
TESSELLATING THE HYPERBOLIC PLANE

JEAN MORRISON

Abstract. The main goal of this paper will be to determine which hyperbolic
polygons can be used to tessellate the hyperbolic plane. Sections 1-4 will be

devoted to providing the context of the hyperbolic plane and developing the

basic tools needed to prove the key theorems of this paper. In these sections I
will cover two common models of the plane and the isometries of these spaces.

Section 4 will be a brief digression into the nature of triangles which will provide
a good background for more general theorems about tessellation. Section 5

will cover the basics of tessellation. Poincaré’s theorem for compact polygons

which is the central element of the argument of this paper will be introduced
at the end of section 5. Section 6 will be devoted to the mechanical tools

needed to prove this theorem. In the final two sections,Poincaré’s theorem is

proved and the implications of the proof are discussed. Significant information
supplementary to the highlighted theorem is discovered in the course of its

proof.
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A note on the Philosophy of Geometry:
When describing geometric surfaces, there seem to be two approaches, you can

either begin with axioms from which all properties of the surface are discovered
organically or you can begin by defining a priori points, lines, distances, and angles
on a set and later end up ’realizing’ some convenient properties such as the fact that
’lines’ are the shortest paths between two points. My approach to constructing the
Hyperbolic plane will be a combination of the two, more heavily weighted toward
the latter approach. It is important to remember that there is an axiomatic basis
to the world we are about to describe however, actually building it up from this
basis seems tedious. Instead I will start by defining the hyperbolic plane as a set
equipped with an arc-length function.

Date: AUGUST 19, 2007.
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1. Some historical notes and a brief explanation of motivations for
the hyperbolic plane

Hyperbolic geometry was first discovered by geometers who were trying to prove
that the omission Euclid’s fifth postulate, which is sometimes referred to as the
parallel postulate, would lead to a contradiction with the other Euclidean axioms.
The famous axiom in question can be stated as:

Given a line l and a point p not on that line, there exists a unique
line through the point p which does not intersect l.

The hyperbolic plane can be established by replacing this with:

Given a line l and a point p not on that line, there is more than
one non-identical line through the point p and not intersecting l.

Any two spaces fulfilling this axiom together with the other axioms of Euclidean
space are isomorphic.

This space was first discovered by Bolyai and Lobachevsky separately. Gauss
also seems to have known of it around the same time (late 19th century) although
he didn’t publish his findings, possibly because he was unable to find a complete
embedding of hyperbolic space in R3. Hilbert proved in 1901 that a complete
(meaning that all lines can be infinitely extended) embedding of hyperbolic space
in R3 does not exist but useful models were constructed within R2 by Poincaré and
Beltrami. This paper will be working within the Poincaré half plane model and the
Poincaré disc model.

Another important motivating concept behind hyperbolic geometry is that of
Gaussian curvature which I wont discuss here except to say that the hyperbolic
plane was motivated by a search for a surface of constant negative curvature
analagous to the sphere which has constant positve curvature. The Euclidean plane
has zero curvature. An idea of curvature can be provided by giving the definition
for a two dimensional surface embedded in R3 which is not applicable to the hy-
perbolic plane because the hyperbolic plane cannot be embedded in R3 but this
definition is helpful in visualizing the concept.

Definition 1.1. The curvature κ of a path K at a point p on a manifold S em-
bedded in R3 is 1/ρ where ρ is the radius of the circle in R3 which most closely
approximates K at p.

The curvature of S at p is K(p) = κminκmax where κmin and κmax are respec-
tively the largest and smallest curvatures of paths through p on S.

Gauss proved that the parameter of curvature is independent of the choice of
coordinate system and can be calculated directly from the first fundamental form.
One of the consequences of this theorem is that the concept of curvature can be
applied to manifolds without reference to an embedding. Gauss was so impressed
by this theorem he named it “Theorema Egregium” or “Magnificent Theorem.”

2. The Poincaré Half Plane model

Because the hyperbolic plane cannot be embedded in R3 we will begin by looking
at the upper half of the complex plane

H2 = {z ∈ C|Im(z) > 0}



TESSELLATING THE HYPERBOLIC PLANE 3

with the length function

L (γ, 0, 1) =
∫ 1

0

√
(1/y2)(dx2 + dy2)

Here x = Im(z) and y = Re(z).
Hyperbolic lines will be defined as vetical lines in the complex plane and. These

lines are not arbitrarily chosen but are in fact geodesics, or locally shortest paths
with respect to the length function. Although this is not true on all surfaces, in
the hyperbolic plane geodesics are also unversally shortest paths, meaning there
is a unique geodesic between any two points and it is the shortest path between
them. This is notably not true on the sphere. Hyperbolic angles will be defined
as the Euclidean angles between the Euclidean line tangent to the two intersecting
hyperbolic lines at the point of intersection.

The next piece of information we need to really give shape to this universe is
an idea of the isometries, or distance preserving maps, on this space. Because it
is not the main focus of this paper I am going to abbreviate my discussion of the
isometries of the hyperbolic plane, although a thorough understanding of them will
be essential to later arguments. A really good reference for this is [1]. At the end of
the following section there is a table listing isometries and their geometric meaning.

It is important to note: Although many hyperbolic isometries take the same form
as Euclidean isometries they usually have different geometric meaning. Euclidean
dilations translate hyperbolic lines along the y axis, leaving the y-axis invariant,
Euclidean translations are not Hyperbolic translations and have no analogue in
Euclidean space, although it may be helpful to think of them as rotations about
the infinite limit of the imaginary axis.

Definition 2.1. An isometry of the hyperbolic plane is a function

T : H2 → H2

such that L(T ◦ γ) = L(γ) for all paths on H2

Definition 2.2. An inversion in the circle Cd,r with center d and radius r is a
function of the form

T (x) =
dz̄ + r2 − dd̄

z̄ − d̄

This function translates a point w along the line through itself and d, so that, if the
euclidean distance of w from d is given by ρ then the Euclidean distance of T (w)
form d is r2/ρ. T sends everything outside the circle to the inside of the circle and
vice versa. By taking limits of T and T−1 as w → d we see that the center of the
circle and the “point at infinity” switch places. It is as if the entire complex plane
is turned inside out leaving the boundary of the circle invariant.

Calculations of the type used below the table show that inversions through circles
with centers on the x-axis as well as the first two isometries listed in the table are in
fact isometries. Inversions are hyperbolic reflections while the first two isometries
from the table are respectively, limit rotations and translations. Unlike these three,
hyperbolic rotations are difficult to see in H2 so it is time to introduce another
model.
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3. The Poincaré Conformal Disc Model

We would like to create this new model, D2, in such a way that the knowledge we
already have about H2 is still usefull. Specifically we need a function J(z) : H2 → D2

such that if I(z) is an isometry in H2 then J(I(z)) is an isometry in D2. This means
that we will require the disc to be equipped with the metric it inherits from H2.
In other words a curve γ on D2 will have the H2 length of J−1(γ). Because of this
requirement, J will take geodesics in H2 to geodesics in D2 and if two H2 lines, l1
and l2 intersect in a H2 angle α thend J(l1) and J(l2) will intersect in a D2 angle α.
The specification of H2 angles versus D2 angles is really unecessary because they
will both be defined in the same way. Most of the tessellating in this paper will be
done on the D2 model

To map the upper half plane onto the unit-disc we first invert the complex plane
in the circle C−i,

√
2, which exchanges the origin and the point i because the origin

is at a distance of 1 from the center and so is sent to a point at a distance (2/1)
which is the point i, while i, being at distance 2 is sent to the point (2/2) = 1 away
from the center. We now have an image of H2 in the unit circle centered at the
origin, but it is upside down because the image of the origin is at the top while
image of the infinite limit of the plane is at −i. To correct this we then preform
a reflection of the entire plane about the x axis, interchanging the image of O and
the point −i at the bottom of the circle. This pair of transformations is given by:

J(z) = (z̄) ◦ (
−iz̄ + 1
z̄ − i

) = (
−iz̄ + 1
z̄ − i

) =
iz + 1
z + 1

J−1(z) =
−iw + 1
w − i

H2 -lines are mapped by this transformation to circles which intersect the bound-
ary at right angles, and H2 angles are preserved. It will be useful to calculate the
arc length function on D2 because, if a function T preserves D2 arc length then
J−1 ◦ T ◦ J necessarily preserves H2 arc length.

Recall: LH(γ) =
∫ |dz|

Im(z)

LD(γ) = L(HJ−1 ◦ γ) =
∫

|d(J−1(z))|
Im(J−1(z))

=

∫ | −2dw
(w−i)2 |

Im( (1−iw)(w̄+i)
|w−i|2 )

=
∫

|2dw|
1− |w|2

Lemma 3.1. T (w) = eiθw is a D2 isometry.

Geometrically, this isometry represents a rotation of the disc around the origin.
Previous calculations imply that J−1(T ) is an H2 isometry which should leave the
same number of points invariant as T does. In fact, T turns out to be an H2 rotation
about i.

Proof. T leaves the expression |2dw|
1−|w|2 unchanged �

The reader should verify for herself that all of the transformations are in fact
isometries of their respective models. I will only demonstrate this for the second
one in H2 (because it is the simplest).
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H2
J(z)= iz+1

z+1→ D2 Geometric Meaning
t(z) = α + z s(w) = i(α+w)+1

w+α+i Limit Rotation: fixes no points
but both limw→i, w ∈ D2 and
limz→∞, z ∈ H2 are fixed.

t(z) = ρz s(w) = ρiw+1
ρw+i Translation: along arcs which

are Euclidean lines through O
in H2(only the y-axis as an H2

line) and along Euclidean circles
through ±i in D2 (again only
the y-axis is a D2 line). Trans-
lation preserves these lines and
fixes their endpoints: 0 and ∞
in H2, ±i in D2.

t(z) = −ieiθw+1
eiθw−i

s(w) = eiθw Rotation: about O in D2, fixes
only one point: O in D2 and i in
H2, leaves invariant circles with
center O in D2

t(z) = 1
z̄ s(w) = w̄ Reflection: across the real axis

in D2 and across the unit circle
in H2(inversion).

Table 1. Dictionary of isometries in the Half Plane and the Con-
formal Disc

In the case of Euclidean dilations T (z) = ρz. Let a path γ be given by

γ(t) = γx(t) + iγy(t)

and dx = ∂(γx(t))
∂t dt, dy = ∂(γy(t))

∂t dt then

L(T ◦ γ) =
∫

ρ
√

dx2 + dy2

ργy(t)
=

∫ √
dx2 + dy2

γy(t)
= L(γ)

Lemma 3.2. Any point in D2 is uniquely determined by its D2-distance from three
non-collinear points on the disc.

Proof. Using the fact that in hyperbolic space, geodesics are universally shortest
paths, if the sides of a triangle are length A, B, C, the sum of any two lengths is
greater than or equal to the other length because otherwise A+B < C and C is not
a geodesic. Suppose that there are two distinct points equidistant from three non-
colinear points a, b, and c. We will show that the set of points equidistant from both
p and p′ is an H2 line and so this is impossible. In figure 1 it is clear that the two
triangles 4apb 4bp′a are congruent because |āp| = |āp′| and |b̄p| = |b̄p′|. We can
also see from the figure that reflection about the line through a and b interchanges
these triangles and threfore also interchanges the points p and p′. This shows that
all points on that line are equidistant from p and p′. It now only remains to show
that any point not on this line cannot be equidistant from both p and p′.

Since this point, c, is not on the line āb, it must be on one side or the other
of it and we can assume, without loss of generality, that it is on the same side as
the point p. Again, referring to figure 1, we know from above that the lengths B2
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and |d̄p| are equivalent. We also have the inequality B1 + |d̄p| ≥ A with equality
holding only if the point c is co-linear with p and p′. The only point co-linear with
p and p′ and equidistnt from both is the point at the intersecton of p̄p′ and āb and,
by assumption, c is not co-linear with a and b. Therefore, we have shown that B is
greater than A contradicting our assumption that they are equal. �

Theorem 3.3. Three Reflections Theorem for H2

All hyperbolic reflections are the product of one, two or three hyperbolic reflec-
tions.

Proof. This proof is identical to the proof of the analogous theorem for Euclidean
Space which is done in [1] among other places. �

Theorem 3.4. Poincaré [1882]
The complex functions T (z) = az+b

cz+d or T (z) = −az̄+b
−cz̄+d with ad− bc = 1 are all of

the H2 isometries.

Proof. This theorem follows directly from the three reflections theorem and the
proven isometries from the table: All reflections in H2 are either inversions through
circles with center on the x axis or reflections across lines of the form x = ε.

Inversions in the circle with center α and radius 1 are represented by the linear
transformation I(z) = αz̄+12−α2

z̄−α . Taking a = −α, b = 1− α2, c = −1, d = −α, this
isometry is of the second kind and ad − bc = 1. Reflections through lines x = ε
are of the form −z̄ + 2ε. This is a transformation also of the second type with
a = 1, b = 2ε, c = 0, d = 1 so that ad− bc = 1.

Products of two reflections therefore have the form az+b
cz+d with ad − bc = 1 .

Products of three reflections have the form a′z̄+b′

c′z̄+d′ with determinant -1 which is the
same as −az+b

−cz+d with determinant 1.
On the other hand, a few calculations show that any function of the form

t(z) =
az + b

cz + d
= (

a

c
)− 1

c(cz + d)

. If d > 0 this is the product of three H2 reflections. If d < 0 the calculations may
be repeated for −az̄+b

−cz̄+d . �

Corollary 3.5. D2 isometries are of the form s(w) = az+b
b̄z+ā

and s(w) = az̄+b
b̄z̄+ā

where,
in both cases a, b ∈ and |a|2 + |b|2 = 1.

In the rest of this paper, I will refer to the group of isometries of H2 as ΓH and
the group of isometries of D2 as ΓD.

4. Hyperbolic Triangles

As in Euclidean space, triangles are a fundamental polygon to understand. The
proof that all polygons can be triangulated carries over directly from the proof in
the Euclidean case so, while it is a simple topic, triangles can be the key to many
complex geometric topics. I will not prove the results in this very short section but
they can be found in [1].

The first thing to notice is that while the angles of Euclidean triangles are con-
strained to summing to precisely π, there is no such constraint in the hyperbolic
plane, in fact the angles of hyperbolic triangles all sum to less than π. The area of
a hyperbolic triangle can be found by integration. The result of such calculations
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is that the area depends only on its angle measurements. This means that there
are no similar triangles - triangles with the same angles have the same area and are
congruent! These facts carry over to the case of larger polygons by triangulation
- a non-convex hyperbolic n-gon has angles summing to less than π(n − 2). The
following formula will be useful:

The area of a triangle in D2 is given by π−(α+β+γ) if α, β, and γ are the angles
of the triangle. This formula expresses the fact that the smaller a neighborhood in
hyperbolic space, the more closely triangles in this space will look like Euclidean
triangles. The converse of the idea that very large triangles have angles which sum
to very small amounts.

In hyperbolic space there are two types of parallel lines: asymptotically parallel
and ultraparallel. Both terms refer to pairs of lines which do not intersect, however,
asymptotically parallel lines share a common limit point on the boundary of the
disc, in the 2 model, while ultraparallel lines do not. The angle between two
asymptotically parallel lines is defined to be zero.

5. Groups and Tessellations

In this section we will only be discussing tessellations of The Euclidean plane
and tessellations of the two models for the hyperbolic plane given in the previ-
ous sections, so, for the purposes of simplicity, all definitions and theorems will
be restricted to these two spaces even though many of them generalize to more
Riemannian surfaces.

Definition 5.1. A polygon D is a closed region which is the union of an open set
D′ and ∂D′ the boundary of D′. ∂D′ is a finite union of line segments, called edges,
appropriate to the space which D inhabits. ∂D′ satisfies the following:

(1) Two edges are either disjoint or intersect in exactly one point which is an
end point of both edges.

(2) A point of intersection of two edges is called a vertex and is an element of
exactly two edges.

(3) Each edge intersects exactly two other edges.

Definition 5.2. A tessellation of a plane S which is either the Euclidean plane or
of the Hyperbolic plane is a subdivision of the plane into polygonal tiles ti Such
that the tiles have the following properties:

(1) (the tiles are all ”the same shape”)given any two tiles ti and tj ∃ an isometry
Ti,j ∈ ΓEuc,ΓH , or ΓD as appropriate such that Ti,j(ti) = tj

(2) (No overlapping tiles) If ti and tj are not identical then only one of the
following is true:
• ti ∩ tj = ∅
• ti ∩ tj = p where p is a single point in S
• ti ∩ tj = e where e is a line segment in S

(3) (No gaps between tiles)given any point p ∈ S, there is at least one tile ti
such that p ∈ t1

The most well known tessellation is probably the chess board tessellation pictured
in figure 2 with the unit square in which each square has lower left coordinate (n, m)
where n and m are integers.
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Unfortunately, this definition also admits some awkward and inconvenient tes-
sellations which we would like to exclude, like the two examples in figure 3. The
tessellation on the left in figure 3 shows a standard chess board tessellation which
has been modified. In this tessellation, a square which had its lower left corner at
coordinate (n, m) in figure 2, has been moved up by 1/n so that that corner is now
at (n, m + (1/n)). The tessellation on the right in figure 3 shows a subdivision of
the chessboard tessellation into right triangles obtained by arbitrarily choosing one
of the two diagonals in every square.

Definition 5.3. a tessellation in standard form is a tessellation with the following
properties:

(1) as in definition 5.2.
(2) If ti and tj are not identical then only one of the following is true:

• ti ∩ tj = ∅
• ti ∩ tj = p where p is a single point in S and p is a vertex of both

ti and Tj

• ti ∩ tj = e where e is a line segment in S and e is an entire edge of
both ti and Tj

(3) Given any point p ∈ S, there is at least one tile ti such that p ∈ t1. If P
is in exactly one tile then p is in the interior of a tile. If p is in
exactly two tiles then p is in an edge and if P is in more than two
tiles then p is a vertex

Notice that the brick tessellation in figure 4 can still be considered to be in
standard form if it is viewed as a hexagonal tessellation rather than a rectangular
one but that the tessellation on the left of figure 3 cannot because polygons are
restricted to having a finite number of sides.

Because of the first requirement of a tessellation, any tessellation can be paired
with a characteristic group H where H is the set of all the symmetries of the tes-
sellation or the subset of ΓS of isometries which take all tiles to other tiles. If
the polygonal tiles of the tessellation themselves have symmetries, these will be
included in H.

Example 5.4. The group Hsquares of symmetries of the chess board tessellation
is the group generated by:

g = reflection across one side of the square
h = rotation by 90 deg around the center of one of the squares
The group Htriangles of symmetries of the tessellation on the right of figure 3 is

generated by:
g = translation by one unit to the left
h = translation by one unit up
These are the only isometries which preserve the structure of the tessellation

because of its random nature. Observe that Htriangles does not contain enough
isometries to move any tile to any other tile in the tessellation.

Definition 5.5. A tessellation, T is symmetric if the group HT contains at least
one member from each set Ti,j = {ti,j |ti,j(ti) = tj} where the ti,j are isometries.

The tessellation on the right of figure 3 is not symmetric. From this point
the tessellations considered in this paper will be limited to symmetric tessellations
in standard form. You can imagine that while a tessellation, T determines the
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associated group H of symmetries, H seems to suggest the shape of T. Given only the
group Hsquares from example 5.4 and asked to guess what the associated tessellation
looked like, you could very well guess correctly. It would, however, be equally
reasonable for you to suggest a tessellation by the iscocolese right triangles which
form quarters of the square.

The following definitions will help to use groups of isometries to produce tes-
sellations of the Hyperbolic plane, a far more efficient way to discover them than
guessing shapes and attempting to make them tessellate. In these definitions S will
refer to a space which could be either the Euclidean Plane or the Hyperbolic Plane.

Definition 5.6. If x ∈ S is a point and H is a group of isometries of S, the orbit
of x under H is

orbitH(x) = {hx|h ∈ H}

Definition 5.7. x and x′ are images under H if they are in the same orbit.

Definition 5.8. A point p in S is a limit point of x under H if ∀U open neighbor-
hoods of y, U contains an infinite number of images of x. This definition implies
that if x is a fixed point for h ∈ H and h has infinite order then x is a limit point.

Definition 5.9. A group H acts discontinuously in S if ∀x ∈ S there are no limit
points of x in S.

Definition 5.10. A region D in S is a fundamental region of S under H if D =
D′ ∪ ∂D′ where ∂D′ is the boundary of D′ and the following are true:

(1) Given x ∈ D′ there are no images of x in D′.
(2) ∀x ∈ S∃x′ an image of x in D.
(3) ∂D′ contains no limit points.

Lemma 5.11. If T is a tessellation and H the associated group of symmetries, H
acts discontinuously on S.

Proof. Suppose that H does not act discontinuously. Then there is a limit point,
p of x in S. Let U be a small open neighborhood of p. Let m(U) be the number
of tiles in T which share points with U and choose U so that m is minimized, that
is, if p is in the interior of a tile then m(U) = 1, if p is on an edge then m(U) = 2
and if p is a vertex then m(u) = n for n a finite integer greater than 2. Because
p is a limit point, U contains an infinite number of images of x, and because U
shares points with only a finite number of tiles, there is at least one tile, t, which
contains an infinite number of images of x. H may now be restricted only to those
isometries which are symmetries of t:

H ′
t = {h ∈ H|h(t) = t∀}

There are many proofs that H ′
t has finite order and clearly any two points x, x′ ∈ t

which are images under H are also images under H ′
t. This generates a contradiction

since there cannot be infinitely many images produced by a group of finite order. �

Theorem 5.12. If a polygon Π is a fundamental region for a group Γ then there
is a tessellation of S with Π.

This is a very important theorem. Once this fact is established the fundamen-
tal question of this paper changes from “Which polygons tessellate the hyperbolic
plane?” to “Which polygons can be fundamental regions for subgroups of the isome-
tries of the hyperbolic plane?” In order to prove this theorem we will first prove it



10 JEAN MORRISON

for polygons which are fundamental regions for orientation preserving groups and
then for all polygons. In order to do this we will use the elements of the orien-
tation preserving group to identify edges of polygons in systematic way to create
a hyperbolic surface. Before this will be useful however, we need to show that
the hyperbolic plane is a covering space for all hyperbolic surfaces and that the
tessellation can be lifted from the surface to the plane.

6. Hyperbolic Surfaces, Covering Spaces, and Lifts

All of the proofs and definitions in this section are given for hyperbolic space
but most of them can be made (nearly word for word) to apply to Euclidean space
as well.

Definition 6.1. S, a set equipped with a distance function, is a hyperbolic surface
if for each point x ∈ S, there is an ε such that the disc of radius ε with respect to
the distance function on S around x is isometric to a disc in the hyperbolic plane.

Definition 6.2. E is a covering space of B if there is a map p : E → B such that
p has the following properties:

(1) Every point of B has a open neighborhood U such that p−1(U) can be
written as a disjoint union of open sets Uα in E. These open sets are called
partitions.

(2) The restriction of p to one of the open neighborhoods Uα is a homeomor-
phism. I won’t give a formal definition of homeomorphism in this paper.

The goal of this section will be to prove that any hyperbolic surface can be
covered by the hyperbolic plane. We will use the D2 model to show this but it
can be done equally well using any other model. This was proven by Hopf in 1925
for Euclidean surfaces and the Euclidean plane and the proof I give here is draws
heavily from the presentation of that proof in [1].

Definition 6.3. Pencil Map:
The idea behind a pencil map is that because locally the surface is isometric to

a region of the hyperbolic plane, if the surface is complete, lines can be extended
from one of these isometries. The pencil map will be the natural extension of one
of the local maps from D2 to S. This definition relies on the fact given in lemma
3.2, that a point in D2 can be given by D2 coordinates. Because D2 looks the
same everywhere,without loss of generality, we can say that all points on S have
neighborhoods isometric to a neighborhood around the origin

If S is a hyperbolic surface the pencil map p : D2 → S is defined as follows.
Select a point Os ∈ S and an isometry p : Uε(O) → Uε(Os). For any point z in D2

p(z) may be found by taking the line segment on S p(OP ∩Uε) and extending it to
the distance |OP |

Theorem 6.4. A pencil map has the following properties which make is a covering
map:

(1) Each point in D2 has a neighborhood on which p is an isometry.
(2) p is surjective

These conditions cause p to be a covering map because, since p is onto, each point
s ∈ S has a preimage p−1(s) which is a non empty set of points in D2. By condition
(1) each of these points, si has a small neighborhood Usi

on which it is isometric to a
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small neighborhood p(Usi) of s. This forces all of the points in p−1(s) to be disjoint.
Because an isometry is a special case of a homeomorphism, the intersection of the
p(Usi

)’s will be a neighborhood fulfilling the conditions demanded by definition 5.2.
It is a bit tricky and technical to verify that the intersection above can always be
chosen so that it is not only the point s but this can be done. If S were not complete
these conditions would not be enough to cause p to be a covering map but in our
case they are.

Proof. This proof is long and can be found in [1]. �

Definition 6.5. If p is a covering map p : D2 → S, f is a map from a space X to
S then a lift of f is a map f̃ : X → D2 such that p ◦ f̃ = f .

Lemma 6.6. Path lifting lemma
If γ is a path on a complete hyperbolic surface S, γ : [0, 1] → S with γ(0) = s0

and p is a covering map p : D2 → S, p(e0) = s0 then there is a unique lift, γ̃, of γ
onto D2 with γ̃(0) = e0.

Proof. γ̃ will be constructed explicitly in steps. Begin by choosing a covering of S
by open sets such that each open set fulfills both conditions of definition 6.2 and
choose a subdivision 0 = s0 ≤ s1 ≤ . . . ≤ sn = 1 such that for each i f [si, si+1] is
contained entirely in one of the open sets. Define γ̃ as follows: γ̃(0) = e0. Supposing
γ̃(s) is defined for 0 ≤ s ≤ si then γ̃(si) lies in one of the partitions of the open set
to which f [si, si+1] belongs, say U0. γ̃[si, si+1] will be defined as p−1|U0(f [si, si+1]).

The reader can verify that γ̃ is continuous. The fact that p ◦ γ̃ = γ is clear from
construction. It is unique because, if ˜̃γ is another lift of γ with ˜̃γ(0) = e0, not
identical to γ̃ then the two must diverge at some point t such that si < t ≤ si+1

for some i. If U0 is the partition of the open set to which f [si, si+1] belongs which
contains ˜̃γ(si) , ˜̃γ[t, si+1] necessarily belongs to a different partition and is therefore
not continuous. �

7. Polygons Which are Fundamental Regions for Subgroups of ΓD

Definition 7.1. An orientation preserving isometry is one with determinant greater
than 0. An isometry which is not orientation preserving is orientation reversing.

Specifically, orientation preserving isometries of H2 are of the form T (z) = az+b
cz+d

with ad − bc = 1, and the orientation preserving isometries of D2 are of the form
S(w) = aw+b

b̄w+a
with |a|2 − |b|2 = 1.

The reader can verify that, as a consequence of Theorem 3.3, orientation pre-
serving isometries are the products of even numbers of reflections while orientation
reversing isometries are the odd products of reflections. The composition of two
orientation preserving isometries is another orientation preserving isometry while
the composition of two orientation reversing isometries is an orientation preserving
isometry. I will not verify these facts here because it is easy enough to do and is
done in many books for the Euclidean Plane.

It now seems logical to ask which polygons are fundamental regions for only
orientation preserving isometries.

Proposition 7.2. If Π is a fundamental region for a group G+ of orientation
preserving isometries than the following conditions hold:
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(1) For each side si of Π there is exactly one other side sj , i 6= j and one
isometry g ∈ G+ such that g(sj) = si. Clearly if this is true then g−1(si) =
sj and the sides are matched in pairs. Also, g(Π) 6= Π and the vertices
which are endpoints of si and sjare identified, also in cycles.

(2) The sum of the angles in each set of identified vertices is 2π/p where p is
a positive integer

Proof. (1) Let g1Π . . . gkΠ be the tiles which share edges or parts of edges with
Π. Supposing s is a shared line segment of π and giΠ. If s is not an entire
edge of Π then, by placing vertices at the endpoints of s, one edge of Π may
be subdivided into two or three edges, one of which is s. then g−1

i (s) is a
shared side s′ of g−1

i Π and g−1
i giΠ = Π thus also a side of Π. s′ is the only

side paired with s because, were another side, s′′ also paired with s via gj ,
then there are points near s′′ and s′ in the interior of Π which are images
of each other and Π is not a fundamental region. Therefore, each side is
paired with another side unless g−1

i (s) is s. In this case, because g−1
i is

orientation preserving it must be rotation through the center of s by π and
s may be split by a vertex in the center into s1 and s2 so that gi(s1) = s2.

(2) Suppose the vertices of Π are v1 . . . vk. Suppose, without loss of generality,
that v1 is one of the end points of s as above and that g−1v1 is one of the
endpoints of g−1(s). The vertices of Π can be devided into discrete sets
of vertices which are identified by the side pairing operations specified in
1 and clearly there will be k or fewer of these sets of one or more vertex.
If (v1 . . . vl) is the vertex cycle at (v1) then it is also the vertex cycle at
g−1(v1) and g−1(v1) is one of the vertices in the cycle. In fact, the vertex
cycle induced by the side pairing transformations is the same at each vertex
in the cycle. Clearly the sum of these angles evenly divides 2π

A consequence of this is that the group G+ for which Π is fundamental region
is generated precisely by the isometries associated with side pairing operations.
Filling of the plane by Π under G+ is insured by the angle conditions which cause
the polygons to“fit together” nicely. �

Proposition 7.3. If Ω is a fundamental region for a group G of isometries which
are not all orientation preserving and which acts discontinously, then it is possible
to find a polygon Π which is a fundamental region of G+ ⊆ G such that Π can be
subdivided evenly into copies of Ω.

This proposition insures that if Theorem 5.12 holds for polygons which are fun-
damental regions for orientation preserving isometries then it holds for all polygons
which are fundamental regions.

Proof. Assume that G is generated by isometries g1 . . . gn and that only g1 is orien-
tation reversing. It may be assumed without loss of generality that gi(Ω), 0 ≤ i ≤ n
shares a line segment with Ω. The first step is to add necessary vertices to insure
that each gi(Ω) shares a full side with Ω, although because not all the isometries are
orientation preserving we cannot ensure that no side is paired with itself. Define Π
as the union Ω∩g1Ω. Π is then a fundamental region for the group G+ generated by
(g2

1), g2 . . . gn: The group G is the disjoint union of G+ and g1G
+ = {g1h|h ∈ G+}

Therefore every image of Ω in the plane is of the form gΩ where g is either in G+

or g1G
+.
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All the conditions of fundamental region are therefore fulfilled unless Ω ∩ g1Ω is
not a polygon. Of the conditions in definition 5.1 only the third could be violated
since both Ω and g1Ω are polygons the other two conditions are immediate. A
violation of the third criterion implies that the boundary of Π is not a simple
closed curve. The polygonal Jordan curve theorem says that if ∂Π is not a simple
closed curve, then Π separates a polygonal region K from the rest of the plane.
In this case, there must by an image of Π contained completely within this region
which by the same logic, separates a subregion of K from the rest of K. This
can be continued ad infinatum, implying the existence of a limit point in K. This
contradicts the fact that Ω is a fundamental region which by lemma 5.11 means
that G acts discontinuously on the hyperbolic plane. �

It now remains only to show that Theorem 5.12 holds for polygons with the
properties outlined in proposition 7.2. We will do this by stitching together the
polygons generated by the group G+ of orientation preserving isometries to build
a hyperbolic surface. Using the lifting lemma, this tessellation can be lifted to
the hyperbolic plane. The two delicate parts of this proof are i) verifying that we
have created a hyperbolic surface and ii) verifying that the lift of the tessellation
to D2 (or H2) is a tessellation in the hyperbolic plane and that it is a tessellation
of the same polygon we began with. Because of these delicacies, we must proceed
carefully.

Theorem 7.4. Theorem 5.12 holds for polygons, Π satisfying the conditions listed
in Proposition 7.2.

This Theorem will be proven in two parts
(1) Construct a hyperbolic surface, S as follows: Without loss of generality, a

generating set (g1 . . . gn) may be chosen for the group G+ under which Π is
a fundamental region so that each gi is an isometry associated with a side-
pairing transformation. The sides of Π may also be numbered s1 . . . s2n so
that gi(si) = sn+i and g−1

i (sn+i) = si. Identify the edges and vertices of
each polygon hΠ so that two points respectively on the boundaries of h1Π
and h2Π are the same, ph1Π = ph2Π if for some i, gi(ph1Π) = ph2Π. That
is the polygons generated by G+ are sewn together exactly as you would
expect them to be.

Proof. In order to prove this we must verify that each point in S has a
neighborhood U which is isomorphic to a neighborhood of the hyperbolic
plane. Clearly any point on the interior of a polygon has such a neigh-
borhood. A neighborhood around a point on a line segment which is not
a vertex can be expressed as the union of two open half-discs which are
isomorphic to open half-discs in the hyperbolic plane and a line segment
isomorphic to a segment of a geodesic in the hyperbolic plane with the same
length as the diameter of the two half-discs. An open neighborhood in the
hyperbolic plane can be expressed in the same way, so there is an isometry
between the two. It really only remains to verify that vertices have such
neighborhoods.

Suppose V is a vertex in S with vertex cycle v1, . . . vl induced by the
side-pairing transformations. This vertex cycle is related to the cycle of
side-pairing isometries gi1 . . . gil such that gij identifies vj with vj+1 and
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gil identifies vl with v1. Let θj be the angle at vj . The cyclic nature of the
vertices means that:

gl(gl−1(. . . g2(g1(Π)))) = r∑l

j=1
θj

(Π)

where rθ is rotation through the angle theta. We know from the angle
conditions that

∑l
j=1 = 2π/p, where p is a positive integer. This means

that (gl . . . g1)p = 1. So after exactly p repetitions of the vertex cycle, the
polygons close up and the same logic which was used to prove that points
on the boundary have neighborhoods isometric to neighborhoods in D2.

Observe that S is complete. �

(2) The tessellation of S may be lifted to D2 to form a tessellation with the
polygon Π.

Proof. By the path lifting lemma, there is a unique lift of the system of
paths which makes up the tessellation on S. It is enough to show that the
lift of the boundary of Π and the interior of that region is isomorphic to Π
and that there is only one polygon in the pre-image of each polygon in S.

In order to prove the first statement, it is enough to observe the lift at
one vertex of Π, say V , which, without loss of generality, can be assumed
to p(O) where p is the pencil map from H2 to S. In S there are two sides
of Π which meet at V and the pre-image of these sides confined to a small
neighborhood around the origin for which p is an isometry, necessarily has
the same angle as the two sides in S. The line segments which make up
the polygons in S are, by construction, isomorphic to polygons in D2, so
the lifts of their line segments will be geodesics in D2. From section 3, we
know that the angles of a polygon uniquely determine the polygon in the
hyperbolic plane, so the lift of Π is isomorphic to Π.

Now we examine the lift of the polygon gΠ for some g ∈ G+. g can
be expressed as the composition of generators g±1

i1 g±1
i2 . . . g±1

in . These gen-
erators determine a path from Π to gΠ in S. The lift of this path to D2

must terminate in the location of the lift of gΠ. Because each point in D2

is determined uniquely by the geodesic from itself to the origin, there may
only be one image of gΠ in D2. Furthermore g(liftΠ) = lift(gΠ, using the
same path previously mentioned. �

As a result of this theorem and proposition 7.2, we now know not only
that there is a correlation between being a fundamental region and tessel-
lating the hyperbolic plane, but we also know what kinds of polygons are
fundamental regions. What follows is one example of tessellations of the
hyperbolic plane.

Example 7.5. The image in figure 5 is a tessellation of the disc model with triangles
which have angles π/2, π/3, and π/7. This triangle is a fundamental region for the
group generated by reflections across the sides of the triangle. A consequence of
the angle condition from proposition 7.2 is that all triangles which tessellate have
angles π/p, π/q, π/r where p, q, r are integers such that the sum of the three angles
is less than π.
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