TWIST & SHOUT: EXPLORING ISOMETRIES OF
HYPERBOLIC SURFACES

MAX SHRON

Let ' be a cocompact discrete subgroup of the isometry group of
H?2, also known as a cocompact Fuchsian group. Recall that H? is the
upper half complex plane {z € C|Imz > 0} equipped with the metric

<v,w >Euclidezm

Imz

H
<v,w > =

at each point z € H?, making it a model of the hyperbolic plane.

Consider the closed compact surface ¥ = H?/I'. We aim to show
that its isometry group is finite, and furthermore that we can achieve
a sharp upper bound directly proportional to the genus of the surface.
Consider, by comparison, the isometries of R?/Z?, the Euclidean torus
T?. Any Euclidean translation of R? descends to an isometry of 72,
yielding an uncountablely large isometry group. Recall that a homeo-
morphism, diffeomorphism, or isometry ® descends to a surface from
its covering space when there exists an equivalent morphism ¢ on X
such that, if 7 is the covering map, ® om = mo¢. We equivalently refer
to @ as a lift of ¢.

We will show that the isometry group is finite ultimately by con-
sidering its action on special points whose property is preserved under
isometry. Given an element of the unit tangent bundle, there exists a
unique complete geodesic realized by parallel transport (this is equiva-
lent to saying that two geodesics passing through the same point on a
surface must be the same or else be proceeding in different directions).
We record this as Fact 0. We will restrict our attention to elements
of the unit tangent bundle on ¥ whose associated geodesic is closed,
of length L, and whose assosciated geodesic has a double point at its
assosciated point of our surface; recall that a double point occurs where
a geodesic crosses itself transversely.

1. FINITUDE OF THE ISOMETRY GROUP

First, a lemma showing that we may comfortably proceed concerning

ourselves only with orientation preserving isometries of our surface.
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Lemma 1.1. The group of orientation preserving isometries Isom (%)
is either index 1 or 2 in Isom(X).

Proof. Since our surface is orientable, any element of Isom(X) will have
a uniformly positive or negative Jacobian regardless of what point it
is evaluated at. Furthermore, since the Jacobian of the product is the
product of the Jacobians, so long as there are orientation reversing
elements of Isom(X) we have a well defined group epimorphism from
Isom(X) to Z/27 sending an element of Isom(X) to 1 if its Jacobian
is positive and —1 if it is negative. If there are no such elements
sent to —1, then Isom, is clearly index 1. If there are, Isom ()
forms a normal subgroup of Isom(X) similarly, since conjugation by
two negative Jacobian isometries produces again a positive determinant
isometry. Thus we have the following exact sequence:

1 — Isom, (X) — Isom(X) — Z/2Z — 1
and the orientation preserving isometries are index 2. U

We seek to show that the number of double points whose closed
geodesics are of a given length is finite. We proceed by showing that
the number of closed geodesics of a certain length on our closed compact
surface is finite, trivially proving that those with double points are finite
as well.

Lemma 1.2. The set of closed geodesics of a given length L on X is
finite.

Proof. Choose a fundamental domain K in H? for ¥. Consider the set
of all closed circles of radius L with center points in our fundamental
domain. Since K is compact (equivalently since I' is cocompact) and
thus bounded, the union of all our closed circles is bounded. Conse-
quently, by virtue of being closed and bounded we can conclude that
their union forms a compact set.

We assume for contradiction that we have an infinite number of
v, € I' such that for each 7, there exists an x; € K such that the
distance between z; and v;(x;) is less than L. Choose a representative
for each 7, which we shall for the sake of convenience refer to as x;.
By Bolzano-Weierstrass, there exists a sequence {z;} which converges
in K by its compactness. Call its limit x.

{v,(x;)} also has a convergent subsequence, again by Bolzano-Weierstrass
(but this time due to the compactness of the L-neighborhood of K).
Call y; the image 7,(z;), and so by extension {y; }; our convergent sub-
sequence. Say it converges to y. Then ~,(x) — y since every 7, is an



TWIST & SHOUT: EXPLORING ISOMETRIES OF HYPERBOLIC SURFACES 3

isometry. This clearly violates our discreteness criterion for I', and so
we reach a contradiction.

We have a finite number of 7, which satisfy our condition, so by
extension we also have only a finite number of conjugacy classes of
our ;. Since every closed geodesic corresponds to a conjugacy class
of covering transformations (e.g. there is a v € T'" which maps the
endpoints of our geodesic to the same point on our surface, as does
any other conjugate covering transformation under a suitably different
lift), if we choose to lift our geodesics into K there are only a finite
number of conjugacy classes whose associated covering transformation
closes lifted geodesics of length L. O

One more quick lemma is needed:

Lemma 1.3. Let I C ¥ be a geodesic segment. If an orientation
preserving isometry ¢ fixes I, then ¢ is the identity.

Proof. Let ® be a lift of ¢ with base point in the fundamental domain,
and I be a lift of I. Since ® fixes the geodesic segment I in H? it must
the the identity; since the identity is the only element of PSLy(R) which
fixes a segment. The identity descends to the identity on > since any
element of I" descends to the identity. O

Theorem 1.4. Isom, (X)) is finite.

Proof. Elements of Isom, act by diffeomorphisms on 7% preserving
norms, and so we get an action on the unit tangent bundle T}3. Let S,
be the set of points in 7Y whose induced geodesic is closed, of length
L, and has a double point at the assosciated point of our surface. We
proved above that Sy is finite. If L is less than the injectivity radius
of inj(X) then Sy, is empty, where inj(X) is the supremum of the set of
numbers 7 such that for all z € H? and v € T we have dy2(z,v(z) > 2r.
For that reason, we choose L to be larger than inj(X).

Furthermore, we can choose our L so that demonstrating S; non-
empty is trivial. Consider the group presentation for 7 (%, zo) given by
< a1,bi,a2,by,...,a4,by >, g the genus of X. The curve { = by *by ' has
algebraic self-intersection number of 1 (written i(§) = 1). Suppose £ is
homotopic to some &'. It is a theorem of algebraic intersection theory
(which unfortunately we do not have either the machinery or space to
prove) that i(¢) = i(§') mod (2). Thus, since any simple closed curve
has algebraic self-intersection of 0, ¢ is not homotopic to any simple
closed curve. _

Take a lift of ¢ to H2. Since ¢ closes, £’s endpoints must differ by
an element v € I'. v is hyperbolic, and so has a unique invariant
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geodesic to which ¢ is homotopic. The projection of this geodesic is
itself a geodesic, still with the same end points in 3. Furthermore,
this projected geodesic is homotopic to £ by homotopy of lifts. By
the above argument, our induced geodesic also must have algebraic
self-intersection equal to 1 mod 2. Since any self-intersecting geodesic
intersects itself transversely (by Fact 0 given in the introduction), we
have exhibited a nonsimple closed geodesic and thus a double point
in the unit tangent space on . Let L be the length of our induced
geodesic.

Let k = |Sp|. Isom, permutes elements of S;. Let H be a subgroup
of Isom, (¥) fixing a geodesic segment; that is, fixing a point in 73 3.
By the previous lemma, H = 1. H is clearly normal in Isom, (3), and
so by combining the last two facts we get the following exact sequence:

1 — H — Isomy (X) — Sk

implying that H is of finite index in Isom, (X). Since H is finite and
of finite index, Isom, (X) is finite. O

2. THE RIEMANN-HURWITZ THEOREM

Now that we know that it’s finite, we can go about trying to give
a bound. We will presume a formula known as the Riemann-Hurwitz
formula which relates the Euler characteristic of a surface to the Euler
characteristic of its quotient by its finite order orientation-preserving
isometry group. To use it though we first need to understand why the
relationship is not just simply a matter of dividing by the order of the
isometry group which we are quotienting out by. After all, since it is
finite it is clearly properly discontinous, and if it acted freely then %
would just form a d sheeted cover of ¥/Isom,, where d is the order
of the group of orientation preserving isometries. However, it is not
necessarily free, and it is precisely its deviation from freeness which we
need to quantify.

Since our surface is compact, our failures can only be cone points
and not cusps; that is, where our quotient fails it fails by wrapping a
portion of our surface over itself some number of times everywhere in
the neighborhood of a point except for that point itself. Call v, the
order of Stab(x) in Isom, (X). Since Isom(X) permutes the elements
of Stab(z), the same group elements will fix elements of the quotient,
and so v, the order of the stabilizer of the projection of z, is equal to
Vg

To see that the number of = for which v, > 2 is finite, we need the
following lemma.
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Lemma 2.1. If ¢ € Isom, fizes two points x,y then ds(x,y) > inj(¥),
where inj(X) is the supremum of the set of numbers r such that for all
z € H? and v € T we have dy:(z,7v(z) > 2r)).

Proof. Consider z a lift of z and ® a lift of ¢ fixing z. Let y similarly
be a lift of y with dy2(Z,y) = ds(z,y). ®(y) must also be a lift of y
such that dyz2(Z, ®y) = ds(x,y). Then

2inj(%) < 2dg2(y, y) < di2(y, ) + di2 (7, Py) = 2ds(2,y)
U

Thus by compactness an isometry of ¥ fixes at most a finite number
of points. Call the set of x € ¥ with v, > 2 by F. Since F is finite,
it is closed. F is preserved by the action of Isom(¥). ¥ — F is
then a compact surface upon which Isom, (X) acts freely and properly
discontinuously; thus, (¥ —F/Isom (X)) is a compact surface with a d-
sheeted cover of . Adding back in points in F then should change the
Euler characteristic in a consistent way. Thus, it is logical (although
we do not prove it) that we should get

Theorem 2.2. (Riemann-Hurwitz) The quotient 3/Isom, (X)) is an
ortentable surface with Euler characteristic

X(X/Isomy (X)) = éX(E) + Z (1 B UL)

[]
[x]€eX/Isomy (X)

With this formula firmly in hand, we are able to compute a sharp
upper bound on the number of isometries of a hyperbolic surface.

3. HURWITZ’S THEOREM

The result which captures this is known as Hurwitz’s theorem. It
states that the number of isometries of a hyperbolic surface of genus
g is at most 168(¢ — 1), including both the orientation preserving and
orientation reversing varieties. Since we know the index of Isom (X)
is at most two, to prove Hurwitz’s theorem it suffices to show that the
order of Isom (X)) is at most 84(g — 1), or equivalently —42y(X) (since
X(X) =2 — 2g). By simple algebraic manipulation we get that

i x(%)
X(E/Tsom  (8) = 3, s (1 - i)

x(2) is always negative, since by the Gauss-Bonnet theorem 27y (%) =
fz kdo, where k is the curvature of the surface and do is the area form

and as a hyperbolic surface « is always —1. That is to say, x(¥) = 5=
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where vy, is the area of X.. Since x(X) is always negative, we need only
concern ourselves with determining how high we can get the denomi-
nator of the above equation to be while still being negative. If it were
positive, it would imply that our isometry group had negative order,
which is about as absurd as a moon made of cheese. An empty isome-
try group would be similarly ridiculous; at the very least, the identity
is always an isometry.

Our first possibility is that the Euler characteristic of our quotient
by the orientation preserving isometry group is —1 or less. Call it —n.
Then

2—2

d = J
B (—

2—2g

1= e (1- 1)
< (2-29)(=1)=2(g—1)<84(g—1)

since our genus is always 2 or higher.

The next possibility is that our quotient is genus 0, topologically a
torus. In this case, our equation reduces to

2 —2g

RS Ry

which is clearly maximized when there is precisely one cone point
of order two. A greater number of cone points would result in a de-
nominator which was at least —1, a number clearly less than —%. A
greater order cone point would similarly give us a denominator which
was greater than —%. No cone points would imply that we should
divide by zero, a horrible possibility indeed.

Since ¥ is orientable and Isom,(X) is orientation preserving our
quotient must be orientable. Therefore by the classification of surfaces
we can now consider our only remaining possibility, a topological sphere
of Euler characteristic 2. By exhaustive calculation, we find that having
three cone points, of order 2, 3, and 7 respectively, provide us with our

maximum. We find that the sum of the (1 — %) is precisely %; thus,

subtracting it from 2 we get exactly % -8 1—21. Plugging this back

42
into our equation we get that
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2—2g
—1
42

< 84(9—1)

And so, a hyperbolic surface whose quotient by its orientation pre-
serving isometry group is precisely a sphere with three cone points
(one of 2, one of 3, and one of 7) will have the maximum number of
isometries. Does any such exist? Indeed they do, and many exhibit
remarkable properties. The first is Klein’s quartic, the unique such
surface achieving the bound for genus 3. In fact, there are an infi-
nite number of genera for which such surfaces exist, and, perhaps even
cooler, an infinite number for which they do not.
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