need to know how to use Beltrami forms in the construction of Riemann
surfaces. Given a base Riemann surface and a Beltrami form, we can construct a
new Riemann surface as follows.

Definition 3.8. X a Riemann surface and µ a Beltrami form, Xµ is defined as
follows:

Given a collection of open covers of X, Ui, and corresponding atlas ϕi : Ui → Vi,
let µi be the Beltrami form such that µ|Ui

is the pullback by ϕi of µi dz̄dz . We will
now construct a new Riemann surface by giving a collection of open sets and an
atlas. The open sets are the Vi, and the maps in the atlas are the quasiconformal
maps which the measurable Riemann mapping theorem give us from the µi.

Proposition 3.9. Xµ exists, is unique, and is a Riemann surface.

4. Teichmüller Space

We will study hyperbolic structures of a surface by looking at equivalence classes
of pairs consisting of a Riemann surface together with a distinguished homeomor-
phism to this surface from S. The surface represents a hyperbolic structure, and the
homeomorphism how we get from our surface to the hyperbolic structure. We can
therefore think of the homeomorphism as a marking of the surface with respect to
the hyperbolic structure. The equivalence relation tells us when we should consider
two hyperbolic structures to be “the same.”

Definition 4.1. A quasiconformal surface is a Riemann surface modulo the relation
that two surfaces are equivalent if the identity map between them is quasiconformal.

Definition 4.2 (Teichmüller Spaces). S a quasiconformal hyperbolic surface of
finite type, the Teichmüller space modeled on S, denoted TS , is the set of equiv-
alence classes of pairs (X,ϕ), where X is a Riemann surface, and ϕ : S → X is
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a quasiconformal homeomorphism, with two such pairs deemed to be equivalent if
there exists an analytic isomorphism α such that the following diagram commutes
up to homotopy:

(4.3) S
ϕ1

~~}}
}}

}}
}} ϕ2

  A
AA

AA
AA

A

X1
α // X2

We want to metrize Teichmüller space by finding out how non-conformal a map
must be in order to go from one point to another. This is where the importance of
quasiconformal maps becomes evident.

Definition 4.4. d : TS ×TS → R+ is defined by

(4.5) ((X1, ϕ1), (X2, ϕ2)) 7→ inf
f

lnK(f),

where the infimum is taken over all quasiconformal homeomorphisms homotopic
to ϕ−1

2 ◦ ϕ1.

Theorem 4.6. The Teichmüller metric makes Teichmüller space into a complete
metric space.

Proof. Symmetry and positivity are immediate. The triangle inequality follows
from 2.7 about the composition of quasiconformal maps. What remains are to
demonstrate the identity of indiscernibles and completeness.

For the first part, suppose we have τ1 = (X1, ϕ1) and τ2 = (X2, ϕ2) such that
d(τ1, τ2) = 0. Then we have a sequence Ki approaching 1 and a sequence of Ki-
quasiconformal homeomorphisms from X1 to X2 homotopic to ϕ2 ◦ ϕ−1

1 . By 2.8,
we can extract a subsequence which converges to an analytic mapping from X1 to
X2 which is still homotopic to ϕ2 ◦ ϕ−1

1 , but by definition this means that τ1 and
τ2 are equivalent.

Given a Cauchy sequence τj , we can look at a subsequence chosen such that the
distance between the jth and j + 1th terms is less than 2−j .

Given νi such that

(4.7) ln
1+ ‖ νi ‖
1− ‖ νi ‖

≤ 1
2i
,

we can find fi : Xi → Xi+1 which satisfy the Beltrami equation for νi. Now take
gi : X1 → Xi to be the composition of the fj for j going from 1 to i−1, and µi to be
the corresponding Beltrami form. Note that τi is equivalent to ((X1)(µi), id ◦ φi),
so we need only show that the µi converge. We therefore have the following:

(4.8) d(µi, µi+1) = d(g∗i (0), g∗i+1(νi) = d(0, νi) ≤‖ νi ‖∞≤
1
2i
.

�

Note that for S a Riemann surface of finite type, the mapping class group of S
(denoted Mod(S)) acts on TS by homeomorphisms of S. This action will obviously
preserve the Teichmüller metric. It turns out that for most important Teichmüller
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spaces, the mapping class group exhausts the isometries of the corresponding Te-
ichmüller space.

Proposition 4.9 (Fricke’s theorem). This action is properly discontinuous (i.e.
given K compact, all but a finite number of elements of Mod(S) map K to a set
disjoint with K.

Definition 4.10 (Moduli space). The moduli space of a Riemann surface S is
defined to be TS/Mod(S).

Since the “scrambling” of S by Mod(S) makes the notion of a distinguished
homeomorphism moot, we can think of the moduli space as the Teichmüller space
without the markings, so a point is determined solely by the intrinsic properties of
the hyperbolic structure, not how it lies on S.

5. Fenchel-Nielsen Coordinates

Fenchel-Nielsen coordinates are a way of parametrizing one way of decomposing
Riemann surfaces of finite type (i.e. each point in the parameter space corresponds
to a different decomposition of this same type). Every such decomposition turns out
to correspond to a point in the Teichmüller space of the surface, so this parameter
space ends up telling us a lot about the Teichmüller spaces in question.

Proposition 5.1. Every hyperbolic metric on a pair of pants is uniquely determined
up to isometry by the lengths it assigns to the three boundary curves. Conversely,
given three positive real numbers, there is a hyperbolic metric on the pair of pants
which has each of these numbers as the lengths of the three boundary curves.

Remark 5.2. Any surface of finite type (with genus g and n boundary components)
has a family of 3g−3+n non-intersecting homotopy classes of simple closed curves.
This is the most than can be achieved. The construction of such a family is fairly
simple, and maximality can be seen by an Euler characteristic argument.

Proposition 5.3. Any surface of finite type can be decomposed into pairs of pants
by cutting along the geodesic representative of each of the homotopy classes described
above.

Fenchel-Nielsen coordinates are a parametrization of these pairs of pants decom-
positions. The Fenchel-Nielsen parameter space is (R+)3g−3+n × R3g−3+n. The
first coordinates represent the length of the geodesics. By the above proposition,
this uniquely determines each of the pairs of pants, so we are now only concerned
with how the pants are glued together. These are called the length coordinates.

Definition 5.4. Let S be a quasiconformal surface of finite type. Let FNL : TS →
(R+)3g−3+n such that τ = (X,ϕ) 7→ l(ϕ(γ)) ∀γ ∈ Γ, where Γ is a maximal family
of curves as described above, and l is the length of the geodesic representative of a
homotopy class of curves.

Intuitively, the next parameter describes the relative “angle” of the pant legs at
each curve. For this reason, they are called the twist coordinates. We now define
for these twist coordinates the equivalent of FNL.

Definition 5.5. Let S be a quasiconformal surface of finite type. Let (X,ϕ) = τ ∈
TS . Given two boundary components, A and B, of adjacent pairs of pants in S on
opposite sides of some boundary curve γ, we can consider the image of the homotopy
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Figure 1. We can see two curves from opposite bound-
ary components, both perpendicular to the intervening
boundary component, together with the curve along this
component which connects them.

classes of arcs directly connecting the two under ϕ. There is a unique representative
of this homotopy class which consists of the minimal geodesics between each of A
and B (denoted γA and γB respectively) and ϕ(γ), along with the minimal geodesic
along ϕ(γ) connecting the other two arcs (denoted γt). Let tτ (γ) denote the length
of this curve. Then FNT : TS → R3g−3+n is defined by τ 7→ (tτ (γ)) ∀γ ∈ Γ.

Remark 5.6. Note that the sign of the twist coordinate is well-defined – no mater
which way we traverse the arc from A to B, we turn in the same direction at ϕ(γ).

We can combine these two functions to get a map from TS to (R+)3g−3+n ×
R3g−3+n:

(5.7) FN = (FNL, FNT )

Lemma 5.8. FNL is continuous.

Proof. We will actually prove that given τ1 = (X1, ϕ1) and τ2 = (X2, ϕ2),
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(5.9) |ln l(ϕ1(γ))− ln l(ϕ2(γ)) ≤ d(τ1, τ2)|
holds.

By choosing a point s on γ, we see that γ generates a copy of Z in π1(S, s). The
covering spaces of X1 and X2 determined by this subgroup will be annular, and it
can be shown that their moduli will be

(5.10) Mi =
π

l(ϕi(γ))
Any continuous quasiconformal map f : X1 → X2 with quasiconformal constant

K(f) which is homotopic to ϕ−1
2 ◦ ϕ1 (precisely those which determine the Te-

ichmüller metric), lifts to a map f̃γ : (X̃1)γ → (X̃2)γ with the same quasiconformal
constant. Using Grötzsch’s theorem, we get:

d(τ1, τ2) = inf
f∼ϕ−1

2 ◦ϕ1

lnK(f)(5.11)

= inf
f∼ϕ−1

2 ◦ϕ1

lnK(f̃γ)(5.12)

≥
∣∣∣∣ln M2

M1

∣∣∣∣ = |ln l(ϕ1(γ))− ln l(ϕ2(γ))| .(5.13)

�

Lemma 5.14. FNT is continuous.

Proof. If the distance between τ1 = (X1, ϕ1), τ2 = (X2, ϕ2) ∈ TS is small, then
we can write X2 = (X1)µ and ϕ2 = id ◦ ϕ1 with µ a Beltrami coefficient of small
norm. We can lift µ to D and solve the corresponding Beltrami equation to find a
quasiconformal map f

µ̃
which will “almost” be the identity. Let X1 = D/Γ1. Let

Γ2 be the conjugation of Γ1 by f
µ̃
. Note that (X1)µ is isomorphic to D/Γ2. We

can lift the three curves γA, γB , and γt which were used in the definition of FNT
to D. Note that the endpoints are fixed points of Γ1, so by the closeness of fµ̃ to
the identity, they will be “almost” fixed by Γ2. Therefore, the lengths of the curves
will not be changed very much. �

Corollary 5.15. FN is continuous.

Theorem 5.16. S a quasiconformal surface of finite type, TS is homeomorphic to
(R+)3g−3+n × R3g−3+n.

Proof. We know that FN is a continous map, so it suffices to construct its inverse
and show that this inverse is continuous.

Given the lengths, we know by 5.1 that we can construct the corresponding
pairs of pants. Suppose we want to glue two boundary components together along
the curve γ. We can again pick geodesics on each of the pants (or two different
geodesics on the same pair of pants, as the case may be), which both intersect the
boundary curve corresponding to γ. Now consider tγ/lγ . This will have both an
integral part and a fractional part. The fractional part corresponds to the distance
between the endpoints of the two geodesics along γ after gluing the two boundary
curves together.
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We have now constructed the Riemann surface part of the point in Teichmüller
space. The homeomorphism can be constructed as follows: in the interior of the
pairs of pants, the homeomorphism simply corresponds to the map between the pair
of pants in S and the hyperbolic pair of pants in X. In an annulus surrounding
the boundary, we simply do a Dehn twist however many times the integral part of
tγ/lγ tells us to. It can be verified that FN applied to this point in Teichmüller
space gives us the identity, so we have constructed the inverse. �
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