
COMPUTABILITY THEORY AND RECURSIVELY
ENUMERABLE SETS

JOSHUA LENERS

Abstract. An algorithm is function from ω to ω defined by a finite set of

instructions to transform a given input x to the desired output y. However,
simply using a finite number of instructions does not guarantee that a given

algorithm will take a finite amount of time. An algorithm is intuitively com-

putable if input x halts, and yields correct output y in a finite amount of time.
We introduce the concepts of recursive functions, Turing machines, and partial

recursive functions to formally define a computable function. We then intro-

duce (partial) recursive functions and show some basic results about partial
recursive functions. We introduce the idea of unsolvable problems, and the

reducibility of problems.

Contents

1. Basic Definitions 1
2. Basic Results about Partial Recursive Functions 3
3. Recursively Enumerable Sets and Unsolvable problems 4
4. Reducibility 4
References 5

1. Basic Definitions

Definition 1.1. A function is called primitive recursive if it is one of (I-III) or is
the application of (IV-V) to primitive recursive functions:
(I) The successor function, x 7→ x+ 1.
(II) The constant functions, (x1, · · · , xn) 7→ m where m, n ≥ 0.
(III) The identity functions also called projections, (x1, · · · , xn) 7→ xi with 1 ≤ i ≤
n.
(IV) The composition operation, If g1, · · · , gm, h are primitive recursive, then
f(x1, · · · , xn) = h(g1(x1, · · · , xn), · · · , gm(x1, · · · , xn) is also primitive recursive.
(V) The primitive recursion operation, if g, h are primitive recursive with n ≥ 1
with f(0, x2, · · · , xn) = g(x2, · · · , xn) and
f(x1 + 1, x2, · · · , xn) = h(x1, f(x1, · · · , xn), · · · , xn) is also primitive recursive
Thus a function can be defined by a sequence f1, · · · , fk = f where each fi is is
an initial function from (I-III), or the application of IV or V to functions fj with
j < i.

Example 1.2. The function for adding two numbers f(x, y) = x + y already has
a fairly complicated definition:
f1 = x 7→ x+ 1

1



2 JOSHUA LENERS

fx 7→ x
f3 = (x1, x2, x3) 7→ x2

f4 = f1 ◦ f3
f5(0, x2) = f2(x2)
f5(x1 + 1, x2) = f4(x1, f5(x1, x2), x2)

Notations 1.3. The expression µxP where x is a variable and P is a predicate
means the least x that satisfies predicate P .
The expression f(x) ↓ means that f is defined at x. Similarly, f(x) ↓= y means f
is defined at x and the value is y. f(x) ↑ means that f(x) is not defined (does not
converge).

Since we can define each primitive recursive function with a finite string of sym-
bols, we can obtain an enumeration for them. Let fn be the nth such function
in this enumeration. Under this enumeration n is the index of fn. The function
corresponding to d(x) = fx(x) + 1 is clearly intuitively computable. We find the
xth primitive recursive function, apply it to x and add one to the output. However,
d is not primitive recursive since for all x d 6= fx. This also shows that the listing
function φ(x, y) = fx(y) is not primitive recursive since we could use it to calculate
the function d giving a contradiction. This diagonalization argument affects our
characterization because we are only considering total computable functions. In
order to consider partial functions we must expand our schemata:

Definition 1.4. A function is partial recursive if it can be defined with respect to
(I)-(V) along with an additional rule:
(VI) The unbounded search operation, if ψ is a partial recursive function of n+ 1
variables and φ(x1, · · · , xn) = µy[ψ(x1, · · · , xn, y) ↓= 0]&(∀z ≤ y)[ψ(x1, · · · , xn, z) ↓
]] then φ is a partial recursive function of n variables.

Remark 1.5. A partial recursive function that is total is called recursive. A primitive
recursive function is recursive (since it is total) but a recursive function is not
necessarily primitive recursive.

Another characterization of (partial) computable functions is thanks to Alan
Turing.

Definition 1.6. A Turing machine consists of an infinitely long tape of cells con-
taining zeroes and ones, initially with finitely many ones, and a reading head with
finitely many internal states. Based on internal state qi, the machine reads the
symbol at position j, performs some action on that symbol (changing it or keeping
it the same), moves either right or left along the tape, and sets its internal state to
some qk.
We can enumerate Turing machines based on the finite strings defining their inter-
nal states. We call the machine indexed by e the Turing program Pe.
Then let φ(n)

e denote the partial function of n variables computed by Pe.

Remarks 1.7. The idea that partial recursive functions (including recursive func-
tions) are the same functions as those which are effectively computable is commonly
referred to as Church-Turing Thesis. It is clear that partial recursive functions are
intuitively computable, so the Church-Turing Thesis asserts the converse: intu-
itively computable functions are partial recursive. However, since we are not able



COMPUTABILITY THEORY AND RECURSIVELY ENUMERABLE SETS 3

to formally define effective computability except in an intuitive sense, it is impos-
sible to prove Church-Turing Thesis. However, no effectively computable function
has been found that cannot be represented by a Turing machine, and hence a partial
recursive function.

When we say something is computable, or effectively computable, we are not
implying that something could be feasibly calculated. In fact there are a number
of partially recursive (and thus by Church-Turing Thesis, effectively computable)
functions that would take longer than the estimated lifetime of the universe to
complete on today’s computers.

2. Basic Results about Partial Recursive Functions

Lemma 2.1 (Padding Lemma). Each partial recursive function φx has ℵ0 indices,
and furthermore for each x we can effectively find an infinite set Ax of indices for
the same partial function (i.e. φy = φx for all y ∈ Ax).

Proof. Consider the Turing program Px associated with φx, consisting of states
{q0, · · · , qn} we can add an arbitrary number of “idle” steps (that is steps which
do not change the tape in any way) as qn+1, · · · , qn+i. Since we have a new set
of quintuples, Turing program enumerates differently, thus giving us an infinite
number of indices for the Turing program Px. �

Theorem 2.2 (Normal Form Theorem). There exists a predicate T (e, x, y) (called
the Kleene T-predicate) and a function U(y) which are primitive recursive such that
φe(x) = U(µyT (e, x, y)).

Theorem 2.3 (Enumeration Theorem). There is a partial recursive function of 2
variables φ(2)

z (e, x) such that φ(2)
z (e, x) = φe(x).

Proof. Simply let φ(2)
z (e, x) = U(µyT (e, x, y)). �

Remark 2.4. The existence of the function U(µyT (e, x, y)) asserts the existence of
a Universal Turing Machine: a Turing Machine which takes two arguments e and
x, and produces output U(y), for any Pe that produces a result when applied to x.

Theorem 2.5 (Parameter Theorem). For every m,n ≥ 1 there exists an injective
recursive function sm

n such that for all x, y1, · · · , ym

φ
(n)
sm

n (x,y1,··· ,ym) = (z1 · · · zn) 7→ φ
(m+n)
z (y1, · · · , ym, z1, · · · , zn)

Definition 2.6. Let 〈x, y〉 be the image of (x, y) under the map 1
2 (x2 + 2xy +

y2 + 3x + y) which is bijective. Let π1(〈x, y〉) = x and let π2(〈x, y〉) = y. Define
〈x, y, z〉 = 〈〈x, y〉, z〉, and similarly for larger tuples.

Definition 2.7. We write φe,s(x) = y if x, y, e < s and y is the output of φe(x)
in fewer than s steps of the Turing program Pe. If such a y exists we say that φe,s

converges and write φe,s ↓.

Theorem 2.8. The sets {〈e, x, s〉 : φe,s(x) ↓} and {〈e, x, y, s〉 : φe,s(x) = y are
recursive.

Proof. Extract e x and s (if applicable y) and compute Pe applied to x until an
output is found or s steps have been completed. �



4 JOSHUA LENERS

3. Recursively Enumerable Sets and Unsolvable problems

Definition 3.1. A set A (subset of ω) is recursive if the characteristic function χA

is recursive.

Definition 3.2. A set A is recursively enumerable if A is the domain of some p.r.
function.
Let the eth r.e. set be denoted by:
We = domainofφe = {x : φe(x) ↓} = {x : (∃y)T (e, x, y)}

Definition 3.3. Let K = {x : φx(x)converges} = {x : x ∈We}.

Proposition 3.4. K is recursively enumerable.

Proof. K is the domain of the following partial recursive function:

ψ(x) =
{

x, if φx(x) ↓
undefined if otherwise

�

Proposition 3.5. K is not recursive.

Proof. Recall K recursive implies χK the characteristic function of K is recursive.
Then the function

f(x) =
{
φx(x) + 1, if x ∈ K

0 if x /∈ K

would be recursive. However f 6= φx for any x. �

Remark 3.6. This is an example of an unsolvable problem, we have proved that
there is no algorithm that computes whether or not a Turing program Pe converges
given e. This is closely related to the so-called “halting problem” and as we will
show later, it is in fact equivalent.

Definition 3.7. K0 = {〈x, y〉 : x ∈Wy}.
This is the definition of the halting problem. For any program y, given input x

does the program halt? If we define recursive characteristic function for this set, we
could design an algorithm to answer this problem. (Namely, compute χK0(〈x, y〉).)

Corollary 3.8. K0 is not recursive. (i.e. The halting problem is not computable)

Proof. x ∈ K iff 〈x, x〉 ∈ K0. Finding a recursive characteristic function for K0

would provide us one for K, which is impossible. �

Definition 3.9. A set A is an index set if for all x and y (x ∈ A & φx = φy) then
y ∈ A. In other words, A is the ℵ0 collection of functions that compute φx.

4. Reducibility

We can see that knowing the answer to some problems can give us the answer to
other problems. For instance the fact that K was not recursive, told us a lot about
the properties of K0. This leads to a question of equivalence. The most general
way to define an equivalence of problems is to say: “Two problems are equivalent
if answering the question ‘Is x ∈ A?’ tells us whether or not y ∈ B.”



COMPUTABILITY THEORY AND RECURSIVELY ENUMERABLE SETS 5

Definition 4.1. A set (subset of ω) A is many-one reducible to B (A ≤m B) if
there is a recursive function f such that f(A) ⊆ B and f(Ā) ⊆ B̄. Put simply
x ∈ A iff f(x) ∈ B.
If f is injective we say that it is one-reducible (≤1).
If we have A ≤m B and B ≤m A we say A ≡m B. We can define this similarly for
one-reducibility.

Definition 4.2. The m-degree (similarly one-degree) of A is the set {B : A ≡m B}

Proposition 4.3. K ≡1 K0

Proof. We have shown already that x ∈ K iff 〈x, x〉 ∈ K0, since 〈., .〉 is injective we
have that K ≤1 K0. Consider the function

ψ(x, y) =
{

1 if φπ1(x)(π2(x)) ↓
undefined if otherwise

By the parameter theorem we have a recursive function f such that ψ(x, y) =
φf(x)(y) for all a, y.

Suppose x ∈ K0, and x = 〈s, t〉. Then φs(t) ↓, which implies that φf(x)(y)
converges for all y, and in particular φf(x)(f(x)) converges. Thus we have x ∈
K0 → f(x) ∈ K by a recursive function.

Suppose that x /∈ K0, and x = 〈s, t〉. Then φs(t) ↑ so φf(x)(y) diverges for all y,
and so φf(x)(f(x)) diverges. Thus we have x /∈ K0 → f(x) /∈ K �

Remark 4.4. These definitions of equivalence are useful, but still to strong to cap-
ture the true idea of reducibility, which we will call Turing reducibility (≤T ). We
can similarly define Turing equivalence and Turing degree. We will define Turing
Reducibility first using Oracle Turing Machines, and then using the formalizations
of partial recursive functions.

Definition 4.5. An Oracle Turing machine, is a Turing machine as described
before with an additional tape A called the oracle, the squares on this tape are
determined by the function χA. While it is operating the Turing machine reads
from both machines at x in order to determine its actions.

Definition 4.6. We can treat a Oracle Turing Machine as a partially recursive
function, for the set A as having the additional basic function χA added to (I)-
(VI). We say that this function is Turing computable in A.

If we can use A to solve B, we know that we have Turing reducibility, in the thus
if we have the proper oracle tape, we can decide any problem in its Turing Degree.

References

[1] R. I. Soare. Recursively Enumerable Sets and Degrees. Springer-Verlag. 1987.


